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Abstract: Titanium and its alloys have been employed in the biomedical industry as implants and
show promise for more broad applications because of their excellent mechanical properties and low
density. However, high cost, poor wear properties, low hardness and associated side effects caused by
leaching of alloy elements in some titanium alloys has been the bottleneck to their wide application.
TiB reinforcement has shown promise as both a surface coating for Ti implants and also as a composite
reinforcement phase. In this study, a low-cost TiB-reinforced alpha titanium matrix composite (TMC)
is developed. The composite microstructure includes ultrahigh aspect ratio TiB nanowhiskers with a
length up to 23 µm and aspect ratio of 400 and a low average Ti grain size. TiB nanowhiskers are
formed in situ by the reaction between Ti and BN nanopowder. The TMC exhibited hardness of above
10.4 GPa, elastic modulus above 165 GPa and hardness to Young’s modulus ratio of 0.062 representing
304%, 170% and 180% increases in hardness, modulus and hardness to modulus ratio, respectively,
when compared to commercially pure titanium. The TiB nanowhisker-reinforced TMC has good
biocompatibility and shows excellent mechanical properties for biomedical implant applications.

Keywords: nano-composite; microstructure; nanoindentation; bone implants; powder metallurgy

1. Introduction

As our population ages the need for effective bone implants as treatments for arthritis and other
joint-related pain is of growing importance [1,2]. Current projections indicate that in the United States
replacement surgery for hips and knee arthroplasties will increase by over 600% to more than 4 million
operations by 2030 [3]. Many of these surgeries arise due to failure of the original implant and need for
a second replacement surgery which can lead to several associated health concerns. Pure titanium
(CP-Ti) stands out as a good material for load-bearing joint replacements because of its strong specific
properties, corrosion resistance and good biocompatibility [4,5]. However, poor wear resistance of
Ti limits its usefulness as the removal of the surface of the implant over time not only contributes to
the breakdown of the implant but can also lead to inflammation and related immune responses in
the affected area [6]. Attempts to improve strength and wear resistance of Ti through alloying has
introduced elements which are prone to leach out over time into the body, limiting their safe use and
lifetime [7]. A Ti-based material that retains the aforementioned strengths in biocompatibility and
corrosion performance with increased hardness and wear resistance will be a strong candidate as an
implant material.

One possible avenue for improving the wear properties is by the surface treatment of Ti,
typically with a coating of hydroxyapatite, by methods such as dip coating, plasma spraying and
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electrochemical deposition [8–11] amongst others. Hydroxyapatite is a constituent of hard tissues
and so interfaces well with the human body when implanted [12]. However, these coatings add an
additional cost to the already expensive manufacture of Ti implants and in addition have low bond
strength to Ti and are prone to peel off during long-term service [4]. With these facts, producing an
uncoated Ti component with strong wear properties is desirable.

Titanium matrix composites (TMCs) have many of the desirable properties for bone implants,
with significantly improved hardness and wear properties when compared to CP-Ti. By reinforcing
with stiff and strong ceramic particles or fibres, Ti has shown significantly improved strength, hardness
and wear resistance [13–19]. In addition, many of the most promising reinforcements (TixB, TiC and
TixN) can be manufactured ‘in situ’ meaning that the reinforcement phase is formed during processing
(typically facilitated by a reaction at high temperature), which reduces overall process steps and leads
to strong bonding at the reinforcement interface [20–22]. Among these materials TiB stands out, as it
naturally forms a hexagonal whisker morphology which offers an improved strengthening effect when
compared to particle reinforcement [23]. TiB is also thermodynamically stable for room temperature
operations, leading to stable overall mechanical properties.

