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Despite development of medicine, cardiovascular diseases (CVDs) are still the leading cause of mortality andmorbidity worldwide.
Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are
characterized by a broad range of pathological reactions including inflammation, necrosis, hyperplasia, and hypertrophy. However,
the causes of CVDs are still unclear. While there is a limit to the currently available target-dependent treatments, the therapeutic
potential of stem cells is very attractive for the treatment of CVDs because of their paracrine effects, anti-inflammatory activity,
and immunomodulatory capacity. Various studies have recently reported increased therapeutic potential of transplantation
of microRNA- (miRNA-) overexpressing stem cells or small-molecule-treated cells. In addition to treatment with drugs or
overexpressed miRNA in stem cells, stem cell-derived extracellular vesicles also have therapeutic potential because they can deliver
the stem cell-specific RNA and protein into the host cell, thereby improving cell viability. Here, we reported the state of stem cell-
based therapy for the treatment of CVDs and the potential for cell-free based therapy.

1. Introduction

Cardiovascular diseases (CVDs) are a major cause of mor-
bidity and mortality that have a significant impact on health
care systems and financial and social consequences. It is
estimated that CVDs will be responsible for 23.3 million
global cardiovascular deaths worldwide in 2030 [1]. CVDs
include diseases that have different causes and characteristics
[2]. There is a state of acute conditions such as myocardial
infarction and chronic diseases induced by genetic mutations
[3]. Classic treatments of CVDs, such as physical surgery and
medicinal treatment, are not sufficient to recover damaged

cardiovascular tissue and instead only delay the progression
of CVDs.

Stem cells, including embryonic stem cells (ESCs), adult
stem cells, and induced pluripotent stem cells (iPSCs), are
useful in the field of regenerative medicine because they
have pluripotency and self-renewal. In addition, stem cells
have beneficial effects such as paracrine effects [4, 5], anti-
inflammatory activity [6, 7], and immunomodulatory capac-
ity [8]. However, transplantation of stem cells for treatment of
heart disease is hampered by their potential for differentiation
into host cell types, such as cardiac cells or blood vessel
cells, to hinder cardiac function by causing arrhythmia [9]
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and their low therapeutic effects and viability under the
harsh conditions of damaged tissue [10]. To overcome these
problems, establishment of new strategies is needed for
priming of stem cells.

Interestingly, it has recently been reported that miRNA,
small molecules, and extracellular vesicles can modulate the
biological activity of stem cells, such as their survival [11,
12], migration [13], and differentiation [14–16]. According to
reports, they have been attracting attention owing to their
potential to overcome the limitations associated with stem
cell therapy. Moreover, a previous study of miRNA small
molecules and extracellular vesicles demonstrated that they
were effective in the treatment of CVDs. Based on these
studies, the stem cell therapy can contribute to treatment of
CVDs.

In this review, we describe the state of stem cell therapy
for the treatment of CVDs and evaluate the potential for the
use of miRNA or stem cell-derived extracellular vesicles.

2. Cardiovascular Diseases and Stem Cells

2.1. Cause of CVDs. CVDs include a range of major clin-
ical disease conditions, such as cardiomyopathy, hyperten-
sive heart failure, valvular heart disease, peripheral arterial
disease, and coronary artery disease [25, 26]. Senescence
and male typically raise hazards of CVDs and are primary
criteria used to classify risk evaluation [27, 28]. CVDs are
strongly connected to lifestyle, age, and gender, with alcohol
and tobacco consumption, physical inactivity, psychosocial
factor, diet and obesity, and increased blood pressure being
major factors [28]. In addition, psychosocial risk elements
including low socioeconomic status, deficiency of social
support, stress, depression, anxiety disorder, and hostility
contribute to development of CVDs [28–34]. Familial preva-
lence of CVDs is another major risk factors [28]. Nutrient
deficiency including low vitamin D levels also plays a role
in CVDs pathogenesis [35]. Several studies have shown
that vitamin D affects heart function through regulation of
hormonal systems including the parathyroid hormone and
renin-angiotensin system [36, 37]. Vitamin D has also been
shown to affect the cell cycle of cardiomyocytes, to inhibit
cardiac cell proliferation, and to protect the structure and
function of cardiomyocytes [35, 38, 39]. Hypertension is the
most common CVD, leading to a growing risk of stroke,
myocardial infarction, and heart and renal failures [40].
Previous clinical tests have indicated that decreased blood
pressure reduces the outbreak of CVDs such as stroke and
heart attack [40].There have been various efforts to overcome
CVDs in the past few decades [41]. Despite advancedmedical
and surgical trials, there are still no effective therapies
for treatment of CVDs [42, 43]. Unlike other organs, the
recuperative ability of heart is limited for treatment of injured
cardiac tissue [43]. Heart transplantation can be utilized as a
last resort to treat CVDs, but the approach is expensive and
extremely limited for patients because of their comorbidities
or poor supply of donor organs [43].

