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Abstract: Among several anti-cancer therapies, chemotherapy can be used regardless of the stage
of the disease. However, development of anti-cancer agents from potential chemicals must be
executed very cautiously because of several problems, such as safety, drug resistance, and continuous
administration. Most chemotherapeutics selectively cause cancer cells to undergo apoptosis. In this
study, we tested the effects of a novel chemical, the benzothiazole derivative N-[2-[(3,5-dimethyl-1,2-
oxazol-4-yl)methylsulfanyl]-1,3-benzothiazol-6-yl]-4-oxocyclohexane-1-carboxamide (PB11) on the
human cell lines U87 (glioblastoma), and HeLa (cervix cancer). It was observed that this chemical was
highly cytotoxic for these cells (IC50s < 50 nM). In addition, even 40 nM PB11 induced the classical
apoptotic symptoms of DNA fragmentation and nuclear condensation. The increase of caspase-3 and
-9 activities also indicated an increased rate of apoptosis, which was further confirmed via Western
blotting analysis of apoptosis-associated proteins. Accordingly, PB11 treatment up-regulated the
cellular levels of caspase-3 and cytochrome-c, whereas it down-regulated PI3K and AKT. These results
suggest that PB11 induces cytotoxicity and apoptosis in cancer cells by suppressing the PI3K/AKT
signaling pathways and, thus, may serve as an anti-cancer therapeutic.

Keywords: apoptosis; human cancer cells; novel chemical

1. Introduction

For half a century, cancer patients have received three primary medical treatments—
surgery, chemotherapy, and radiation therapy. Among these treatments, chemotherapy
has the advantage of being applicable regardless of cancer stage. Over time, enormous
medical progress has been made in understanding cancer biology and targeted chemother-
apeutics [1–4]. New therapeutic chemicals and approaches with potent effects on tumor or
healthy tissues are constantly being introduced into the clinic [5]. It is now increasingly
accepted that the effectiveness of conventional chemotherapeutic drugs is in part due to
their ability to induce apoptosis, although this area is not without controversy [6,7].

Benzothiazole derivatives are heterocyclic compounds with oxygen, nitrogen, and sul-
fur in their structures [8,9]. They have wide ranges of bioactivities, such as anti-diabetic [10],
anti-microbial [11], anti-inflammatory [12], anti-fungal [13], and anti-neoplastic activi-
ties [14,15]. Recently, new diverse compounds synthesized using the rational drug design-
ing approaches have been reported to have remarkable effects as anti-cancer drugs [16–18].
These compounds target the regulatory pathways of various biological events and criti-
cal factors that are essential for the survival of cancer cells. These targets include DNA
replication, transcription, translation, and mitosis [19].

Recently, SH Hong and his colleagues, one of our authors, reported several potential
anti-cancer compounds that have been selected from a chemical library obtained from the
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ChemBridge (San Diego, CA, USA) [20–22]. Several candidates were obtained from the li-
brary screening. Benzothiazole derivative is one of the candidates from above. In this study,
a novel benzothiazole derivative, N-[2-[(3,5-dimethyl-1,2-oxazol-4-yl)methylsulfanyl]-1,3-
benzothiazol-6-yl]-4-oxocyclohexane-1-carboxamide (PB11), was tested for potential use as
an anticancer compound (Figure 1). By targeting the apoptosis pathway with the aim of
inducing cytotoxicity, experiments were designed and conducted on human cancer cell
lines U87 and HeLa.
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Figure 1. Chemical structure of N-[2-[(3,5-dimethyl-1,2-oxazol-4-yl)methylsulfanyl]-1,3-benzothiazol-
6-yl]-4-oxocyclohexane-1-carboxamide (PB11, MW: 416.2).

2. Results and Discussion
2.1. PB11 Is Highly Cytotoxic at the nM Scale

First, cytotoxicity of PB11 was investigated with both non-cancer cell lines and cancer
cell lines. It was shown that PB11 is less cytotoxic to non-cancer cells compared to cancer
cell lines [Data not shown]. Among the cancer cell lines tested, the viabilities of U87 and
HeLa cells were significantly reduced in the presence of PB11, as assessed via the 2,5-
diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays (Figure 2).
In the case of U87 cells, treatment with 10 nM, 100 nM, 1 µM, or 10 µM PB11 decreased the
cell viability to 85.91 ± 1.25%, 37.25 ± 4.02%, 19.23 ± 0.78%, and 6.56 ± 0.15%, respectively,
of the untreated control cells. The same concentrations of PB11 decreased the viability of
HeLa cells to 86.82± 5.2%, 46.23± 2.18%, 21.46± 1.42%, and 11.34± 1.03%, respectively, of
the untreated control. Based on the dose-response curves, the IC50 for PB11 was estimated
to be approximately 40 nM (Figure 2A).