There are important concerns about the safety and biocompatibility of whisker reinforced
composites for implant materials. Several studies have sought to investigate the cytotoxicity and
osteointegration of cells on TiB composites. A 29 vol% TiB whisker reinforced CP-Ti TMC has been
tested for biocompatibility and has shown, amongst other results, to have a H index similar to CP-Ti
and approximately a third of Ti-6Al-4V indicating that the TiB had no adverse effect on biocompatibility
and is not cytotoxic [24]. Similarly, a TiB-TiN Ti6Al4V coating has been shown to have strong
biocompatibility and good osteointegration with 15 wt% BN addition [25]. Further, towards dental
implant applications, human gingival fibroblasts and osteoblasts on a CP-Ti sample coated with a
TiB whisker composite showed similar performance to CP-Ti only indicating their suitability as a
biomaterial with up to 10 wt% B addition [26]. Subsequently, studies on the corrosion behaviour
of TiB whisker reinforced composites have shown that TiB composites exhibit stronger passive film
formation and reduced corrosion when compared to CP-Ti in simulated body fluids (Hank’s solution
37 ◦C) [27]. This suggests that TiB reinforced composites will remain stable without significant corrosion,
preventing leaching of harmful foreign elements. There is very little chance that TiB nanowhiskers
will be released into the body. The strong bond between the Ti matrix and TiB produced by an in
situ reaction has been shown to significantly reduce fibre pullout and improves the safety of these
materials [28]. Further study is required in this area and ‘in vivo’ studies are recommended to identify
any potential hazards of TiB nanowhisker-reinforced composites, particularly when subjected to long
periods of articulating wear. However, these early studies show that TiB nanowhisker-reinforced
TMCs have strong potential to be a safe, viable and long-lasting biomaterial for implant applications.

CP-Ti samples have found strong industrial application as biomedical implants particularly in
low wear areas like the femoral stem [28]. However, there are two key problems that need to be
addressed. Firstly, a high hardness and wear resistant material is required for high wear and articulating
applications such as the femoral head [29]. Secondly, the complexity of coatings coupled with the
risk of poor bonding at the surface increases the cost and can reduce the lifetime of coated implants,
leading to expensive and dangerous replacement surgery [4]. TiB reinforced matrix composites are in
a position to overcome these challenges as a single material can fill the role of a wide range of load
bearing implants and with relatively low cost and long lifetime. However, there is a need to develop a
thorough understanding of the manufacture of these composites and the optimization of the in situ
reaction before they can find useful industrial application in the biomedical industry.

In this study, we demonstrate a cost-effective method to manufacture high aspect ratio TiB
nanowhisker reinforced TMCs for load bearing biomedical applications, with mechanical properties
investigated by nanoindentation.
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2. Materials and Methods

In this study, TMC samples were prepared by a process of powder mixing followed by cold
compaction and vacuum sintering. CP-Ti gas atomized spherical powders (0–45 µm) were combined
with BN hexagonal nanopowders (65–75 nm). One batch of samples was produced with 5 vol% BN
and another with 10 vol% BN. Powders were then mixed, compacted and vacuum sintered using the
same method as previously reported [15]. Samples were sintered at peak temperatures ranging from
1050 to 1200 ◦C with the holding times ranging from 2 to 6 h to facilitate the in situ reaction between Ti
and BN for the formation of TiB. The furnace heating and cooling rate was fixed at 2 ◦C/min for all
samples. In addition, to reduce the risk of chloride impurities and oxidation, samples were sintered on
a bed of yttrium oxide and surrounded with blocks of sponge Ti.

The microstructural characteristics of the manufactured samples were analysed using scanning
electron microscopy (SEM, Hitachi SU3500, Brisbane, Australia) and transmission electron microscopy
(TEM, Hitachi HF5000, Brisbane, Australia). To prepare samples for SEM imaging, conventional
metallographic polishing techniques were used with some SEM specimens etched in a modified Kroll’s
solution (86% H2O, 10% HNO3 and 4% HF) for 30 s. TEM specimens were prepared by two methods.
Firstly, bulk samples after sintering were deeply etched with the modified Kroll’s solution for 3 min
before being ultrasonicated in ethanol to extract and disperse nanowhiskers in solution. This solution
was then dripped onto standard carbon grids, so isolated nanowhiskers could be investigated and
measured. Secondly, TEM lamellae were prepared from bulk sintered samples with a FEI Scios
Dual Beam FIB using a standard Ga ion beam cut and lift out technique [30]. Sample phases were
characterized using a Rigaku SmartLab X-Ray diffractometer (XRD) with a 9 kW rotating Cu anode
source. 45 kV and 200 mA were used to generate a 300 µm beam with data recorded by continuous
scan from 20–80◦ 2θ angle in 0.02◦ increments.