2.2. Embryonic Stem Cell Therapy for CVDs. Recent stud-
ies have suggested that stem cell therapies target cardiac

regeneration in CVDs [42, 43]. Application of stem cells
to therapeutic devices and methods may lead to effec-
tive and rapid myocardium regeneration and eventually
affect cardiovascular morbidity and mortality [44]. There
are different types of stem cells such as embryonic stem
cells, adult stem cells, and induced pluripotent stem cells
for treatment of CVDs (Table 1). Previous studies have
demonstrated therapeutic effects of ESCs differentiated into
cardiomyocytes [17] and endothelial cells [18] for myocardial
infarction, umbilical-cord-blood-derived MSCs for dilated
cardiomyopathy [19], bone-marrow-derived-MSCs for cellu-
lar cardiomyoplasty [20], and iPSCs [21] and iPSCs-derived
cardiovascular progenitor cells [22], endothelial progenitor
cells (EPCs) [23], and cardiac stem cells [24] for myocardial
infarction.

2.2.1. Therapeutic Characteristics of ESCs. ESCs are pluripo-
tent cells derived from the inner cell mass and infinitely repli-
cate without senescence, maintaining their undifferentiated
state [45]. This cell population is called ESCs and follows
irreversible process of differentiation to become specialized
[44, 46]. ESCs have pluripotency, with the capacity of
differentiation into approximately 210 different cell types,
making them an up-and-coming stem cell source for cell-
based tissue engineering [44]. ESCs can be differentiated
into cardiomyocytes, endothelial cells, and vascular smooth
muscle cells [17, 18, 47, 48]. Owing to their potential for use
in the treatment of CVDs, efforts for stem cell therapy have
been concentrated on the differentiation of human ESCs into
the cardiac lineage directly [44, 49].

2.2.2. Using ESCs for Myocardial Regeneration Therapy. In
previous studies, undifferentiated ESCs or ESCs differenti-
ated into cardiomyocytes, endothelial cells, or vascular cells
were directly injected into animal CVDs models [17, 18, 50].
Treatment with those ESC-derived cells showed beneficial
effects such as improvement of cardiac regeneration and
remodeling and increased myocardial performance [1, 17, 18,
50].Therapeutic effects of the differentiated cells aremediated
through cell engraftment and proliferation and paracrine
effects [1, 51, 52]. Recent studies have suggested that genetic
and epigenetic regulations of cardiomyocytes differentiation
are new approaches to inducing a cardiac lineage for stem
cell therapy [43]. Deletion or knockdown of microRNA
(miRNA), a small regulator of gene expression, brings about
dysregulation of morphogenesis, electrical conduction and
hypertrophy of heart, and the cell cycle of cardiocytes
[14, 43, 53]. Ivey et al. demonstrated that miR-1 and miR-
133 can control the ability to differentiate into the cardiac
lineage inmouse and human ESCs [53]. Moreover, epigenetic
modification can regulate ESCs differentiation and genetic
control [43].Weber et al. suggested that histone deacetylation
is involved in cardiovascular development through target
regulation of hey bHLH as major effector in Notch signaling
[54]. Although ESCs have considerable potential for direct
differentiation into cardiac lineage in various models, several
limitations hinder their clinical applications [41].The greatest
limitation is that research using ESCs is hampered by ethical
issues that prevent their actual clinical applications [41, 55].
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Moreover, treatment with ESCs poses the risk of immunore-
jection because of differences in genome information among
patients [41, 56].

