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An increasing number of studies have shown that long intergenic non-coding RNAs
(lincRNAs) are a very important class of non-coding RNAs that plays a vital role in
many biological processes. Adipose tissue is an important place for storing energy,
but few studies on lincRNAs were related to pig subcutaneous fat development. Here,
we used published RNA-seq data from subcutaneous adipose tissue of Italian Large
White pigs and identified 252 putative lincRNAs, wherein 34 were unannotated. These
lincRNAs had relatively shorter length, lower number of exons, and lower expression
level compared with protein-coding transcripts. Gene ontology and pathway analysis
indicated that the adjacent genes of lincRNAs were involved in lipid metabolism.
In addition, differentially expressed lincRNAs (DELs) between low and high backfat
thickness pigs were identified. Through the detection of quantitative trait locus (QTL),
DELs were mainly located in QTLs related to adipose development. Based on the
expression correlation of DEL genes and their differentially expressed potential target
genes, we constructed a co-expression network and a potential pathway of DEL’s
effect on lipid metabolism. Our study identified and analyzed lincRNAs in subcutaneous
adipose tissue, and results suggested that lincRNAs may be involved in the regulation
of subcutaneous fat development. Our findings provided new insights into the biological
function of porcine lincRNAs.

Keywords: lincRNA, RNA-seq, subcutaneous fat development, backfat thickness, pig

Abbreviations: ALDB, the domestic-animal lncRNA database; BFT, backfat thickness; CPC, coding potential calculator;
DAVID, the database for annotation, visualization and integrated discovery; DELs, differentially expressed lincRNAs;
DEPTGs, differentially expressed potential target genes; EBV, estimated breeding value; FPKM, fragments per kilobase of
transcript per million mapped reads; GEO, Gene Expression Omnibus; GTF, gene transfer format; GO, gene ontology; ILW,
Italian large white; KEGG, kyoto encyclopedia of genes and genomes; LincRNAs, long intergenic non-coding RNAs; LncRNA,
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gene; QTL, quantitative trait locus; RT-qPCR, real-time quantitative polymerase chain reaction.

Frontiers in Genetics | www.frontiersin.org 1 March 2019 | Volume 10 | Article 160

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00160
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00160
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00160&domain=pdf&date_stamp=2019-03-04
https://www.frontiersin.org/articles/10.3389/fgene.2019.00160/full
http://loop.frontiersin.org/people/691182/overview
http://loop.frontiersin.org/people/691199/overview
http://loop.frontiersin.org/people/691189/overview
http://loop.frontiersin.org/people/540937/overview
http://loop.frontiersin.org/people/691197/overview
http://loop.frontiersin.org/people/691180/overview
http://loop.frontiersin.org/people/540952/overview
http://loop.frontiersin.org/people/521743/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00160 March 1, 2019 Time: 11:49 # 2

Shi et al. Study on Pig Subcutaneous Fat

INTRODUCTION

Pigs are very similar to humans in terms of metabolic
characteristics and organ development, so pigs are an ideal
animal model for human disease research (Lunney, 2007; Schook
et al., 2015). For example, atherosclerosis and diabetes are
examples of the impact of pigs as biomedical model (Lunney,
2007). These diseases have become the focus of research because
of the growing problem of obesity (Lunney, 2007). To delay
disease progression and prevent disease occurrence, pigs are
being extensively studied as animal models of these diseases
to determine disease pathologies, such as the role of genetic
background (Lunney, 2007). Meanwhile, pigs provide essential
nutrients to humans, such as protein. With the improvement
of human living standards, the demand for lean meat rate of
pigs is also increasing. The 10th rib BFT and days to 100 kg
are the economically important traits in pigs and are commonly
used to predict carcass lean meat content and growth rate in pig
breeding programs, respectively (Guo et al., 2017; Jiang et al.,
2018). Furthermore, a previous study indicated that a low amount
of subcutaneous fat or backfat deposition means good growth
performance (Zambonelli et al., 2016).