Mechanical properties of the manufactured samples were investigated by nanoindentation tests
using a Hysitron Triboindenter with a Berkovich probe. Nanoindentation was chosen in favour of
tensile tests because local property measurement facilitates the study of TiB size and microstructural
effects, without being affected by other sample variables present in sintered samples, such as porosity.
A 12 mN load was chosen as tests conducted with this load in a previous work gave mechanical
properties on CP-Ti comparable to that obtained from tensile tests [15]. Oliver–Pharr (OP) analysis
was used to determine hardness (H) and reduced elastic modulus (Er) from the load (P)—depth (h)
curve. Elastic modulus (E) was then calculated using Equation (1) as shown below, where vi and Ei are
the Poisson’s ratio and elastic modulus of the diamond indenter (0.07 and 1140 GPa) and v and E are
the samples Poisson’s ratio and elastic modulus. Details of OP analysis method can be found in [31].
Samples were tested with at least 100 indents in a 10 × 10 matrix with 10 µm spacing to ensure the
result was not affected by the plastic zone of the adjacent indents.

1
Er

=
1− v2

E
+

1− v2
i

Ei
(1)

3. Results and Discussion

3.1. Powder Mixing

Powder mixing plays an important role in the manufacture of composite materials [32].
Firstly, proper mixing ensures a uniform distribution of the reinforcement phase in the product
part, leading to more uniform mechanical properties. Secondly, when considering in situ processes,
well-mixed powders have a higher and more consistent contact area between the two powders which
will undergo the in situ reaction. Strong interfacial contact between the reacting particles reduces the
risk of any particles remaining unreacted after processing and increases the nucleation rate, acting
to refine the microstructure [33]. Figure 1 shows the powders before and after mixing, in which
Figure 1a shows the BN nanoparticles as purchased from Nanografi. The BN particles have a plate-like
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morphology, up to 100 nm in diameter and with a typical thickness of <10 nm. Figure 1b is a low
magnification SEM image showing the spherical CP-Ti powders used in this work. Figure 1c,d are
secondary electron (SE) and back-scatter electron (BSE) images, respectively, showing the powders after
mixing for 4 h in a low energy Turbula shaker mixer with a 3:1 ratio of steel balls [15]. Figure 1c shows
the fine BN powders are well distributed across the surface of the CP-Ti and similarly in Figure 1d,
where dark patches are indicative of BN. It is clear from this image that BN has been distributed around
the surface of CP-Ti particles. Figure 1c also shows some BN plates embedded into the Ti particle which
will further promote their in situ reaction. In addition, it is clear that BN nanoparticle agglomerates
like those shown in Figure 1a were largely broken up during mixing. Therefore, this mixing process
has been effective to distribute BN.
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Figure 1. TEM and SEM images of powders before and after mixing: (a) TEM image of boron nitride
powder as received; (b) SEM image of CP-Ti powder as received; (c) secondary electron SEM image of
powders after mixing; (d) back-scatter electron image of powders after mixing.

3.2. Microstructure

Figure 2a is a low magnification TEM image showing a nanowhisker extracted from a sample
sintered at 1050 ◦C for 6 h with an inset high magnification image. This particular nanowhisker
had a length and diameter of approximately 18.4 µm and 47 nm, respectively, which was measured
along with several others from each set of sintering conditions to obtain the average aspect ratios
of the nanowhiskers in each sample. As shown in our previous study these whiskers are TiB [15].
However, to analyse the effect of BN concentration on the chemical nature of the samples, XRD was
conducted on a CP-Ti + 10% BN powder sample and then the same powder after sintering at 1150 ◦C
for 6 h with subsequent surface etching (Figure 2b). Each peak in the powder sample was indexed
by either hexagonal BN or hexagonal αTi. The XRD peaks in the sintered sample were all indexed
by orthogonally-structured TiB and αTi (Figure 2b), leading to two key findings. Firstly, no BN was
detected in the samples after sintering, either in XRD or visible in SEM and TEM imaging, showing that
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all BN has undergone the in situ reaction. Secondly, TiN was also not detected in XRD or SEM and TEM
imaging. TiN is regularly present as a product of the reaction between Ti and BN in rapid melting and
solidification processes such as laser engineered net shaping (LENS) [25]. However, in slow heating
and cooling solid-state processes, such as the furnace sintering employed in this work, no TiN is
observed [34,35]. Nitrogen has a wide range of solubility in CP-Ti, >8 wt% at 1050 ◦C but approaching
<0.1 wt% at room temperature [36]. Furnace cooling (2 ◦C/min) allows the sample to achieve the
low temperature equilibrium state with very low solute nitrogen, which was not detected by XRD or
EDS in this work or previous studies [15]. The combination of the low solubility of nitrogen at room
temperature, the achievement of room temperature equilibrium in slow cooling processes and the
absence of detected TiN leads to the conclusion that the nitrogen from BN in this work is lost to the
atmosphere during processing.
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Figure 2. (a) TEM image showing a nanowhisker extracted from 10% BN sample after sintering at 1050
◦C for 6 h, with inset high magnification image for measuring whisker diameter; (b) XRD pattern of
10% BN powder before sintering and after sintering at 1150 ◦C for 6 h.

