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Abstract

Recently, the incidence of thyroid cancer (THCA) has been on the rise. RNA binding pro-

teins (RBPs) and their abnormal expression are closely related to the emergence and patho-

genesis of tumor diseases. In this study, we obtained gene expression data and

corresponding clinical information from the TCGA database. A total of 162 aberrantly

expressed RBPs were obtained, comprising 92 up-regulated and 70 down-regulated RBPs.

Then, we performed a functional enrichment analysis and constructed a PPI network.

Through univariate Cox regression analysis of key genes and found that NOLC1 (p =

0.036), RPS27L (p = 0.011), TDRD9 (p = 0.016), TDRD6 (p = 0.002), IFIT2 (p = 0.037), and

IFIT3 (p = 0.02) were significantly related to the prognosis. Through the online website

Kaplan-Meier plotter and multivariate Cox analysis, we identified 2 RBP-coding genes

(RPS27L and IFIT3) to construct a predictive model in the entire TCGA dataset and then val-

idate in two subsets. In-depth analysis revealed that the data gave by this model, the

patient’s high-risk score is very closely related to the overall survival rate difference (p =

0.038). Further, we investigated the correlation between the model and the clinic, and the

results indicated that the high-risk was in the male group (p = 0.011) and the T3-4 group (p =

0.046) was associated with a poor prognosis. On the whole, the conclusions of our research

this time can make it possible to find more insights into the research on the pathogenesis of

THCA, this could be beneficial for individualized treatment and medical decision making.

1. Introduction

The thyroid gland is an endocrine organ located in the neck of human body and secretes two

hormones thyroxine and triiodothyronine that are essential for the normal functioning of all

the cells as well as regulating human metabolism, controlling weight, blood pressure, heart

rate, and body temperature [1–4]. Thyroid cancer arises from the parafollicular or follicular

cells and considered as one of the most common malignant tumor of endocrine system. Over
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the past 30 years, the incidence of thyroid cancer has been on the rise, each year it comprises

for 3.4% of all tumor cases diagnosed globally [5–10]. The most famous types of thyroid

tumors are papillary thyroid cancer (PTC) and follicular thyroid cancer with a better progno-

sis, and their survival rate can exceed 90% in the long-term development process. At present,

PTC patients usually cured with conventional treatments including surgical treatment, radio-

active iodine therapy or thyroid stimulating hormone suppression therapy [11–13]. Although

most PTCs remain inert and survival rate of the patients is maximum, the recurrence and

metastasis of tumors hinder the clinical treatment and resulted in poor prognosis [14–20]. For

patients with locally advanced or distant metastatic PTC, the existing treatment methods are

not enough and there is a need for a novel approach to diagnose and treat PTC.

RNA-binding proteins (RBPs) can interact with many types of RNA and have a very high

appearance rate in various cells [21–25]. A total of 1542 RBPs were identified in human cells

through high-throughput screening, accounting for 7.5% of all protein-coding genes [26–30].

RBPs refers to a kind of pleiotropic protein. RBPs transcribed after interacting with the target

RNA, and finally regulate the level of gene expression. Previous pieces of research work

revealed that RNA-binding proteins are involved in RNA metabolism and play a vital role in

regulating RNA stability, alternative splicing, modification, localization, and translation [31–

34]. Therefore, abnormalities in the expression of RBPs can cause several disorders including

muscle atrophy, metabolic disorders, cancer, and germ cell development [35–41]. Dysregu-

lated RBPs have been reported to mediate cell proliferation, apoptosis, angiogenesis, senes-

cence, and metastasis in various cancer cells, the critical biological mechanisms of which

include miRNAs regulation, alternative splicing, alternative Polyadenylation, RNA localiza-

tion, RNA stability, and translational regulation [42–44]. Besides, some of these RBPs dysregu-

lations are significantly associated with the prognosis of specific cancer patients. On the other

hand, based on RBPs’ functional role in cancer, several therapeutics targeting RBPs including

small-molecule drugs, inhibitors, small peptides, and antisense oligonucleotides have been

developed and applied in clinical trials [45–47]. However, till now RBPs have not been well

explored in thyroid cancer. In the emergence and development of THCA, the role RBPs is still

unclear. Although the treatment of THCA has achieved great results in the last ten years, due

to the high incidence of tumor-specific deaths, it is still worth considering the prognosis of

patients and the need for new treatment methods. Thus, the analysis of RBPs in THCA can

provide new insights as potential biomarkers for treatment and pathogenesis of thyroid

tumors.