Lactate dehydrogenase (LDH) is a cytosolic enzyme present in many cell types and is
released into the media of cell cultures when the plasma membrane is damaged [23]. The
LDH cytotoxicity assay is a colorimetric assay that provides a simple and reliable method
for determining cytotoxicity. In the case of the U87 cells, the LDH cytotoxicity levels of the
cells treated with 0 nM (mock), 10 nM, 100 nM, 1 µM, and 10 µM PB11 were 8.41 ± 0.35%,
24.04± 1.60%, 59.90± 0.08%, 84.20± 0.70%, and 93.51± 1.04%, respectively, of the control,
which was entirely lysed untreated cells (Figure 2B). In addition, the LDH cytotoxicity
levels in HeLa cells were 9.27 ± 0.10%, 19.72 ± 0.97%, 60.32 ± 1.35%, 76.68 ± 1.73%, and
93.88± 0.63%, respectively. As shown in Figure 2, the LDH assay results strongly supported
the MTT assay results. Altogether, these results show that PB11 is highly cytotoxic to U87
and HeLa cells at the nM scale.
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Figure 2. Cell cytotoxicity of PB11 in cancer cells. U87 and HeLa cells were grown in 96-well culture plates with 0 nM, 10
nM, 100 nM, 1 µM, or 10 µM PB11. After 48 h, the cytotoxicity of PB11 was evaluated by determining the number of viable
cells via the 2,5-diphenyl tetrazolium bromide (MTT) assay (A) or by determining the amount of lactate dehydrogenase
(LDH) released into culture (B). The cell viability and released LDH amount are presented as percentages of the control
(mock-treated cells in (A) and lysed untreated cells in (B)). Based on the dose-response curves, the IC50 for PB11 was
estimated to be approximately 40 nM. All data are expressed as mean ± SEM. Statistical significance was analyzed with the
two-paired Student’s t-test; ns = p > 0.05, * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.

2.2. PB11 Induces Apoptosis through Mitochondria

We hypothesized that the reduced cell number observed upon PB11 treatment might
be associated with apoptosis. Therefore, PB11-treated cells were assessed for the classical
apoptosis indicators DNA and nuclear fragmentation.

Very distinctive DNA fragmentation was detected in U87 and HeLa cells treated
with 40 nM PB11 (Figure 3A). In this experiment, we used 5 µM camptothecin, which is a
well-known apoptotic drug, as a positive control [24]. PB11 induced DNA fragmentation
very clearly and effectively as 40 nM PB11 induced greater DNA fragmentation than 5 µM
camptothecin.
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Furthermore, DAPI (4′,6-diamidino-2-phenylindole) DNA staining revealed that PB11
caused alterations in the nuclear morphologies of U87 and HeLa cells, such as nuclear
condensation and fragmentation, which are suggestive of apoptosis (Figure 3B, arrow).

Caspases are recognized as the key enzymes of apoptosis [25]. To investigate whether
they are associated with PB11-induced cytotoxicity, the levels of apoptotic markers in PB11-
treated cells were evaluated (Figure 4A). We observed that the levels of Bax, cytochrome
c, and cleaved caspase-3, which is the active form, were increased in PB11-treated cells.
These data support our conclusion that PB11 induces cytotoxicity via apoptosis.

Figure 4. The increased levels of apoptosis markers in PB11-treated cells. (A): Western blot of apoptotic proteins. U87 and
HeLa cells were grown in 6-well culture plates with 40 nM PB11. After 48 h, cell lysates were prepared and blotted with
antibodies against caspase-3, Bax, and cytochrome C. β-actin was used as loading control. (B): Comparison of caspase-3, -8,
and -9 activities. Cells were treated with 40 nM PB11. Cell lysates were prepared after 24 h and 48 h. The caspase activities
were assessed using commercial kits. All data are expressed as mean ± SEM. Statistical significance was analyzed with the
two-paired Student’s t-test; ns = p > 0.05, * = p < 0.05, ** = p < 0.01.