In order to study the effect of BN concentration SEM images were taken at similar magnification
for each of the sintering conditions used. Figure 3a shows a 5 vol% BN TMC sintered at 1200 ◦C for 6 h
and etched for 30 s to reveal details of the microstructure around grain boundaries. For comparison,
Figure 3b–d show 10 vol% BN TMCs sintered for 6 h at 1050 ◦C, 1150 ◦C and 1200 ◦C respectively,
before 30 s etching. Each microstructure shows Ti grains with nano and microwhiskers of TiB. In order
to investigate the effect of reinforcement, two batches of TMC powder were prepared, one with 5 vol%
BN and one with 10 vol% BN. The 5 vol% BN sample sintered at 1200 ◦C includes mostly microwhiskers
with average length of approximately 20 µm and diameter of 1 µm (see Figure 3a). Similarly, when the
concentration of BN is doubled to 10 vol% with the same sintering conditions, TiB whiskers exhibit a
similar structure with average length of approximately 18 µm and diameter of 0.8 µm (see Figure 3d).
This comparison shows that up to 10 vol% of BN, the fraction of BN has little effect of the formation
and growth of TiB.
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Figure 3. TEM and SEM images showing as-sintered TMC microstructure after etching: (a) SEM image
of 5 vol% BN TMC sintered at 1200 ◦C for 6 h; (b) SEM image of 10 vol% BN TMC sintered at 1050 ◦C
for 6 h; (c) SEM image of 10 vol% BN TMC sintered at 1150 ◦C for 6 h; (d) SEM image of 10 vol% BN
TMC sintered at 1200 ◦C for 6 h; (e) SEM image of 10 vol% BN TMC sintered at 1100 ◦C for 6 h; (f) TEM
image of FIB cut lamella from 10 vol% BN TMC sintered at 1100 ◦C for 6 h with inset indexed selected
area electron diffraction patterns of TiB and α-Ti.

In addition to the effect of composition, the impact of processing temperature was investigated.
Interestingly, when comparing Figure 3b–d a clear increase in the lateral dimension of TiB whiskers is
observable. After sintering at 1050 ◦C, as in Figure 3b, there are very few TiB whiskers with a diameter
greater than 100 nm. Despite significant clustering of TiB, there is a propensity for TiB to remain as
nanowhiskers after processing at 1050 ◦C. TiB in the TMC sample sintered at 1050 ◦C for 6 h had
an average diameter of 50 nm and length of 19 µm. By comparison, as temperature is increased to
1150 ◦C the number of TiB microwhiskers is increased, while still having significant amounts of TiB
nanowhiskers (shown in Figure 3c). The TiB in the sample sintered at 1150 ◦C for 6 h has an average
diameter of 65 nm and length of 23 µm. As temperature is further increased to 1200 ◦C, as shown in
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Figure 3d, few TiB nanowhiskers are observed, with the majority coarsened to microwhiskers. It is clear
that between 1150 ◦C and 1200 ◦C the coarsening of TiB becomes active. This temperature range is
consistent with previous studies [14,15], which were conducted on TMCs with lower boron additions
indicating that the fraction of TiB present, up to 10 vol%, in the sample has little effect on the critical
coarsening temperature.