In the current investigation, we collected the THCA data from the TCGA database and con-

ducted various experiments to assess the potential molecular functions and clinical value of

RBPs in THCA. In addition, we also analyzed many differentially expressed RBPs that were

closely related to THCA. Meanwhile, we carried out enrichment analysis on the GO and

KEGG pathways, in order to demonstrate the possible mechanism of RBP in THCA. We also

established a model related to the prognosis and tested the accuracy of the model through sur-

vival analysis, ROC analysis, univariate Cox analysis, and multivariate Cox analysis.

2. Materials and methods

2.1 Datasets

We downloaded the THCA transcriptome expression profile and corresponding clinical infor-

mation from the TCGA database (https://portal.gdc.cancer.gov/repository). The expression

data was HTSeq-FPKM type, containing 510 THCA tissues and 58 adjacent nontumorous tis-

sue samples.
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2.2 Identification of DEGs and functional annotations

We collected 1542 genes related to RBP from the literature [21]. Then we extract RBPs-related

genes from the TCGA-THCA data set, and carried out standardized correction on the FPKM

data through R software for differential analysis. Next, identify the specific conditions of DEGs

through the "LIMMA" package by comparison between data of 58 adjacent nontumorous tis-

sue samples and these of 510 THCA tissues. Based on p< 0.05 and |log2 fold change (FC)|�1,

we can find RBPs with different expressions. Then through R software, two kinds of enrich-

ment analysis of RBPs with very obvious differences were carried out, namely the Kyoto Ency-

clopedia of Genome Genomics Database (KEGG) enrichment analysis and Gene Ontology

(GO) enrichment analysis (p<0.05).

2.3 Protein-protein interaction (PPI) network construction and module

analysis

To predict the PPI protein network of differentially expressed TCGA-THCA RBPs and to ana-

lyze the degree of interaction between proteins, we used the online website STRING (https://

string-db.org/) [48–51]. Next, to make the PPI network visualized, we used Cytoscape software

(v3.7.2) and then MCODE plug-in included in the Cytoscape software to expand the very criti-

cal sections of the PPI network survey. We defined advanced options as K-Core = 2, Node

Score cutoff = 0.2, and degree cutoff = 2.

2.4 Prognosis-related RBPs selection

We used univariate Cox regression to examine the expression levels of DEGs in the TCGA

dataset (p<0.05 as statistical significance), and then evaluated the prognostic value of RBPs

and survival time, and finally determined the RBPs related to overall survival time. Also, the

Kaplan Meyer plotter (https://kmplot.com/analysis/) was used to further verify the prognostic

value of various RBPs [52]. The RBPs with p< 0.05 were considered to be true prognostic

RBPs.

2.5 Prognostic model construction and evaluation

From the prognostic-related RBPs genes obtained, we formulated a risk signature based on

multivariate Cox proportional hazard regression analysis on the entire TCGA data (training

set). The risk score of each sample in this model can be calculated by the following formula,

which was:

Risk Score ¼
Pn

i¼1
Expi bi

The β in this formula refers to the regression coefficient, and Exp indicates the gene expres-

sion value. Moreover, the model built by the “survival” package can estimate the performance

of the prognostic model by the area under the (AUC) of the receiver operating characteristic

(ROC) curve with optimal cut-off value. After the construction of the prognostic model, the

entire TCGA data were randomly divided into two subsets for cross-validation. Finally, we

also used the “rms” package to estimate the probability of overall survival (OS) occurrence and

also drew a nomogram to predict 3- and 5-year OS for THCA patients. The calibration curve

of the nomogram compared the predicted OS with the observed OS.

2.6 Analysis of key RBPs

To further identify the independent prognostic parameters in the model, we obtained the

immunohistochemical results of thyroid cancer through the human protein atlas (HPA;
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https://www.proteinatlas.org/) [53–55]. cBioportal for Cancer Genomics was explored to

investigate the genetic alterations of the prognostic genes in the gene signature. Besides, we use

the data information in the TIMER database (https://cistrome.shinyapps.io/timer/) [56, 57],

the correlation between RBP and tumor immune infiltration (including CD8+ T cells, neutro-

phils, dendritic cells, B cells, CD4+ T cells, and macrophages) was studied in depth.