2.3. Adult Stem Cell Therapy for CVDs

2.3.1. Therapeutic Characteristics of MSCs. In adult bodies,
tissues and organs contain a small cell subpopulation with
the capacity for self-maintenance through the potential to
proliferate indefinitely and the ability to form an extended
family of daughter cells [57, 58].These cells are widely known
as adult stem cells [7]. Mesenchymal stem cells (MSCs) are
found in most of adult tissues, including bone marrow and
adipose tissues [58, 59]. The nonhematopoietic cells can be
differentiated and modified in vitro to present phenotypes
of cardiomyocytes and vascular endothelial cells [58]. In
addition, MSCs are able to produce and secrete a broad
variety of cytokines, chemokines, and growth factors for
enhancing neovascularization, attenuating fibrosis in heart,
and recovering cardiac functions [4, 5, 60]. Accordingly, it is
possible thatMSCs could be a therapeutic cell source with the
capacity to repair injured tissue in CVDs.

2.3.2. Treatments of Myocardial Diseases by Using MSCs.
Bone-marrow-derived MSCs (BM-MSCs) have been widely
reported as a promising therapeutic strategy for CVDs
[61]. These cells can differentiate into cardiomyocytes and
endothelial cells [20, 61]. Many studies have indicated
that BM-MSCs possess therapeutic effects in heart diseases
such as myocardial infarction, diabetic cardiomyopathy,
and dilated cardiomyopathy [61–63], and BM-MSCs are
now considered one of the most attractive adult stem cell
populations for cardiovascular repair [61, 64]. Cai et al.
showed that BM-MSCs cocultured with neonatal rat ventric-
ular cardiomyocytes prevented isoproterenol-induced typical
hypertrophic characteristics of cardiomyocytes in in vitro
and in vivo studies [61]. Moreover, interplay of BM-MSCs
with cardiomyocytes produced synergistic effects on VEGF
secretion [61]. Today, many studies showed that paracrine
factors, such as VEGF, bFGF, and IGF-1, play an essential
therapeutic role [4]. Tang et al. demonstrated that autolo-
gous BM-MSCs transplantation in rat MI model improved
vascular regeneration and cardiac performance through
paracrine effect of VEGF, bFGF, and SDF-1 [5]. Ohnishi et
al. also found conditioned medium of BM-MSCs affected
the antiproliferation of cardiac fibroblasts via expressing
paracrine antifibrotic effects of MMPs [60]. Adipose tissue-
derived MSCs (AD-MSCs) have become an attractive ther-
apeutic cell source [65] because they are easily expanded in
vitro and express the same cell surface markers as BM-MSCs
[65, 66]. Moreover, injected AD-MSCs have been shown to
differentiate toward a cardiogenic phenotype [67] and reduce
the infracted size, exhibiting a powerful and persisting angio-
genic potential [65, 68]. Siciliano et al. reported on plasticity
of human AD-MSCs and their phenotypical modification
in cardiac-specific microenvironments [65]. They also indi-
cated that human AD-MSCs cocultured with cardiospheres-
conditioned media changed toward a cardiac/endothelial/
muscular-like phenotype in response to regulation of the

expression of cardiogenic markers and induction of the
activation of intracellular survival signaling pathways [65].
Umbilical-cord-blood-derivedMSCs (UCB-MSCs) are a new
xenogeneic stem cell therapy source for CVDs [19].The newly
proposed cell sourcemay be optimum for CVDs because they
have a low immunogenicity and a large change of cardiomy-
ocyte reprogramming of UCB-MSCs in comparison with
xenogeneic stem cells [19, 69–71]. In addition,UCB-MSCs are
easily obtained through low-invasive surgery without raising
ethical issues, demonstrating their promising clinical appli-
cation [19]. Gong et al. demonstrated that intramyocardial
grafts of human UCB-MSCs promote cardiac function via
mechanisms of antiapoptosis, anti-inflammation, and proan-
giogenesis in cardiomyopathy of cTnTR141W transgenic mice
[19]. They also found that UCB-MSCs derived conditioned
medium protects H9C2 cells from apoptosis in hypoxic
condition by paracrine effects in vitro [19].