LincRNAs are a class of non-coding RNAs (ncRNAs) that are
transcribed between protein-coding gene regions and are more
than 200 nucleotides (nt) in length (Han and Chen, 2013). In
recent years, due to the development of sequencing technology,
a large number of lincRNAs have been identified in many plants
and animals (Guttman et al., 2010; Pauli et al., 2012; Lv et al., 2014;
Hao et al., 2015; Zhou et al., 2015; Wang J. et al., 2016). Some
lincRNAs had been identified in humans and mice, but most
lincRNAs are still unknown (Chen X. et al., 2018). Moreover,
studies have shown that lincRNAs play important roles in some
biological processes, such as mouse embryonic development (Lv
et al., 2013; Zhang et al., 2014), immune response (Carpenter
et al., 2013a,b; Heward and Lindsay, 2014), human fat deposition
(Liu et al., 2014; Ding et al., 2018; Gao et al., 2018), and human
and pig muscle growth and development (Zhao et al., 2015; Gao
et al., 2017; Lim et al., 2018).

In animals, adipose tissues play an important role and is
the main energy storage site (Wang S. et al., 2016). Excessive
accumulation of human adipose tissue can lead to obesity, further
causing some chronic diseases, such as hypertension, diabetes,
and cancer (Hanson et al., 2014; Rao et al., 2014). Studying the
mechanism of adipose development cannot only improve the
breeding efficiency of pigs but also help overcome obesity and
related diseases. Previous studies found that some protein-coding
genes, such as CTRP6 (Wu et al., 2017), NR1H3 (Zhang et al.,
2016), ubiquitin D (Zhao et al., 2018), and MAT2B (Zhao et al.,
2016), play an important role in regulating pig fat deposition.
However, few studies are available on the mechanism of action
of lincRNAs in pig fat deposition, and most functions of the
lincRNAs in pig subcutaneous fat development are still unknown.

In this study, we used the published RNA-seq data from a
previous study to assemble the transcriptome of subcutaneous
adipose tissue in ILW pigs (Zambonelli et al., 2016). Zambonelli
et al. (2016) measured the EBV in millimeter by using the BFT by
the best linear unbiased prediction multiple-trait animal model

program (Henderson and Quaas, 1976). The fixed effects of batch
in test, gender, weight at slaughter, inbreeding coefficient, and
the random effects of animal were all included in the model
(Zambonelli et al., 2016). EBV was used for animal breeding
selection and increased genetic gain in breeding programs
(Kasinathan et al., 2015; Shin et al., 2017). ILW pigs were divided
into two groups, namely, fat and lean samples, according to
the difference of BFT EBV (Zambonelli et al., 2016). Based on
the expression correlation of DEL genes and its neighboring
protein-coding genes or DEPTGs, we investigated the role of
lincRNAs in subcutaneous fat deposition of pigs. In summary,
our study suggested that lincRNA plays an important role in
pig subcutaneous fat development. This work enriches our
knowledge on lincRNAs in pig and provides a valuable resource
for future genetic and genomic studies.

MATERIALS AND METHODS

Ethics Statement and the Datasets
Source
All experiments in our study were performed according to
the guidelines of the Key Lab of Agriculture Animal Genetics,
Breeding, and Reproduction of Ministry of Education, Animal
Care and Use Committee, Wuhan, China. In this study, the
formula and amount of the ration were similar in animals used
for RNA-seq (Zambonelli et al., 2016). Samples were taken from
the subcutaneous adipose tissue of ILW pigs at an average age
of 8 months (Zambonelli et al., 2016). 20 RNA-seq datasets were
downloaded from the NCBI GEO databases with the accession
numbers provided by Zambonelli et al. (2016) (Table 1, GEO
accession GSE68007). All RNA-seq datasets were divided into
two groups with 10 replicates in each group according to the
difference of BFT EBV (Zambonelli et al., 2016).

Publicly Available Annotations
The pig gene annotations used in this article were downloaded
from the Ensembl database at http://ftp.ensemblorg.ebi.ac.uk/
pub/release-93/gtf/sus_scrofa/. Referring to previous studies, and
combining ALDB1 with NONCODE database2, we obtained
pig lincRNA annotations (Li et al., 2015; Tang et al., 2017;
Zou et al., 2017a,b). In addition, the non-redundant reference
sequence database was downloaded from https://ftp.ncbi.nih.
gov/blast/db/.