Figure 3e shows the microstructure of the TMCs produced by this method. After the removal
of the Ti in the grain boundary a network structure of TiB interconnecting the Ti grains is observed.
The use of low-energy mixing, fine BN and a solid-state sintering operation serves to preserve the
structure. As TiB is formed in situ during sintering it grows from the surface of Ti particles into the
adjacent particle acting as a grain boundary reinforcement. This microstructure is consistent with
that observed in previous works [14,15,37–39]. The TiB present in the grain boundary also serves
to restrict the grain growth of Ti grains as is commonly observed in slow heating/cooling processes
like furnace sintering [37]. The average grain size in each 10 vol% BN sample was approximately
7 µm. A primary detriment to the furnace sintering approach is the coarsening of the grain structure.
Therefore, the formation of TMCs by this method, which restricts grain size to a minimum, is of
strong benefit.

Figure 3f and insets show a TEM image and selected area electron diffraction (SAED) patterns.
Here, a section of a TiB nanowhisker with (011) atomic planes can be observed, indicating that the TiB
nanowhisker is a single crystal. The provided SAED patterns provide evidence that the nanowhiskers
are TiB with the typical orthorhombic structure, while Ti is present in the HCP structured alpha phase.
As expected, no β-Ti was observed in the sample, only α-Ti, due to the slow cooling rate (2 ◦C/min)
allowing for the sample to achieve the equilibrium alpha phase. This thermodynamically stable
microstructure is beneficial for long service bone implants as there is less risk of microstructural and
therefore property changes over time [40].

3.3. Mechanical Properties

α-Ti has excellent corrosion resistance and promotes rapid osteointegration because of a stable
TiO2 film, where OH- ions present in this surface layer react with ions present in the bone structure like
Ca2+ and PO4

3− to aid adhesion [7]. These properties make α-Ti a strong candidate for bone implants.
However, the poor fatigue performance and overall low strength have limited the application of CP-Ti
and other α-Ti alloys in load bearing implants [7]. A TMC with an α-Ti matrix may offer improved
strength and wear properties whilst retaining the corrosion resistance and biological interfacing benefits
of α-Ti.

Table 1 presents both results from nanoindentation tests along with mechanical property results
from other works. When calculating average E and H, values outside two standard deviations above
the mean were rejected. This step was taken as surface damage and contamination can lead to large
errors in results when performing nanoindentation [41]. Table 1 shows that our TMC samples exhibit
high E and H values when compared to both CP-Ti and other TMCs, even when a higher reinforcement
fraction is used. Most notably, the H/E ratio of samples is very high. The ratio of hardness to modulus is
directly related to wear resistance and strain to failure [42]. The 10 vol% BN sample sintered at 1150 ◦C
for 6 h has the highest H/E ratio of 0.062, almost twice that of CP-Ti. The ratio H3/E2, called yield
pressure, is associated with yield strength [42,43]. The 10 vol% BN sample sintered at 1150 ◦C for 6 h
has the highest H3/E2 ratio (0.041 GPa), which is an order of magnitude higher than that of CP-Ti and
significantly higher than reported TMCs.

There are several contributing factors to the high performance of our TMCs, one of which is the
previously described formation of a network microstructure with reduced grain size. As grain size is
reduced, TiB grown in the grain boundary is sufficiently long to grow across the Ti grains, as can be seen
in Figure 3. This leads to the improved local property measurement by nanoindentation throughout Ti
grains, due to the strengthening effect of TiB. In addition to the increase in hardness and elastic modulus
observed, there is an expected increase in bulk material strength as per the Hall–Petch relationship due
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to reduced grain size [44]. Also, network microstructures have previously been shown to improve both
strength and ductility of TMCs [15,21,38,45,46]. Another key factor contributing to the performance of
our TMCs is the high aspect ratio of TiB nanowhiskers, particularly in 10 vol% BN samples. The aspect
ratio of TiB in samples sintered at 1150 ◦C and lower is approximately 400. It is well understood that
increasing the aspect ratio of the reinforcement phase increases the strengthening efficiency of the
reinforcement [23]. However, typically, when the fraction of reinforcement is increased, clustering of
the secondary particles prior to the in situ reaction leads to coarsening of the reinforcement phase
and, therefore, a decreasing of the strengthening efficiency [33]. In this work, BN fraction showed
no effect on the size of TiB, with high aspect ratio TiB nanowhiskers present when 10 vol% BN was
used. Figure 3b–d show several fine TiB nanowhiskers grouped together which had not coarsened to
microwhiskers. Previous studies have shown that there is a critical temperature for the coarsening of
TiB between 1150 and 1200 ◦C with low TiB fraction (less than 5 vol%) [14,15]. It is clear from this study
that TiB retains this critical temperature for coarsening when volume fraction is increased to 10 vol%.
Analysis of the formation reaction and coarsening of TiB in detail through in situ microscopy studies
may provide necessary information to assist with the design of optimum manufacturing processes,
both in solid and melt methods. The combination of increased volume fraction of TiB and maintaining
ultrahigh aspect ratio nanowhiskers plays an important role in the enhanced properties of our TMCs.