2.7 Statistical analysis

In this study, we used R software (version 3.6.3) to explore the whole process. We used the R

software packages "ggsignif", "ggpubr" and "ggplot2" to make box plots and quantitative statis-

tical studies of differential expression. In R, we performed multivariate and univariate Cox

analysis. The ROC analysis was calculated by the "survivalROC" R package. p< 0.05 and con-

sidered statistically significant.

3. Result

3.1 Identification of differentially expressed RBPs and functional

enrichment analysis in THCA

The intersection of the collected 1542 RBPs data sets and THCA data sets shows that there

were 1492 RBPs related genes in THCA (Fig 1A). Then we did a difference analysis of these

1492 THCA RBPs between adjacent normal tissues vs thyroid cancer samples and 162 genes

were identified with significant differences (S1 Table). Among them were 70 down-regulated

genes and 92 up-regulated genes as displayed in Fig 1B. To assess the molecular mechanism

and potential role of RBPs, we divided them into two parts according to their expression abil-

ity, and then by using R software we accomplished GO and KEGG enrichment analysis on

these two groups, respectively (Fig 1C and 1D). Mostly, RBPs work through multiple RNA-

related functions in this result (the list is shown in S2 Table).

3.2 PPI network construction and key gene screening

To better understand these DEGs and seek for the potential key RBPs as biomarker candidates

in the development of thyroid cancer, we constructed a PPI network among DEGs through

the online website STRING, and visualized it through Cytoscape software. As depicted in Fig

2A, this PPI network has a total of 408 edges and 133 nodes. Also, we calculated the number of

interactions between each node and visualized the first 30 nodes as candidate key RBPs for fur-

ther examination, as presented in Fig 2B. To identify the genes related to the prognosis of thy-

roid cancer, we utilized univariate Cox regression analysis and found that NOLC1 (p = 0.036),

RPS27L (p = 0.011), TDRD9 (p = 0.016), TDRD6 (p = 0.002), IFIT2 (p = 0.037), and IFIT3 (p =
0.02) were prominently involved in the prognosis of thyroid cancer (Fig 2C; Table 1). Addi-

tionally, we determined the prognostic ability of these 6 RBP-coding genes through the

Kaplan-Meier plotter (Fig 3). Among them, there was no data for RPS27L at the Kaplan-Meier

plotter database. These outcomes revealed that these 6 genes were significantly related to

prognosis.

3.3 Prognosis-related risk score model construction and validation

Through Multivariate Cox analysis on the entire TCGA training set, we identified 2 RBP-cod-

ing genes (RPS27L and IFIT3) to construct a predictive model. To predict the model and to

carry out survival analysis, we divided THCA patients into two groups by using an optimal

cut-off value of risk scores in the training set, namely the high-risk group and low-risk group.

The Kaplan–Meier survival curve demonstrated that the high-risk subgroup was significantly
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related to poor survival (p = 0.038; Fig 4A). By completing the time-related ROC investigation,

we can more accurately judge the prognostic value of the 2-gene model (AUC = 0.707; Fig

4D). Further, we studied the risk score distribution (Fig 4G), distribution of patients with sur-

vival status (Fig 4J) and expression heat map (Fig 4M) with the 2-RBP gene biomarker within

the high-risk and low-risk subgroups in the training set.

To test the predictive power of the model, we randomly allocated two subsets from the

entire TCGA data and evaluated the risk scores and optimal critical values using the same for-

mula. The high-risk group and the low-risk group in each validation subset were divided

Fig 1. Identification of differentially expressed RBPs-related genes and functional enrichment analysis in THCA. (A) Venn diagrams of RBPs in THCA. Overlapping

area means the 1492 genes are in both TCGA-THGA gene list (blue) and RBPs gene list (red); (B) Differentially expressed genes (DEGs) analysis of DEGs; (C) GO

enrichment analysis of DEGs; (D) KEGG enrichment analysis of DEGs, p< 0.05.

https://doi.org/10.1371/journal.pone.0247836.g001
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accordingly and high-risk group presented poor prognosis (Fig 4B and 4C). The AUCs in the

validation subsets were 0.881 and 0.642, respectively (Fig 4E and 4F). Risk score distribution

and survival status distribution are exposed in Fig 4H, 4I, 4K and 4L. The heatmaps disclose

the expression of the 2 genes relatively increased along with the rise of risk scores (Fig 4N and

4O). Together, these findings implied that the 2-gene model had a good performance on the

prediction of OS in THCA patients.