RNA-Seq Reads Mapping and
Transcriptome Assembly
All RNA-seq reads were mapped to the pig reference genome
(Sus scrofa 11.13) using the default parameters of the HISAT2
version 2.0.1 (Pertea et al., 2016; Keel and Snelling, 2018; Kim
et al., 2018). Then, we set the “-G” option of StringTie version
1.2.2 for transcript assembly, and obtained 20 samples of the

1http://res.xaut.edu.cn/aldb/download.jsp
2http://www.noncode.org/download.php
3http://ftp.ensemblorg.ebi.ac.uk/pub/release-93/gtf/sus_scrofa/
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TABLE 1 | Summary of RNA-seq data.

Sample Sex BFT EBV value Accession number Raw reads Mapping ratio (%) Uniquely mapping ratio (%)

fat_1 Male 6.03 SRR1979630 180,176,718 94.88 74.56

fat_2 Female 7.17 SRR1979632 169,629,786 95.18 76.56

fat_3 Male 7.36 SRR1979633 192,010,306 94.79 72.25

fat_4 Female 5.05 SRR1979634 226,216,232 95.28 74.48

fat_5 Male 4.76 SRR1979635 192,017,336 94.85 71.49

fat_6 Female 5.75 SRR1979638 217,143,948 94.63 69.82

fat_7 Female 4.41 SRR1979639 186,887,716 94.77 72.89

fat_8 Male 3.27 SRR1979640 201,286,514 95.69 76.75

fat_9 Male 3.54 SRR1979645 217,308,832 94.69 70.77

fat_10 Female 4.88 SRR1979647 179,852,694 93.43 69.69

lean_1 Female −7.54 SRR1979629 249,330,078 94.92 67.46

lean_2 Male −8.03 SRR1979631 165,371,992 94.73 73.02

lean_3 Female −10.59 SRR1979636 201,143,180 94.37 70.35

lean_4 Male −9.91 SRR1979637 189,907,566 94.91 73.99

lean_5 Female −7.82 SRR1979641 197,227,668 94.81 69.49

lean_6 Female −10.27 SRR1979642 208,863,596 94.92 73.44

lean_7 Male −7.61 SRR1979643 207,565,950 95.03 74.87

lean_8 Female −10.37 SRR1979644 161,880,112 94.40 70.95

lean_9 Male −6.46 SRR1979646 194,960,118 94.72 71.33

lean_10 Male −7.71 SRR1979648 178,343,072 94.06 71.22

BFT, backfat thickness; EBV, estimated breeding value.

GTF files respectively (Pertea et al., 2015, 2016). Afterward, the
20 GTF files were merged into a non-redundant transcriptome
using the merge tool in the StringTie package (Pertea et al.,
2016). The putative lincRNAs were then obtained by filtering
the unique transcriptome from the lincRNA detection pipelines
(Zou et al., 2017b).

LincRNAs Identification Pipeline
Referring to our laboratory’s previous research methods (Zou
et al., 2017b), the unique transcriptome assembled by the merging
tool was gradually screened to obtain candidate lincRNAs.
The method is as follows: (1) Retained those transcripts with
‘u’ category categorized by using gffcompare, which indicated
intergenic transcripts. (2) The transcripts with length ≥ 200 bp
and exon number ≥ 2 were retained. Because putative long
non-coding RNAs (lncRNAs) were defined as transcripts that
are more than 200 bp (Pauli et al., 2012; Ulitsky and Bartel,
2013). (3) Calculated the coding potential of transcripts by the
CPC tool (Kong et al., 2007), retaining the transcripts that
have a CPC score less than 0 which means that there was no
coding potential. (4) Filtered out the transcripts which containing
any known protein coding domain. Firstly, the sequences of
transcript were translated into six possible protein sequences
by using Transeq4. Then, the corresponding transcripts which
had a significant hit in the Pfam database5 were discarded
using HMMER (E-value < 1e-5) (Prakash et al., 2017). (5)
BLASTX program (Mount, 2007) was used to filter out any
transcripts that have similarities to known proteins in the

4https://www.ebi.ac.uk/Tools/st/emboss_transeq/
5http://pfam.xfam.org/search

NCBI NR and UniRef90 databases (E-value < 1e-5). (6) The
FPKM values for the 20 samples were estimated using the
“-B” option of StringTie version 1.2.2 (Pertea et al., 2016).
Transcripts with FPKM values greater than 0 in at least one
sample were retained.

