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Abstract: Diet has an essential influence in the establishment of the cecum microbial communities
in poultry, so its supplementation with safe additives, such as probiotics, prebiotics, and synbiotics
might improve animal health and performance. This study showed the ceca microbiome modulations
of laying hens, after feeding with dry whey powder as prebiotics, Pediococcus acidilactici as probiotics,
and the combination of both as synbiotics. A clear grouping of the samples induced per diet was
observed (p < 0.05). Operational taxonomic units (OTUs) identified as Olsenella spp., and Lactobacillus
crispatus increased their abundance in prebiotic and synbiotic treatments. A core of the main functions
was shared between all metagenomes (45.5%), although the genes encoding for the metabolism
of butanoate, propanoate, inositol phosphate, and galactose were more abundant in the prebiotic
diet. The results indicated that dietary induced-changes in microbial composition did not imply a
disturbance in the principal biological roles, while the specific functions were affected.
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1. Introduction

It is widely recognized that diet is one of the contributing factors shaping the composition and
functions encoded by the microbiota in the gastrointestinal tract (GIT) of poultry [1–3]. Dietary
supplements, such as prebiotics, probiotics, and synbiotics, have frequently been used in the poultry
industry as a feasible alternative to increase animal health and performance [4]. Prebiotics are substances
acting as growth substrates for microorganisms harboring the digestive tract, thus, promoting the
growth and establishment of beneficial bacteria, enhancing their activity and positively affecting the
host [5]. Probiotics refer to the directly fed microorganisms, which affect the host, either directly or
through their products, or even by the influence on other microbial activities [6]. The mixture of
both components was also used, turning them into synbiotics, which conferred benefits beyond those
achieved by themselves [7].

The ceca were the primary sites of fermentation of the avian GIT, and it harbored the most
complex and yet not entirely characterized microbial community [8,9]. Ceca resident microorganisms
were responsible for a wide range of catabolic pathways, resulting in the synthesis of a variety of
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products that were accessible to the host [10]. For instance, short chain fatty acids, such as fermentation
products [11], synthesis of vitamins B and K [12], and nitrogen recycling by the breakdown of uric
acid [13], were some of the main products attributed to the microbial activity. A better understanding
of the phylogenetic structure and functional capacity of the ceca microbial consortia, in response to
dietary interventions, is essential to elucidate their roles in the host physiology and productivity.

Over the last two decades, culture-independent methods have been developed to overcome the
cultivation biases, offering detailed information about the microbial composition, diversity structure,
and functionality [14]. Sequencing of the 16S ribosomal RNA gene has served as a useful tool for
taxonomy classification [15] and has been applied for investigating the poultry intestinal microbiota,
in depth [1–3]. On the other hand, the wide variation in the genome content, between even closely
related strains of microbes, makes it challenging to assign the functions to microbial populations based
on 16S sequence inventories alone [16]. For this reason, environmental and community genomics,
generally referred to as “metagenomics,” should be applied to enhance the knowledge of microbial
functions. As a result, the identification of the gene content of the microorganisms and their biological
functions within an ecosystem, could be determined, and a catalog of genes was established [17,18].

Therefore, this study aimed to give an insight into the ceca microbiota changes, in response to the
dietary inclusion of prebiotic dry whey powder (DWP), probiotic Pediococcus acidilactici (PA), and a
mixture of both, through the analysis of the microbial community structure and function. The obtained
results indicate that each dietary supplementation strongly influenced the ceca microbial consortia,
even though these changes did not imply a disturbance in the main biological roles encoded by the
bacteria community.

2. Materials and Methods

2.1. Ethical Statement

This experiment was performed in accordance with the European Union (2010/63/EU) and Spanish
regulations (RD 53/2013), for the care and use of animals for experimental and other scientific purposes.

2.2. Animals and Experimental Diets

The study was conducted at the experimental farm of Neiker-Tecnalia in Arkaute (Vitoria-Gasteiz,
Spain). Laying hens were managed and fed with the diets described by Pineda-Quiroga et al. [19].
Briefly, a flock of 300, 57-week-old hens (ISA Brown strain, Avigán Terralta S.A, Tarragona, Spain),
allocated in floor pens, were used in an experiment, for 70 days. Birds were randomly assigned to
separate pens, with 15 birds in each pen, and five pens per treatment. The diets involved a control diet
(no supplementation of dry whey powder-(DWP) or Pediococcus acidilactici (PA)), prebiotic (60 g/kg of
addition of DWP), probiotic (2 g/kg of addition of PA), and synbiotic (a mixture of 60 g/kg of addition
of DWP and 2 g/kg of addition of PA). The dry whey powder used was a commercial sweet powder
(Sueromancha S.L, Toledo, Spain; 703 g of lactose/kg of product) and the probiotic was a commercial
probiotic “Bactocell” (Lallemand, France), containing a live culture of P. acidilactici (strain MA 18/5,
1010 CFU/g). Feed and water were provided ad libitum, throughout the experiment.