Apoptosis occurs via the intrinsic or extrinsic pathway. The intrinsic pathway, also
called the mitochondrial pathway, is activated by intracellular signal in intermembrane
space of mitochondria, whereas the extrinsic pathway is activated by ligand binding
interaction in extracellular surface [26]. To understand which pathway is involved in the
apoptotic process of PB11-treated cells, the activities of caspase-3, -8, and -9 were evaluated
by using colorimetric assay (Figure 4B). PB11 treatment of the cells increased the activities
of caspase-3 and -9 by time. After 24 h and 48 h treatment, the activities were increased
by approximately three- and five-fold, respectively. Conversely, the caspase-8 activities in
the cells were unaffected. Therefore, PB11 seems to induce cytotoxicity via the intrinsic
pathway of apoptosis.
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2.3. PB11 Induces Apoptosis via the PI3K/AKT Signaling Pathway

To gain further insight into the molecular mechanisms underlying the PB11-induced
apoptosis, we decided to screen the expression levels of several signal-transducing proteins,
such as PI3K, JNK, and AKT, which are directly related to cell proliferation and death.
Hyper-activation of the PI3K/AKT signal-transduction pathway leads to hyperplasia and
neoplastic transformation, whereas inhibition of the pathway is frequently associated with
cell death [26]. The c-Jun N-terminal kinase (JNK) pathway is involved in cell growth
associated with a wide range of abiotic and biotic stresses [27]. The NFκB/IκB pathway is
important in regulating cellular physiological and immunological statuses [28].

Western blot analysis for members of these pathways revealed that PB11 treatment
decreased the levels of phosphorylated (p-) PI3K and p-AKT, which are the active forms of
PI3K and AKT, respectively (Figure 5). Conversely, the levels of active JNK (p-JNK) and
NFκB (p-NFκB) were unaffected. These results indicate that PB11 represses the PI3K/AKT
pathway but does not affect the JNK and NFκB pathways, and consequently, the cells
undergo apoptosis.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 9 
 

 

To gain further insight into the molecular mechanisms underlying the PB11-induced 
apoptosis, we decided to screen the expression levels of several signal-transducing pro-
teins, such as PI3K, JNK, and AKT, which are directly related to cell proliferation and 
death. Hyper-activation of the PI3K/AKT signal-transduction pathway leads to hyper-
plasia and neoplastic transformation, whereas inhibition of the pathway is frequently as-
sociated with cell death [26]. The c-Jun N-terminal kinase (JNK) pathway is involved in 
cell growth associated with a wide range of abiotic and biotic stresses [27]. The NFκB/IκB 
pathway is important in regulating cellular physiological and immunological statuses 
[28]. 

Western blot analysis for members of these pathways revealed that PB11 treatment 
decreased the levels of phosphorylated (p-) PI3K and p-AKT, which are the active forms 
of PI3K and AKT, respectively (Figure 5). Conversely, the levels of active JNK (p-JNK) 
and NFκB (p-NFκB) were unaffected. These results indicate that PB11 represses the 
PI3K/AKT pathway but does not affect the JNK and NFκB pathways, and consequently, 
the cells undergo apoptosis. 

Taken together, it is proposed that the novel benzothiazole derivative PB11 may be 
beneficial for the treatment of several cancers. Additionally, these results support the con-
clusions of a previous study wherein benzothiazole suppressed the migration and inva-
sion of cancer cells [17,18,29]. Furthermore, one of the benzothiazole derivatives contain-
ing carboxamide also showed anti-cancer effect to the MCF-7 cell line [30]. Both PB11 and 
that derivative have high cell cytotoxicity in nM scale. The PI3K/AKT pathway has been 
shown to be aberrantly activated in several cancer types and is responsible for the emer-
gence, growth, and development of various cancers in humans [31]. Accordingly, it is an 
important target for the management of cancers in humans. Interestingly, this study found 
that the novel benzothiazole PB11 suppresses the PI3K/AKT pathway in cancer cells, high-
lighting the potential of this compound as a therapeutic against various cancers. 

 
Figure 5. Suppression of the PI3K/AKT pathway by PB11. U87 and HeLa cells were grown in 6-
well culture plates with or without 40 nM PB11. After 48 h, cell lysates were prepared and blotted 
with antibodies against PI3K, p-PI3K, JNK, p-JNK, IκBα, NFκB p65, AKT, and p-AKT. B-actin was 
used as a loading control. 

Figure 5. Suppression of the PI3K/AKT pathway by PB11. U87 and HeLa cells were grown in 6-well
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antibodies against PI3K, p-PI3K, JNK, p-JNK, IκBα, NFκB p65, AKT, and p-AKT. B-actin was used as
a loading control.