Comparisons Between LincRNAs and
Protein-Coding Transcripts
Detailed information on 45,788 protein-coding transcripts were
extracted from the pig reference genome annotation file (Sus
scrofa 11.13). Detailed information on 252 putative lincRNAs
were extracted from the unique transcriptome file. Then, we
compared the transcript length, exon length and exon number
between lincRNAs and protein-coding transcripts.

Analysis of Differentially Expressed
Genes and DEPTGs
We used the htseq-count tool to count how many aligned
reads of each gene overlap with their exons (Anders et al.,
2015). Then, through the DESeq2 tool (a count-based technique)
in the R packages (version 3.4.3) to perform differential
expression analysis of gene-level between fat and lean group
using these counts (Love et al., 2014). The gene with an
FDR-adjusted P-value less than 0.05 will be considered as a
differentially expressed gene between the two groups (Benjamini
et al., 2001). If the expression level between each pair of
lincRNA and the protein-coding gene was significantly correlated
(P-value < 0.05), we regarded a protein-coding gene as a
PTG of lincRNA. Meanwhile, if the potential target protein-
coding gene was differentially expressed, we regarded it as a
DEPTG of lincRNA.
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Gene Ontology (GO) and Pathway
Analysis of Adjacent Genes of LincRNAs
The position information of lincRNAs were extracted from
the unique transcriptome file. Then, the neighboring genes
(<100 kb) of lincRNAs were obtained by BEDTools version
2.17.0 (Quinlan and Hall, 2010). Due to the limited annotation
of the pig genome, we need to use Ensembl to convert the genes
into human homolog genes (Kersey et al., 2014), and then used
DAVID to perform GO enrichment and KEGG pathway analysis
(Huang da et al., 2009). The P-value less than 0.05 was considered
statistically significant.

QTL Mapping Analysis of DELs
Firstly, the position information of DELs were obtained from
the unique transcriptome file. Then, we downloaded the pig
QTL database6 from the animal QTL database. After that, we
used BEDTools version 2.17.0 tool for QTL mapping of DELs
(Quinlan and Hall, 2010).

Correlation Analysis of DEL Genes and
Their Adjacent Genes
The position information of the DEL genes were obtained
from the unique transcriptome file. Then, we identified the
neighboring protein-coding genes (<100 kb) of each DEL gene
using the BEDTools version 2.17.0 tool (Quinlan and Hall, 2010).
The Pearson correlation coefficient were calculated based on the
expression level of each pair of DEL gene and protein-coding
gene (Salleh et al., 2015).

Correlation Validation Between LincRNA
Genes and Their PTGs Through the
Real-Time Quantitative Polymerase
Chain Reaction (RT-qPCR)
We used 11 large white pigs with the BFT ranging from 18
to 22 mm for RT-qPCR verification. Total RNA was extracted
from adipose tissue by using Trizol reagent (Invitrogen,
Life Technologies, Foster City, CA, United States) from
the PSCs according to the manufacturer’s instructions. The
purity and concentration of total RNA were measured by
a micro-spectrophotometer (Thermo, NanoDrop 2000,
United States) at 260 and 280 nm. Ratios of absorption
(260/280 nm) of all samples were between 1.8 and 2.0.
cDNA synthesis for lincRNA genes and PTGs detection was
performed using RevertAid First Strand cDNA Synthesis Kit
(Thermo, Wuhan, Cat#k1622). We used approximately 1 µg
of total RNA for cDNA synthesis. RT-qPCR for lincRNA
genes and PTGs detection was performed with SYBR Green
(CWBIO, Beijing, China, CW0957) in Roche LightCyler 480
system (Roche, Mannheinm, Germany) according to the
manufacturer’s instructions. Seven pairs of RT-qPCR primers
were designed using the Primer 5 program (Supplementary
Table S1). The 18S rRNA was used as an endogenous
control gene. The RT-qPCR data were analyzed using the
2−11CT method.
6https://www.animalgenome.org/cgi-bin/QTLdb/SS/index

RESULTS

Identification of LincRNAs
We used the published RNA-seq data from ILW pigs to
identify lincRNAs (Zambonelli et al., 2016). These RNA-seq
data were divided into two groups according to the BFT
EBV (Zambonelli et al., 2016). The numbers of raw reads
per sample were between 161.88 and 249.33 million. After
removing adapter and low quality reads by using fastp software
(Chen S. et al., 2018), approximately 152.81 to 236.66 million
reads were mapped to the whole genome of Sus scrofa (11.1)
(Table 1). Then, we reconstructed the transcriptome of each
sample separately. Next, the transcripts of all samples were
merged into a unique transcriptome. At this point, we obtained
76,822 transcripts, of which 1,149 were intergenic transcripts. We
identified 252 putative lincRNAs from 1,149 transcripts based on
the pipeline shown in Figure 1A, in which 34 did not overlap
with the currently annotated coding or non-coding transcripts
(Figure 1B). These putative lincRNAs were distributed in all
chromosomes (Figure 1C).