To construct a quantitative model for THCA prognosis, we combined the two-RBP marker

to build a nomogram plot (Fig 5A) for visualization of the performance of the 2-gene prognos-

tic model by the multivariate Cox regression in the entire TCGA data. Calibration plots also

revealed that the model had a good performance in estimation of 3-year or 5-year survival of

Fig 2. PPI network and key prognostic gene. (A) PPI network for RBPs. blue: down-regulated genes, red: up-

regulated genes; (B) Top 30 nodes in PPI network with the number of interactions; (C) Prognostic-related genes in

TCHA.

https://doi.org/10.1371/journal.pone.0247836.g002

Table 1. Univariate Cox regression analysis results.

ID HR HR.95L HR.95H p value

NOLC1 3.20 1.07 9.54 0.036

RPS27L 0.23 0.078 0.71 0.010

TDRD9 1.82 1.11 2.98 0.016

TDRD6 2.85 1.44 5.62 0.0024

IFIT2 0.49 0.26 0.95 0.036

IFIT3 0.47 0.25 0.89 0.020

https://doi.org/10.1371/journal.pone.0247836.t001
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THCA patients (Fig 5B and 5C) with a harmonious consistency (C-index = 0.67) between the

predicted and observed survival.

3.4 Clinical correlation analysis

To assess the correlation between THCA patients and clinics, we found that age (p< 0.001),

stage (p = 0.003), T (p = 0.032), and risk score (p = 0.019) were all related to prognosis through

a univariate Cox analysis (Fig 6A). Multivariate Cox analysis exhibited that age (p< 0.001)

and riskScore (p = 0.021) were related to prognosis (Table 2; Fig 6B). Besides, we used the R

software packages "survival" and "survminer" to evaluate, and the results indicated that stage

(G3-4), age (> 65), and T (T3-4) were all related to poor prognosis (Fig 7B–7D). Further, we

verified and divided THCA into high-risk and low-risk subgroups. The outcomes of the study

disclosed that the high-risk was from the male group (p = 0.011), and the T3-4 group (p =
0.046) was associated with a worse prognosis (Fig 7E and 7L).

3.5 Validate and analyze the RBP-coding genes in the model

We examined the expression of RBP-encoding genes in THCA through R software, and the

results displayed that RPS27L and IFIT3 were highly expressed in TCGA-THCA patients (Fig

8A, p���< 0.001). It was verified using the HPA database, and the findings exhibited that posi-

tive IFIT3 in THCA was much stronger compared with normal tissues (Fig 8B). However,

there was no immunohistochemistry result for RPS27L in the HPA database. Later mutation

analysis was carried out on RPS27L and IFIT3 through the cBioPortal online tool, and the

results proved that the mutation frequency of both was very low (Fig 8C). Also, through the

TIME online tool, we found that IFIT3 has a positive correlation with Macrophage (r = 0.448,

p���< 0.001), Neutrophil (r = 0.648, p���< 0.001), CD4 + T cell (r = 0.38, p�� < 0.01), B cell

(r = 0.523, p�� < 0.01), Dendritic cell (r = 0.693, p��� < 0.001) and CD8 + T cell (r = 0.215,

p�� < 0.01) immune infiltration levels of THCA (Fig 8D). Through TIME online tool, the

results indicated that both RPS27L and IFIT3 were highly expressed in tumors (Fig 9).

Fig 3. The Kaplan-Meier plotter analysis. (A) NOLC1; (B) IFIT2; (C) TDRD6; (D) TDRD9; (E) IFIT3.

https://doi.org/10.1371/journal.pone.0247836.g003
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4. Discussion

Thyroid tumors are the most common endocrine tumors. Many researchers reported that

abnormal expression of RBPs can cause several illness including cancer. In previous studies, it

can be found that the RNA binding proteins PTRF and FNDC3B have been identified as

potential prognostic biomarkers for glioblastoma [58]. Three RBP genes (NOVA1, EZH2, and

RBM24) were identified as central genes related to the prognosis of head and neck squamous

cell carcinoma (HNSCC) [59]. RBP has also been found to play a very important role in lung

cancer [60]. Therefore, some therapeutic drugs have been developed to target RBPs to treat

some specific cancer [45–47]. Thus, we conducted this study to further explore the role of RBP

in thyroid cancer.