2.3.3. Treatments of Myocardial Diseases by Using Other Stem
Cells (CPCs, EPCs). The tissue-specific stem cells were found
in several tissues, such as skeletal muscle, brain, fat, liver,
gastrointestinal tract, and epidermis. These stem cells are
differentiated into specific tissue cells and contribute tomain-
taining tissue homeostasis. Interestingly, the tissue-specific
stem cells were found in heart [72]. Heart was not known to
be able to self-regenerate before the establishment of cardiac
progenitor cells (CPCs). Since then, cardiac progenitor cells
have been reported on therapeutic potential in CVDs.

Beltrami et al. reported on Lin− c-KitPOS cells in CPCs.
They are self-renewing and multipotent and have colony
forming ability [72]. Injected CPCs into the ischemic heart
can be differentiated into cardiomyocytes, reconstruct heart,
and induce new blood vessel. They suggest that CPCs to
repair the heart provide a new opportunity. However, CPCs
present in very small amounts in the heart and require in vitro
expansion of a few weeks [73].

In 1997, Asahara et al. reported that isolated CD34POS

cells are endothelial progenitor cells which are separate
from peripheral blood [74]. EPCs also have capacity of
differentiation into endothelial cells and angiogenesis. For
that reason, EPC was noted in the study for treating various
ischemic injury. Kawamoto et al. studied effects of heart
regeneration by transplantation of EPCs into rat MI heart in
4 weeks after transplantation [23]. According to this paper,
the effect of regeneration is caused by angiogenesis which is
promoted by transplanted EPCs into ischemic damage area.

Another strategy is reported based on the stimulation of
the EPCs in vivo for treating ischemic disease. Oikonomou et
al. reported that 26 patients with heart disease have improved
blood vessel function after administration of atorvastatin for
4 weeks by increasing circulated EPCs [75].

Transplantation of EPC has benefit for treatment of
disease, but we need to concern about immune rejection
in the allograft because therapy using EPCs is based on
the autograft method. Therefore, we need to overcome this
limitation for transplantation into damaged area.

2.4. iPSCs as a Source of Cell Therapies for CVDs. In 2006,
iPSCs were established by Takahashi and Yamanaka by
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Category Direct differentiation iPSC reprogramming

Differentiation capacity Limited-fibroblast self-renewal Easily scalable

Time consuming for differentiation Short Long (over 10 days)

Cell fate stable Unclear Stable

Tumor risk Unclear tumor risk during
reprogramming Teratoma and overgrowth

Clinical application Lack of differentiated cells for
transplantation Various results in vivo and in vitro

Limitation
Low conversion efficiency,

heterogeneous cell population, and
risk of viral action in clinical trial

Proliferation capacity, cell type
diversity, senescence, and limited cell

type diversity

Somatic cells Cardiac lineage cells

Reprogramming

iPSCs

DifferentiationDifferentiation

Somatic cells Cardiac lineage cells

(a) Direct differentiation (b) iPSCs reprogramming

Figure 1: Strategies for differentiation from somatic cells into cardiac lineage cells.

Somatic cells

Reprogramming

iPSCs

(A-1) Integrating vectors
(i) Retro/lentiviruses

(a) Oct4, Sox2, Klf4, and c-Myc

(A-2) Plasmid or lentiviral vectors
(i) Cre/loxP system 

(A) Genetic transduction

(B) Integrated-free methods
(i) Plasmid

(ii) Recombinant proteins
(iii) Small molecules
(iv) MicroRNAs
(v) Minicircle DNA vectors

(C) DNA-free methods
(i) Sendai virus-based vectors

(ii) Modified mRNAs
(iii) Recombinant proteins or

cell extracts

Figure 2: Two ways for inducing pluripotent cells from somatic cells.

reprogramming mouse fibroblasts through overexpression
of four specific transcription factors: Oct3/4, Sox2, c-Myc,
and Klf4 [76]. Since this breakthrough, various opportunities
for application have been reported in cell therapy, modeling
of new diseases, and studies of complex genetic features
and allelic variations, as substrates for drug, in toxicity,
differentiation, and regenerative medicine therapies, and in
therapeutic screening [77, 78]. In addition, using the iPSCs,
it is possible to differentiate into patient- and disease-specific
cell types. Thus, using iPSC is one of the tools for treatment
of the patients [79, 80]. However, many considerations,
including the optimal materials for reprogramming, high
cost, safety, and efficient derivation, still remained regarding
using iPSCs for clinical applications [81]. Thus, it is essential
to understand the following events after the activation of
reprogramming factors for transplantation of iPSCs for a safe
way.