Characterization of LincRNAs
Previous studies found many differences between lincRNAs
and protein-coding transcripts (Derrien et al., 2012; Liu et al.,
2017). Based on the assembled transcriptome, we compared the
characteristics of novel lincRNAs, known lincRNAs, and protein-
coding transcripts. A total of 45,788 protein-coding transcripts
corresponding to 22,342 genes in the pig annotation in Ensembl
database and 12,103 known lincRNA transcripts encoded by
7,381 lincRNA genes in the pig lincRNA annotation in ALDB
were observed (Li et al., 2015). The average transcript length of
the protein-coding transcripts (3,285 bp) was longer than the
novel lincRNA transcripts (1,011 bp) and the known lincRNA
transcripts (1,891 bp) (Figure 2A). At the same time, the
average exon length of the protein-coding transcripts (283 bp)
was shorter than those of novel lincRNA transcripts (378 bp)
and the known lincRNA transcripts (628 bp) (Figure 2B). In
addition, the novel lincRNA transcripts (2.7) and the known
lincRNA transcripts (3.0) had similar average exon number,
but all were less than the protein-coding transcripts (11.6)
(Figure 2C). In addition, the average expression level of protein-
coding transcripts in the samples (3.18 FPKM) was higher than
those of the novel lincRNA transcripts (0.51 FPKM) and the
known lincRNA transcripts (0.90 FPKM) (Figure 2D). Our
results are consistent with previous reports that the pig lncRNA
genes have shorter transcript lengths, longer exon length, fewer
exon number, and lower expression level than protein-coding
genes (Zhou et al., 2014; Li et al., 2016; Tang et al., 2017).

Differential Expression Analysis of
LincRNA Genes and Protein-Coding
Genes
To investigate the function of lincRNAs, we performed
differential expression analysis on fat and lean samples based on
expression levels. In both groups, we identified five DEL genes.
Compared with lean pigs, two lincRNA genes (MSTRG.11102
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FIGURE 1 | (A) The pipeline for the identification of putative lincRNAs in this study. The frames in the direction of the arrow show the filtering process and the
number of screened transcripts. (B) The number of known and novel lincRNAs. (C) The chromosome distribution of putative lincRNAs.

and MSTRG.1952) were upregulated and three (MSTRG.12872,
MSTRG.752, and MSTRG.9812) were downregulated in fat
pigs (Figure 3A). In addition, we identified 43 differentially
expressed protein-coding genes with 27 upregulations and 16
downregulations in fat pigs (Figure 3B).

Functional Enrichment Analysis of
Adjacent Genes of LincRNAs
To explore the function of putative lincRNAs, we performed
functional enrichment analysis of genes near the lincRNAs
(<100 kb) with DAVID (Supplementary Table S2). The DAVID
results showed that the adjacent genes of lincRNAs significantly
participated in 25 biological processes (apoptotic process, amine
metabolic process, negative regulation of cell proliferation,
and protein K48-linked ubiquitination) and six pathways
(phenylalanine metabolism, cell adhesion molecules, and
glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan
sulfate) (P < 0.05). We found that the neighboring genes
of lincRNAs were involved in lipid metabolisms, such as
glycerophospholipid metabolism (Figure 4).

Functional Prediction of DELs
To further investigate the function of lincRNAs, we performed
QTL mapping analysis on DELs (Supplementary Table S3).