Taken together, it is proposed that the novel benzothiazole derivative PB11 may be
beneficial for the treatment of several cancers. Additionally, these results support the
conclusions of a previous study wherein benzothiazole suppressed the migration and
invasion of cancer cells [17,18,29]. Furthermore, one of the benzothiazole derivatives
containing carboxamide also showed anti-cancer effect to the MCF-7 cell line [30]. Both
PB11 and that derivative have high cell cytotoxicity in nM scale. The PI3K/AKT pathway
has been shown to be aberrantly activated in several cancer types and is responsible for the
emergence, growth, and development of various cancers in humans [31]. Accordingly, it is
an important target for the management of cancers in humans. Interestingly, this study
found that the novel benzothiazole PB11 suppresses the PI3K/AKT pathway in cancer
cells, highlighting the potential of this compound as a therapeutic against various cancers.
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3. Materials and Methods
3.1. Reagents

PB11 was obtained from Chembridge (San Diego, CA, USA). Each dose of PB11 was
prepared by diluting with 40% dimethyl sulfoxide (DMSO). 2,5-diphenyl tetrazolium
bromide (MTT) and DAPI reagents were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The LDH assay kit was obtained from Dongin Biotech (Seoul, Korea). Caspase-3
and -9 assay kits were purchased from Promega (Madison, WI, USA), and the caspase-
8 assay kit from Biovision (Milpitas, CA, USA). The antibodies against Caspase-3, Bax,
Cytochrome C, IκBα, NFκB p65, JNK, p-JNK, AKT, p-AKT, and PI3K were purchased
from Santa Cruz (Santa Cruz, CA, USA). The p-PI3K monoclonal antibody was purchased
from Cell Signaling Technology (Danvers, MA, USA). The rabbit anti-B-actin antibody was
purchased from Thermo Fisher Scientific (Waltham, MA, USA).

3.2. Cell Culture

The human cancer cell lines U87 and HeLa cells (Korean Cell Line Bank, Seoul, Korea)
were cultured in Dulbecco’s modified Eagle’s Medium (DMEM) supplemented with 2 mM
L-glutamine, 10% heat-inactivated fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA),
100 U/mL penicillin, and 100 µg/mL streptomycin. All cultures were performed at 37 ◦C
with 5% CO2.

3.3. Cell Viability and Toxicity Tests
3.3.1. MTT Assay

The MTT assay was conducted as previously described [32,33]. Briefly, cells were
inoculated in 96-well plates (50 µL of 4 × 104 cells/well). After 4 h, 50 µL of fresh medium
containing PB11 at the indicated doses was added to each well. After 48 h of continuous
exposure, 50 µL of 0.1 mg/mL MTT solution was added into each well, and the samples
were incubated at 37 ◦C for 4 h. After discarding the supernatants, the cells were incubated
with 200 µL of 100% (w/v) DMSO at 25 ◦C for 10 min. The absorbance at 595 nm was
measured using a microplate reader. Three independent experiments were conducted in
duplicate at different time points.

3.3.2. LDH Cytotoxicity Assay

The LDH assay was conducted using the D-Plus™ LDH cell cytotoxicity assay kit
(Dongin Biotech, Seoul, Korea). Briefly, 2.5 × 104 cells per well were seeded in 96-well
plates. After 24 h of incubation, PB11 at the indicated doses was added into each well in
the final volume of 100 µL. After 48 h, floating cells in the supernatants were removed
using centrifugation at 600× g for 10 min. Control cells were lysed by adding 10 µL lysis
buffer before centrifugation. Each supernatant (10 µL) was transferred to a new well in
a 96-well plate. Finally, 100 µL of the LDH reaction mixture (1:50 ratio of WST substrate
to LDH assay buffer) was added, and the samples were incubated at 25 ◦C for 30 min.
The absorbance at 450 nm was measured using a microplate reader. Three independent
experiments were conducted in duplicate at different time points.