2.4.1. Methods for Differentiation from iPSCs to Cardiomy-
ocytes. Recently various efficient methods for inducing dif-
ferentiation into cardiac lineage cells using iPSCs or direct

reprogramming (Figure 1). iPSCs have been tried to use
genetic transduction or integrated-free methods. Using viral
vector for reprogramming has higher efficiency than using
integrated-free methods, but safety is lower than using
integrated-free methods (Figure 2) [82]. Another method
for differentiation into cardiac lineage cells is direct dif-
ferentiation. One of the protocols for direct differentiation
is overexpression of combined cardiac-specific transcription
factors such as GATA4, Mef2c, and Tbx5 (GMT) [83, 84] or
GMT and Hand2 [85]. Another method is using miRNAs
or small molecules without lineage-specific transcription
factors: overexpression of miRNAs 1, 133, 208, and 499 is
effective to increase the capacity of direct differentiation into
cardiac lineage cells [86]: chemically definedmedium (CDM)
containing three components is also reported that can induce
differentiation into cardiomyocytes [87]. Recently, Hou et
al. also reported that treatment of seven small molecules
into cells can generate iPSCs [88]. Direct differentiation into
cardiac-specific lineage may provide the therapeutic strategy
for cardiac regeneration; however, it needs to improve the low
efficiency of differentiation into the cardiac lineage cells [84].
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2.4.2. Treatment of CVDs by Transplanted iPSCs. iPSCs have
characters like embryonic stem cells (ESCs)—pluripotency
and self-renewal—so that iPSCs can be provided to be
transplanted into damaged tissue or organ [89]. Masumoto
et al. reported cardiac regeneration by transplantation of
engineered human iPSC as a cardiac tissue sheet (hiPSC-
CTSs) into rat heart [90]. They checked that heart function
was improved and survival of transplanted cells was over 40%
cells. Rojas et al. performed transplantation of iPSCs with fib-
rinogen into heart of myocardial injury model [21]. Although
heart function was recovered by transplantation of iPSCs
into damaged heart, they suggested transplantation of iPSC-
derived cardiomyocytes is more relevant for clinical trial. In
addition, the problems of transplantation of iPSCs includ-
ing tumorigenicity, immunogenicity, and genomic instability
have been reported [88, 91–94]. Recently, transplantation
of differentiated cells into tissue-specific lineage is reported
to overcome the aforementioned problems; Funakoshi et al.
reported transplantation of iPSC-derived cardiomyocyte and
they tried to optimize condition for transplantation [95];
and Ja et al. showed the effects of the transplantation of
iPSC-derived human cardiac progenitor cells improved heart
function [22]. They suggested that the improvement of heart
function is caused by angiogenesis and interstitial networking
of damaged heart.

2.5. Cell-Free Therapeutic Strategy for CVDs. Extracellular
vesicles have been reported tomodulate a variety of biological
actions in the cells, such as proliferation, migration, apopto-
sis, and differentiation. Stem cell-derived extracellular vesi-
cles especially have potent cardiac protection, regeneration,
and angiogenic properties. In addition to affordable benefits,
it is well known the vesicles can be used to communicate
with other cells and control level of protein expression.Thus,
transplantation of extracellular vesicles has the potential as
a novel cell-free therapy for treatment of CVDs, which has
various advantages to overcome the limitations related to the
cell-based therapeutics.