The result showed that 10 DELs were located in 140 QTLs,
wherein 28 QTLs were associated with fat deposition (Figure 5A).
Through the distribution of DELs in QTLs, we found that
all 10 DELs were located in QTLs related to fat deposition,
and most of the DELs were located in QTLs associated with
backfat (Figure 5B). For example, eight DELs were located in
the QTLs of the backfat weight QTL and shoulder subcutaneous
fat thickness QTL. Seven DELs were located in the average
BFT QTL and backfat at the last lumbar QTL. Simultaneously,
we found that 140 QTLs were distributed on 1, 3, 5, 6,
and 11 chromosomes (Figure 5C). In summary, we found
that DELs mainly located in QTLs related to fat depositions,
such as shoulder subcutaneous fat thickness, backfat weight,
and average BFT.

Correlation Analysis Between DEL Genes
and Its Adjacent Genes
Previous studies indicated that lincRNAs can affect the expression
of their neighboring genes (Fatica and Bozzoni, 2014; Taylor
et al., 2015; Engreitz et al., 2016). According to the expression
level, we calculated the Pearson correlation coefficient of
DEL genes and their nearby protein-coding genes (<100 kb),
including three DEL genes and six protein-coding genes
(Table 2). The results showed that the expression levels
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FIGURE 2 | Comparison of the characteristics of protein-coding genes, novel lincRNA genes and known lincRNA genes. (A) Comparison of transcript length.
(B) Comparison of exon length. (C) Comparison of exon number. (D) Comparison of the expression level.

of three DEL genes were significantly positively correlated
with five adjacent protein-coding genes and significantly
negatively correlated with one adjacent protein-coding gene.
Compared with lean pigs, MSTRG.11102 and MSTRG.1952
were upregulated in fat pigs, whereas MSTRG.9812 was
downregulated. The expression of five adjacent protein-coding
genes was upregulated, and one was downregulated by three
DEL genes. Then, the function of each DEL gene was
speculated according to the functions of their nearby protein-
coding genes. Among them, the expression level of DEL
gene (MSTRG.1952) was significantly positively correlated with
the nearby protein-coding gene MEDAG (also known as
MEDA-4). The expression level of DEL gene (MSTRG.9812)

was significantly negatively correlated with the nearby protein-
coding gene SPTBN1.

Expression Regulation Analysis of DEL
Genes and Their DEPTGs
To investigate the function of the DEL genes, we analyzed the
expression regulation relationship between DEL genes and
their DEPTGs (Supplementary Table S4) and constructed the
co-expression network by using Cytoscape_3.6.1 (Figure 6A).
Based on the expression level, we found that five DEL genes
and 36 DEPTGs were significantly correlated (Figure 6A),
among which 32 of 36 DEPTGs were regulated by two or
more DEL genes. Thus, we speculated that the regulatory
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FIGURE 3 | (A) Heat map of five DEL genes between fat and lean samples. (B) Heat map of 43 differentially expressed protein-coding genes between fat and lean
samples. Red represents an increase in expression, while green reduces expression.

mechanisms among DEL genes and their DEPTGs were
complicated. In fat pigs, the expression levels of MSTRG.752,
MSTRG.9812, MSTRG.12872, and RRAD were downregulated,
and the expression levels of MSTRG.11102 and SHC3 were
upregulated. Furthermore, the expression level of RRAD
was significantly positively correlated with MSTRG.752 and
MSTRG.9812. The expression level of SHC3 was significantly
negatively correlated with MSTRG.752, MSTRG.9812,
and MSTRG.12872 and significantly positively correlated
with MSTRG.11102.

Correlation Verification Between
LincRNA Genes and Their PTGs
In the data analysis results of 20 samples (10 fat samples and
10 lean samples), we randomly selected three lincRNA genes
(Supplementary Table S5) and their PTGs with significant
positive correlation based on the expression level (MSTRG.4365
vs. TKT; MSTRG.10113 vs. STOML2; MSTRG.9843 vs. ELOVL6
and DBI). The correlation coefficients were all greater than
0.80, and the P-value were less than 0.01. To verify these
results, we conducted the RT-qPCR experiment in 11 samples

and performed linear regression analysis on the results. The
four pairs of lincRNA genes and their PTGs were significantly
positive correlated based on the expression level, with correlation
coefficients greater than 0.65 and P- value less than 0.05. The
experimental results of RT-qPCR showed that the results of the
two datasets have good consistency, thereby further improving
our research reliability (Figure 7).