We collected 58 adjacent non-tumor tissue samples and 510 THCA tissues from the TGCA

database. Extraction of RBP-related genes and analysis of differential expression was carried

Fig 4. Risk score analysis of the prognostic model. (A) The Kaplan–Meier survival curves in the training set; (B-C) The Kaplan–Meier survival curves in two validation

sets; (D) ROC analysis in the training set; (E-F) ROC analysis in the two validation sets; (G) Distribution of risk scores in the training set; (H-I) Distribution of risk scores

in the validation sets; (J) Distribution of survival status of patients in different groups in the training set; (K-L) Distribution of survival status of patients in different groups

in the two validation sets; (M) Heat map of 2 genes’ expression along with risk scores in the training set; (N-O) Heat map of 2 genes’ expression along with risk scores in

the two validations sets.

https://doi.org/10.1371/journal.pone.0247836.g004
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out, and 162 significantly different RBP-related genes were identified. the data demonstrated

that there were 70 down-regulated genes and 92 up-regulated genes. Further we explored the

KEGG and GO enrichment investigations for up-regulated genes and noticed that RNA catab-

olism process, the cellular amide metabolism process, virus defense reaction, cell regulation,

amide metabolism process regulation, nucleic acid phosphodiester bond hydrolysis, transla-

tion regulation, RNA phosphodiester bond hydrolysis, catabolism regulation process, response

to virus, mRNA catabolic process, P-body, ribonucleoprotein granule, cytoplasmic ribonucleo-

protein granule, cytoplasmic stress granule, P granule, pole plasm, germplasm, nucleolar part,

RNA polymerase II, core complex, fibrillar center, catalytic activity, acting on RNA, nuclease

activity, translation regulator activity, double-stranded RNA binding, mRNA 3’-UTR binding,

Fig 5. Nomogram and calibration plots of RBPs. (A) Nomogram to predict 3- and 5-year OS in the TCGA cohort;

(B, C) Calibration plots of the nomogram to predict OS at 3 and 5 years.

https://doi.org/10.1371/journal.pone.0247836.g005

Fig 6. Univariate and multivariate Cox analysis. (A) Univariate Cox analysis; (B) multivariate Cox analysis.

https://doi.org/10.1371/journal.pone.0247836.g006
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ribonuclease activity, mRNA 3’-UTR AU-rich region binding, AU-rich element-binding, exo-

nuclease activity, single-stranded RNA binding, RNA transport, RNA degradation, Influenza

A, mRNA surveillance pathway, and RNA polymerase were enriched. On the other hand, we

performed same enrichment study for down-regulated genes and findings showed that mRNA

metabolism process Regulation, cellular amide metabolism process regulation, translation reg-

ulation, positive regulation of mRNA metabolism, 3’-UTR-mediated mRNA instability and

instability, translation negative regulation, regulation of RNA splicing, mRNA instability,

Table 2. The prognostic effect of different clinical parameters.

Univariate analysis Multivariate analysis

HR HR.95L HR.95H p value HR HR.95L HR.95H p value

age 1.15 1.08 1.23 2.81E-05 1.17 1.07 1.29 0.00046

gender 0.89 0.18 4.31 0.88 0.83 0.13 5.22 0.84

stage 2.69 1.39 5.19 0.003 0.90 0.18 4.38 0.90

T 2.39 1.08 5.30 0.032 2.58 0.56 11.86 0.22

M 2.48 0.30 20.24 0.39 3.25 0.24 42.96 0.36

N 2.01 0.50 8.04 0.32 0.40 0.063 2.60 0.34

riskScore 1.31 1.05 1.63 0.019 1.62 1.07 2.44 0.021

https://doi.org/10.1371/journal.pone.0247836.t002

Fig 7. Clinical correlation analysis.

https://doi.org/10.1371/journal.pone.0247836.g007
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cellular amide metabolism process negative regulation, RNA splicing, cytoplasmic ribonucleo-

protein granule, ribonucleoprotein granule, P granule, pole plasm, germplasm, chromatoid

body, cytoplasmic stress granule ribosome, CCR4-NOT complex, apical dendrite, helicase

activity, mRNA 3’-UTR binding, catalytic activity, acting on RNA, RNA helicase activity,

translation repressor activity, mRNA regulatory element-binding, AU-rich element-binding,

mRNA 3’-UTR AU-rich region binding, translation repressor activity, translation regulator

activity, nuclease activity, and mRNA surveillance pathway were enriched. Our results proved

that the expectation of enriched pathways of a group of RBPs genes are RNA-related functions.