2.5.1. Treatment of CVDs by Extracellular Vesicles-Derived
Stem Cells. Various reports have emphasized the effective-
ness of secretion factors during treatment of heart disease
using stem cells. Paracrine effect is one of the benefits
by transplantation of stem cells into the damaged area
causing secretion of various cytokines and growth factors
[4, 5]. Recently, many studies have investigated cell-derived
extracellular vesicles, and they have been shown to exert
positive effects on a variety of cellular activities such as
antiapoptosis,migration, differentiation, and cell recruitment
[96]. In fact, extracellular vesicles have a biologic function of
communication between the cells and recipient cells. Several
studies have reported that the extracellular vesicles contained
various factors including nucleic acids, cytokines, growth fac-
tor, andmiRNAs [97–99]. Lai et al. reported that extracellular
vesicles can promote repair of damaged heart by myocardial
ischemia/reperfusion injury [100]. They have demonstrated
that the exosome was contained in the stem cell conditioned
media so that it contributed to the cardiac protection. Lee
et al. demonstrated that mesenchymal stromal cell-derived

exosomes (MEX) inhibited vascular remodeling and hypoxic
pulmonary hypertension [101]. They also demonstrated that
MEX inhibit the inflammatory response and cell proliferation
of vascular pulmonary hypertension in animal models. They
suggested that the reason of the advantages was based on the
downregulation ofmiR-17 cluster and stat3 signaling inMEX-
treated vessel cells. Khan et al. reported that ESC-derived
exosome promoted the repair of ischemic myocardium [102].
Therapeutic potential of ESC-derived exosome stimulates
CPCs activity including survival, cell cycle progression, and
proliferation, by overexpression of ESC-specific miR-294.
Furthermore, therapeutic effects of CPCs-derived exosomes
have been reported [103]. Vrijsen et al. reported that CPCs-
derived exosomes promote cell migration in vitro wound
assay [104]. According to their report, CPCs-derived exo-
somes include EMMPRIN and MMP, to induce endothelial
cell migration. Chen et al. reported a myocardial infarction
protective effect of the CPCs-derived exosome [105]. CPCs-
derived exosome contains higher level of miR-451 so it
can protect H9C2 cells from oxidative stress by inhibiting
caspase-3 and caspase-7 activation.

Although there are a lot of experiments that have studied
transplantation of extracellular vesicles which have beneficial
effect in treating CVD in vitro and in vivo, we still need to
consider side effects on other organs, appropriate amount
for transplantation, and compatibility for clinical practices in
human. Therefore, more researches which targeted safety to
use for therapeutic approaches using extracellular vesicles are
required in future clinical trials.

2.6. Limitations of Stem Cell and Cell-Free Therapy Strategies
for CVDs. Stem cell therapy should be more considered for
efficient clinical application in CVDs. Despite the many pos-
itive efforts for stem cell therapy, it has still some problems,
such as low efficiency, immune rejection, and difficulty in
control of stem cell behavior in vivo. In addition, adminis-
tered stem cells often do not show effective integration or
persistence in the heart tissues and trigger tumor formation
[106].

On the other hand, the cell-free therapy was proposed as
a means to avoid such a problem which can occur in stem
cell therapy. However, the short half-life is a problem of the
cell-free therapy because the proteins and nucleic acids are
rapidly biodegradable in vivo as amain component [107–109].
For this reason, cell-free therapy must be administered more
frequently. Moreover, disease specificity, biodistribution, and
persistency of the cell-free factors must be validated before
clinical application [110].

3. Conclusions

In this review, we focus on the strategy for treatment of CVDs
by transplantation of stem cells. Transplantation of stem cells
including ESCs, adult stem cells, and iPSCs can promote
tissue regeneration of damaged area. Stem cells have specific
characters such as self-renewal and pluripotency. In addition,
stem cells secrete paracrine factors, so transplantation of
which shows beneficial effects. Stem cell-derived vesicles
can stimulate the cell activity by transferring beneficial



Stem Cells International 7

materials, including the stem cell-specific transcription factor
and miRNA to the damaged tissue. Thus, transplantation
of vesicle can contribute to recovery in damaged area. In
addition, treatment of additional materials such as miRNA
or small molecules for promoting differentiation of stem cells
into specific cell types can improve therapeutic effects for
treatment of CVDs.

Although stem cell therapy has problems such as low
survival rate after transplantation into harsh condition and
still needs to overcome these problem, stem cell therapy
and cell-free based therapy have potential to improve heart
function after CVDs.
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[69] I. Perea-Gil, M. Monguió-Tortajada, C. Gálvez-Montón, A.
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