DISCUSSION

A large number of lincRNAs are present in the mammalian
genomes (Carninci et al., 2005; Cabili et al., 2011). A small
number of lincRNAs have been revealed in pigs; these lincRNAs
play a key role in biological processes (Li et al., 2016; Che
et al., 2018). In Zou’s study, some lincRNAs in longissimus
dorsi muscle of Laiwu pigs may be involved in intramuscular
fat-related biological processes, such as oxidative metabolism,
lipid metabolism, and adipogenesis (Zou et al., 2018). Zou et al.
(2018) provided a valuable resource for further study of lipid
metabolism in pigs. However, a large number of lincRNAs
are still unknown. In particular, many lincRNAs associated
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FIGURE 4 | Gene ontology and pathway analysis of adjacent genes of lincRNAs.

with subcutaneous fat development in pigs have not been
identified. In this study, based on the published RNA-seq data,
we performed a comprehensive identification and analysis of
lincRNAs in subcutaneous adipose tissue of ILW pigs. We
identified 252 candidate lincRNAs by using our laboratory’s
previous research methods, wherein 34 of which were novel
lincRNAs (Zou et al., 2017b), further enriching the annotation
of lincRNAs and providing new insights into the study of
lincRNAs in pigs.

In this study, lincRNAs have shorter lengths, fewer exons,
and lower expression levels than protein-coding transcripts,
consistent with previous reports in pigs and increases the

reliability of our study (Zhou et al., 2014; Li et al., 2016;
Tang et al., 2017). Our research is difficult because lincRNAs
are largely unknown. LincRNA has several ways to regulate
gene expression, such as cis- and trans-regulation (Yap et al.,
2010; Trimarchi et al., 2014; Carmona et al., 2018). At present,
cis-regulation is an important method for studying lincRNA
function. We mainly looked at neighboring genes as PTGs
in this work. Previous studies investigated the function
of lincRNAs by genes that are adjacent to the lincRNAs
(<100 kb) or have expression correlation with lincRNAs
(Hong et al., 2018; Zhang et al., 2018). In this article, we
identified 252 candidate lincRNAs between fat and lean samples.
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FIGURE 5 | Quantitative trait locus mapping analysis of DELs. (A) The number distribution of different QTLs. (B) The quantitative distribution of DELs which were
located in QTLs associated with fat deposition. (C) The chromosome distribution of all QTLs.

TABLE 2 | The correlation between DEL genes and its adjacent genes.

DEL Neighboring protein-coding gene Pearson correlation coefficient P-value

MSTRG.9812 ENSSSCG00000026559 (EML6) 0.611753737 0.004152

ENSSSCG00000040786 (SPTBN1) -0.519505779 0.0189

MSTRG.11102 ENSSSCG00000037425 (NFAM1) 0.761190956 0.00009702

MSTRG.1952 ENSSSCG00000009330 (ALOX5AP) 0.515617225 0.01997

ENSSSCG00000009331 (MEDAG) 0.515617225 0.01997

ENSSSCG00000009332 (TEX26) 0.515617225 0.01997
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FIGURE 6 | Expression regulation analysis of DEL genes and their DEPTGs. (A) Co-expression network of DELs and DEPTGs.DELs are indicated in red
hexagons;DEPTGs are indicated in blue circles; light green edge represent DELs downregulate DEPTGs; dark green edge represent DELs upregulate DEPTGs.
(B) Potential pathways for DELs and DEPTGs. red indicates that the genes are upregulated in fat pigs, green indicates downregulation in fat pigs, and yellow
indicates potential pathways for DELs and DEPTGs; quadrilaterals represent DELs, irregular polygons represent DEPTGs, and dash lines indicate predict interactions.

FIGURE 7 | Linear regression of lincRNA and PTG expression. The r0 and p0 represent the Pearson correlation coefficient and P-value of each pair of lincRNA and
PTG in 20 samples,respectively;The r and p represent verification in 11 samples. (A) MSTRG.4365 vs. TKT; (B) MSTRG.10113 vs. STOML2; (C) MSTRG.9843 vs.
ELOVL6; (D) MSTRG.9843 vs. DBI.
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According to GO and pathway analysis, we found that the
adjacent genes of lincRNAs (<100 kb) were involved in
glycosaminoglycan biosynthetic process, glycerophospholipid
metabolism, and glycosaminoglycan catabolic process. Among
them, glycerophospholipid metabolism is closely related to
fat deposition (Ecker and Liebisch, 2014; Jiang et al., 2018).
Thus, we speculate that lincRNAs may have a regulatory role in
subcutaneous fat development. The QTL mapping analysis of
DELs further improved our speculation.