Table 1. Summary of key results from nanoindentation tests, with results from other works
for comparison.

Sample
Composition Process Parameters Hardness/St.

Dev (GPa)

Elastic
Modulus/St.
Dev (GPa)

H/E H3/E2 (GPa) Reference

CP-Ti 1200 ◦C—6 h 3.43/0.29 94.4/2.3 0.036 0.005 This work

CP-Ti SLM 120 J/mm2 2.39 102 0.023 0.001 [47]

Ti + 5 vol% BN 1200 ◦C—6 h 7.50/0.70 147.7/15.4 0.051 0.020 This work

Ti + 10 vol% BN 1050 ◦C—6 h 10.01/1.42 170.7/21.0 0.059 0.034 This work

Ti + 10 vol% BN 1150 ◦C—6 h 10.48/1.23 167.9/17.2 0.062 0.041 This work

Ti + 5 vol% TiB2 SLM 120 J/mm2 3.33 122 0.027 0.003 [47]

Ti + 5 vol% TiB2 SPS 1150 ◦C—5 min 4.1 - -

[48]Ti + 5 vol% TiB2 SPS 1250 ◦C—5 min 4.3 - -

Ti + 25 vol% TiB2 SPS 1150 ◦C—5 min 7.1 - -

Ti + 25 vol% TiB2 SPS 1250 ◦C—5 min 10.1 - -

Ti + 24 vol%TiB SPS 1100 ◦C—5 min 8.2 1 162.6 0.050 0.021
[49]Ti + 38.5 vol%TiB 1200 ◦C—5 h 9.7 1 190.5 0.051 0.025

Ti + 20.6 vol%TiB HIP 1200 ◦C, 120
MPa—5 h 8.0 1 169.5 0.047 0.018

1 Originally reported as Vickers hardness, converted to GPa.

4. Conclusions

To summarize, a TiB nanowhisker-reinforced α-Ti matrix TMC was produced using a method
of low energy mixing, cold compaction and furnace sintering. This TMC demonstrated increased
strength and wear performance, addressing the two key weaknesses presently facing the use of α-Ti
for biomedical implants. Overcoming these challenges is a critical improvement for the development
of affordable long-lasting biomedical implants to reduce the number of replacement surgeries required.
Analysis showed that TiB is present as nanowhiskers with high aspect ratio in samples sintered at 1150
◦C or below with relatively high volume fraction, up to 10 vol% BN. TiB nanowhiskers were observed
to coarsen only when the sintering temperature was increased to 1200 ◦C, even in high volume fractions
of BN, shedding light on the in situ reaction process and how it can be manipulated to achieve a refined
reinforcement phase. The combination of high aspect ratio TiB in high volume fraction, a fine grain α-Ti
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matrix and a network microstructure led to an increase in hardness and reduced modulus of more than
300 and 170% respectively when compared to CP-Ti. By improving these key properties while retaining
the strong osteointegration and corrosion resistance of an α-Ti matrix these TMCs are a strong candidate
for the future of long-lasting load bearing implants. The TMCs produced in this work progress towards
addressing the current challenges facing the biomedical implant industry by providing insight into:
TiB reinforced TMCs, the in situ reactions at play and their optimized manufacture. Materials such as
these will be vital to the next generation of high-performance load-bearing biomaterials.
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