2.3. Cecal Sample Collection and DNA Extraction

On the last day of the experiment, 12 hens (three per treatment) were randomly selected from
different pens and euthanized by CO2 inhalation to extract the ceca digesta content. Samples were
immediately stored at −80 ◦C, until further analysis. The total nucleic acid was obtained using the
PowerSoil DNA extraction Kit (MOBIO Laboratories Inc., Carlsbad, CA, USA), according to the
manufacturer recommendations.



Microorganisms 2019, 7, 123 3 of 14

2.4. 16S rRNA Gene Amplification, Sequencing, and Analysis

Cecal DNA from the sampled hens was used for the Illumina amplicon library preparation. PCR
amplification of the V1-2 hypervariable region of the 16S rRNA gene was performed according to
Kaewtappe et al. [20]. Libraries were sequenced using 250 base pairs paired-end sequencing chemistry,
on an Illumina MiSeq platform.

Bioinformatic processing of the Illumina reads, followed the Mothur-Miseq SOP [21]. Sequences
were aligned using the SILVA-based bacterial reference alignment, and chimera sequences were checked
and removed using UCHIME [21]. Reads were then clustered into operational taxonomic units (OTUs),
using a ≥97% sequence similarity threshold. Finally, a total of 934 OTUs were taxonomically assigned
using the naïve Bayesian RDP classifier. Sequences are available at the European Nucleotide Archive,
under the accession number PRJEB21237 in http://www.ebi.ac.uk/ena/data/view/PRJEB21237.

Relative abundances per out, on each sample, were analyzed using multivariate statistical routines
in PRIMER, considering the Bray–Curtis similarity coefficient (version 7.0.9, PRIMER-E; Plymouth
Marine Laboratory, Plymouth UK; [22]). The microbial community structure was explored by a
non-metric multidimensional scaling plot (nMDS), and the statistical comparison between diets was
determined through a permutational analysis of variance (PERMANOVA, 999 permutations). Pielou’s
evenness index and Shannon-weaver index of diversity (H’) were determined and analyzed using a
Kruskal–Wallis test (R environment, V 3.3.3).

2.5. Metagenome Sequencing and Analysis

Cecal DNA from one laying hen per diet was sequenced through the Illumina HiSeq2500 platform.
The sequencing generated an average number of 7′528.949 sequences, with a length of 100 base pairs,
which were cleaned and assembled using the CLC Main Workbench software version 9.0.1 (CLCbio®,
Germantown, MD, USA). Subsequently, gene annotations were done through the metagenomics RAST
server version 4 (MG-RAST; [23]). The KEGG database for proteins taxonomic assignment and the
KEGG orthologs (KO) for the annotation analysis were considered, working with the MG-RAST
parameters, by default. The metagenome sequences were publicly available under the MG-RAST
project mgp21245 (Metagenome IDs: control [mgm4730023.3], probiotic [mgm4730065.3], prebiotic
[mgm4730022.3], and synbiotic [mgm4730024.3]).

For the data analysis, the log2fold change (LFC) in the presence of genes was calculated, based on
normalized reads with the DESeq2, R package. Genes meeting the cut-off criteria of p-value ≤ 0.05
(Wald test), LFC ≥ 1, or LFC ≤ −1, were considered to be differentially present. Venn diagram was
depicted with the genes shared between each diet and their interactions, using the online tool Venny
2.1.0 (Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html).

3. Results

3.1. Microbial Community Analysis Based on 16S rRNA Gene Amplicon Sequencing

Exploring the global bacterial community structure through an nMDS plot, revealed the biological
replicates grouped per diet. In this context, a clear separation was observed between the samples
from the control and the probiotic, regarding those from the prebiotic and the synbiotic (Figure 1A).
The average similarity within the replicates of the ceca samples was 67% in the control diet, 69% in
prebiotic and probiotic, and 59% in synbiotic. The lowest Pielou’s evenness and Shannon diversity
were found in the synbiotic diet (0.752 and 3.375, respectively) in comparison to the control (0.824 and
5.504, respectively; p < 0.030). No differences were observed between the remaining diets (Figure 1A),
which was due to an increase of some specific microbial groups, at the expense of a variety of others.
These results could imply less richness of the ceca microbiome, due to the synbiotic feeding, which
was undesirable, due to the negative impact on poultry performance [10].

http://www.ebi.ac.uk/ena/data/view/PRJEB21237
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Figure 1. (A) Non-metric multidimensional scaling (nMDS) plot showing the distribution of the 
biological replicates on the diets. The diversity calculated with the Shannon index is plotted in the 
boxplot on the right bottom side. (B) Taxonomical information related to the 16S rRNA gene amplicon 
sequencing. The thinner bars indicate information at the phylum level and the wider bars indicate 
information at the genus level (average relative abundance >1%). 