To determine the regulatory mechanisms of lincRNAs, we
summarized the expression relationships of five DEL genes and
their adjacent protein-coding genes (<100 kb). The expression
level of lincRNA gene (MSTRG.1952) and mesenteric estrogen-
dependent adipose gene (MEDAG, also known as MEDA-4) were
significantly upregulated in fat pigs compared with lean pigs.
MEDAG has previously been identified as a novel adipogenic
gene in mouse and human that promotes lipid accumulation
in adipocytes (Zhang et al., 2012). From this finding, we
hypothesized that MSTRG.1952 may promote fat deposition by
positively regulating the MEDAG expression in fat pigs. At the
same time, high expression of lincRNA gene (MSTRG.1952)
significantly upregulated the expression of arachidonate 5-
lipoxygenase-activating protein (ALOX5AP) in fat pigs. Previous
studies confirmed that ALOX5AP overexpression in mouse
adipose tissue leads to lipoxin A4 (LXA4) production and diet-
induced obesity (Mehrabian et al., 2005; Horrillo et al., 2010;
Elias et al., 2016). In addition, obese subjects have significantly
higher ALOX5AP expression in subcutaneous adipose tissue than
lean subjects (Kaaman et al., 2006). Therefore, we hypothesized
that MSTRG.1952 promotes the subcutaneous fat deposition by
positively regulating the ALOX5AP expression in fat pigs.

Based on the expression level, we analyzed the expression
regulation relationship between DEL genes and their DEPTGs.
The results showed that five DEL genes and 36 DEPTGs
were significantly correlated. According to previous studies
(Pelicci et al., 2002; Ilany et al., 2006) and KEGG pathway
database7, we found that some DEPTGs may be involved in
lipid metabolism, including Ras-related glycolysis inhibitor and
calcium channel regulator (RRAD) and SHC adaptor protein
3 (SHC3). Therefore, we constructed a potential pathway map
of key genes and related DELs affecting lipid metabolism
between fat and lean pigs (Figure 6B). Previous reports
indicated a certain correlation between the expression level
of RAD (also known as RRAD) and obesity (Ilany et al.,
2006). The expression levels of lincRNA genes (MSTRG.752 and
MSTRG.9812) and RRAD were significantly downregulated in fat
pigs compared with lean pigs. RRAD overexpression can promote
the increase in lipoprotein lipase (LPL) protein level, and LPL
hydrolyzes triglycerides in lipoproteins into free fatty acids and
monoacylglycerol molecule, thereby decreasing the triglyceride
levels and affecting lipid metabolism (Ilany et al., 2006).
Therefore, we speculated that MSTRG.752 and MSTRG.9812
promote fat deposition by reducing the RRAD expression in fat
pigs. In addition, compared with lean pigs, the expression level
of lincRNA gene (MSTRG.11102) and SHC3 were significantly

7https://www.genome.jp/kegg/pathway.html

upregulated in fat pigs, and the expression levels of lincRNA
genes (MSTRG.752, MSTRG.9812, and MSTRG.12872) were
significantly downregulated. Literature showed that Rai (SHC3)
overexpression can induce Ras activation (Pelicci et al., 2002).
Based on the KEGG pathway database7, we found that Ras
may further affect glycerophospholipid metabolism. Thus, we
speculated that MSTRG.752, MSTRG.9812, MSTRG.12872, and
MSTRG.11102 promote fat deposition by increasing the SHC3
expression in fat pigs. Collectively, we speculated that four DEL
genes may affect subcutaneous fat development by regulating the
expression of RRAD and SHC3.

In this study, we identified and analyzed the lincRNAs in
the subcutaneous adipose tissue of pigs and found that some
lincRNAs may affect subcutaneous fat deposition, especially DEL
genes, thereby resulting in the difference in BFT between fat
and lean pigs. However, the specific regulation mechanism of
lincRNAs on subcutaneous fat development is still unclear, and
further studies are needed. Given that pig lincRNAs are largely
unknown, our research provided valuable resources. This work
also provided an ideal candidate for future studies of the function
of lincRNAs in the subcutaneous fat development.
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