3.4. Assessment of Apoptosis
3.4.1. DNA-Fragmentation Assay

Low–molecular-weight DNA was extracted from cells as previously described [34].
Cells grown in 100 mm plates were treated with 40 nM PB11 for 48 h and then rinsed with
phosphate-buffered saline (PBS) before harvested. Positive control was conducted with
5 µM camptothecin. The cells were resuspended in ice-cold lysis buffer (10 mM Tris [pH
7.5], 0.2% Triton X-100, and 10 mM EDTA) and incubated on ice for 30 min. The lysates
were centrifuged at 10,000× g at 4 ◦C for 10 min, and the supernatants were consecutively
extracted with buffered phenol, buffered phenol–chloroform, and chloroform–isoamyl
alcohol (24: 1, vol/vol). The DNA was ethanol-precipitated and then resuspended in
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10 mM Tris (pH 7.5) with 1 mM EDTA, treated with RNase A for 30 min at 37 ◦C, and then
analyzed via electrophoresis on a 1.5% agarose gel.

3.4.2. Evaluation of Nuclear Morphology

The morphological changes in the nuclei of PB11-treated cells were examined via DAPI-
staining, as described previously [32]. Cells were seeded in 8-well plates (1.5 × 105 cells/well)
and treated under the same conditions as those used for the MTT assay described above.
After 48 h incubation period, the medium was removed, and the cells were washed three
times with PBS. Afterward, the cells were fixed with 4% formaldehyde with 0.1% triton
X-100 for 20 min at 25 ◦C. Next, these fixed cells were stained with 10 mM DAPI in 1× PBS
for 1 h at 37 ◦C. The samples were visualized using a Nikon fluorescence microscope (TE
2000 u; Tokyo, Japan) with ultraviolet (UV) excitation at the wavelengths between 300 and
500 nm.

3.4.3. Caspase Activity Assay

The caspase-3, -8, and -9 activities were measured using the caspase-3, -8, and -9
colorimetric assay kits (Promega, Biovision, USA), respectively [32,34]. U87 and HeLa cells
were treated with 40 nM PB11 for 0, 24, or 48 h. Then, 50 µL of the cell-lysis buffer was
added to the cells, and the samples were incubated for 10 min on ice. Subsequently, the
samples were centrifuged at 10,000× g for 1 min, and the total protein concentration of each
supernatant was quantified by Bradford assay. Afterward, each lysate of 20 µg total protein
was mixed with 50 µL of 2× reaction buffer and 4 mM DEVD-pNA substrate or 4 mM
LEHD-pNA substrate from assay kits. After incubating for 1 h at 37 ◦C, the absorbance of
the samples at 405 nm was measured using a spectrophotometer.

3.5. Western Blotting Analysis

Cells were seeded in 6-well plates (2.0 × 105 cells/well). After 24 h, the cells were
treated with 40 nM PB11. Untreated and treated cells were lysed in RIPA buffer (50 Mm
Tris-HCl [pH 7.4], 0.1% SDS, 0.5% sodium deoxycholate, and 150 mM NaCl). The lysates
were centrifuged at 20,000× g for 15 min at 4 ◦C. Total-protein concentration was measured
using the Bradford assay. Blotting was conducted as previously reported [33]. Briefly, the
proteins of each lysate (equivalent of 10 µg total protein) were resolved via SDS-PAGE at
130 V for 1.5 h. The resolved proteins were then transferred onto nitrocellulose membranes
(GE Healthcare UK Ltd., Hammersmith, UK) at 40 V for 1.5 h via a semi-dry–transfer
apparatus (Hoefer, Inc., Holliston, MA, USA). The membranes were blocked for 3 h at
25 ◦C with the blocking buffer PBST (5% [w/v] non-fat dry milk and 0.1% [w/v] Tween
20 in PBS]. Finally, the membranes were then probed with the appropriate monoclonal
antibodies against apoptosis-associated proteins (1:1000 dilution) in PBST solution for
1 h. After washing with PBST, the membranes were incubated with goat anti-rabbit IgG
conjugated to horseradish peroxidase (1:10,000 dilution, Sigma-Aldrich, USA) or goat
anti-mouse IgG conjugated to horseradish peroxidase (1:5000 dilution, Abcam, Cambridge,
UK) in PBST for 1 h at room temperature. The membranes were washed three times with
PBST and developed with a chemiluminescence detection kit (BioFACT, Daejeon, Korea).
As an internal control, β-actin was probed with a mouse monoclonal antibody (1:5000
dilution, Thermo Fisher Scientific, Waltham, MA, USA).

3.6. Statistical Analysis

All data are expressed as mean ± SEM. Statistical significance was analyzed with the
two-paired Student’s t-test; * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.

4. Conclusions

In this study, the results suggest that PB11 is highly cytotoxic to cancer cells because it
induces apoptosis by suppressing the PI3K/AKT signaling pathway.
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