Some RNA-related functions listed on the top might be critical in thyroid cancer development

but need further study.

Later, we did PPI network integration to assess those RBPs who are likely to have major

impact on the RBPs network in thyroid cancer. The changes in the expression level of those

RBPs with more interactions might influence a larger amount of downstream pathways. Next,

we conducted univariate Cox regression analysis on these genes and identified 6 genes

Fig 8. Validate and analyze the RBP-coding genes. (A) RPS27L and IFIT3 were highly expressed in THCA (TCGA, p���<0.001); (B) IFIT3 was highly expressed in

THCA (HPA); (C) RPS27L and IFIT3 mutations were very low; (D) Correlation analysis between gene expression and immune infiltrates.

https://doi.org/10.1371/journal.pone.0247836.g008
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(NOLC1, RPS27L, TDRD9, TDRD6, IFIT2, and IFIT3) involved in prognosis. We further veri-

fied these prognostic genes through the online website Kaplan-Meier plotter. Based on their

correlation with prognosis, they might work as potential biomarkers or play an important part

in the development of thyroid cancer. We have launched a new round of selection for the key

RBP related to prognosis. Meanwhile, we build a risk model based on the characteristics of

dual RBP genes (RPS27L and IFIT3) that can predict the prognosis of THCA. Moreover, to

begin a new round of prognostic performance of the judging model, we carried out an ROC

study on the time dependence of this model with a decent effectivity (AUC = 0.707). To assess

the predictive ability of this model, we divided THCA patients into two groups including a

high-risk group and a low-risk group and completed survival and clinical correlation examina-

tion, respectively. We observed a strong correlation between high-risk subgroups and low sur-

vival rates (p = 0.038), which suggested that those THCA patients with high risk predicted by

the 2-gene model are prone to a worse prognosis. The better performance of this model in the

validation subsets supported its comparable prognostic ability. Also, the high-risk subgroups

in both the male group (p = 0.011) and the T3-4 group (p = 0.046) were associated with a

worse prognosis. Finally, we explored the genes that make up the model. TCGA data analysis

showed that both genes were highly expressed in tumors. HPA database revealed that IFIT3

was highly expressed in THCA. TIMER database results displayed that both RPS27L and IFIT3
were highly expressed in tumors. The mutation investigation outcomes concluded that both

Fig 9. The expression of the two predictive genes in cancers. Data were from the TIMER database. p�<0.05;

p��<0.01; p���<0.001.

https://doi.org/10.1371/journal.pone.0247836.g009
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genes were very low mutation frequency, indicating their dysregulation might be mediated by

other means. However, the stable mutation status of RPS27L and IFIT3 together with their

high expression in tumor tissues makes them potential biomarkers as well as therapeutic tar-

gets in thyroid cancer. Furthermore, we found that IFIT3 has a positive correlation with Mac-

rophage (r = 0.448, p< 0.001), Neutrophil (r = 0.648, p< 0.001), CD4 + T cell (r = 0.38,

p< 0.01), B cell (r = 0.523, p< 0.01), Dendritic cell (r = 0.693, p< 0.001) and CD8 + T cell

(r = 0.215, p< 0.01) immune infiltration levels of THCA. Although we have not found any

report about how IFIT3 works in cancer, based on the significant association of IFIT3 and

prognosis of thyroid cancer patients, we think its insight should be further studied. These cor-

relations with multiple immune subsets suggest the function of IFIT3might be associated with

the cancer microenvironment and immune system.

However, we faced some limitations, such as the interesting finding is the individual RBP

gene was associated with a better prognosis, while the established model was associated with a

worse prognosis. This may be the direction we need to study next such as the lack of verifica-

tion of the 2-gene predictive model by another independent cohort and the wet experiments of

this model for reliability.

Overall, we systematically examined the role of RBPs prognosis of THCA and provided a

new perspective on the role of RBPs in the THCA. Mainly, this 2-gene model containing

RPS27L and IFIT3may provide us with great prognostic indicators for the development of

THCA. In addition, our study of IFIT3 implies its great potential in thyroid cancer progressing

which has not been reported yet, and these RBPs especially RPS27L and IFIT3may also be

used in clinical adjuvant therapy.
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