Bacteroidetes was the most abundant phylum identified in all diets, showing a similar 
abundance between the control diet and the probiotic (51% and 50% on average, respectively), while 

Figure 1. (A) Non-metric multidimensional scaling (nMDS) plot showing the distribution of the
biological replicates on the diets. The diversity calculated with the Shannon index is plotted in the
boxplot on the right bottom side. (B) Taxonomical information related to the 16S rRNA gene amplicon
sequencing. The thinner bars indicate information at the phylum level and the wider bars indicate
information at the genus level (average relative abundance >1%).
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Bacteroidetes was the most abundant phylum identified in all diets, showing a similar abundance
between the control diet and the probiotic (51% and 50% on average, respectively), while it presented
relative lower values in prebiotic and synbiotic diets (46% and 38% on average, respectively; Figure 1B).
Firmicutes was the following most abundant phylum, with similar values in all diets (34% on average;
Figure 1B). In synbiotic, the abundance of Actinobacteria was more prominent (14% on average),
in relation to the control diet (4% on average), prebiotic (9% on average), and probiotic (5% on
average), while Proteobacteria was less abundant (2.5% on average), in comparison to the control diet
(3.5% on average), prebiotic (4.0% on average), and probiotic (4.3% on average). At the genus level,
Bacteroides was the most predominant across diets, with values between 13% and 15% (Figure 1B).
In prebiotic and synbiotic diets, Olsenella was present in a higher abundance (6% and 11.5% on average,
respectively), whereas, it was detected in a lower abundance in the control and the probiotic diets
(2.5% and 3% on average, respectively). Parabacteroides was detected in the prebiotics, with 4.4% of
abundance, in the control and the probiotic with 3%, and in the synbiotic diet with 2.6% of abundance.
Lactobacillus was present in a higher abundance in the prebiotic and the synbiotic diets (4.1% and 4.4%
on average, respectively), while it was lower in the control and the probiotic (3.0% and 2.5% on average,
respectively).

PERMANOVA analysis indicated that feeding hens with prebiotics and synbiotics caused a different
microbiota composition, compared to the control, whereas, feeding with a probiotic diet resulted in a
similar structure (p < 0.001; Table 1). Prebiotic outcomes confirmed the prebiotic-modulatory effect
on the ceca microbiome of poultry [5]. However, the probiotic results were unexpected because of
the well-known repercussion of those in the ceca microbial communities [24]. A possible explanation
for this finding was attributed to the late supplementation of the probiotic, which did not have the
expected microbial modulation in the gut of the hens. Thus, it might be necessary to start with the
dietary treatment, at the early stages of age, when the ceca microbiota is still in development [5].
Moreover, it could also be inferred that the type of probiotic evaluated, at the tested doses, was not the
proper one to cause some change in the microbial composition.

Table 1. Statistical differences between the diets and the main OTUs contributing to the cecal taxonomical
differences in the four metagenomes. 1 Control—no additive supplementation; Probiotic—2 g/kg of P.
acidilactici; Prebiotic—60 g/kg of dry whey powder, Synbiotic—2 g/kg of P. acidilactici and 60 g/kg of
dry whey powder. Each line shows the results of the comparison between each diet (the Diet column)
and each of the supplemented diets (the Groups column). p (perm) values ≤ 0.05 between comparisons
were considered to be significantly different.

Statistical Differences between Diets Based on the PERMANOVA Results

Diets 1 Groups t-Value p (perm)

Control Probiotic 12.865 0.106
Prebiotic 1.657 0.001
Synbiotic 16.105 0.001

Probiotic Prebiotic 16.325 0.001
Synbiotic 14.991 0.001

Prebiotic Synbiotic 1.225 0.190

The percentage of dissimilarity of the ceca microbiota from hens fed with prebiotic and control
was 46%, between prebiotic and probiotic it was 38%, between synbiotic and control it was 39%,
and between synbiotic and probiotic it was 43%. These results were mainly due to the higher abundance
of OTUs associated with the Olsenella spp. (OTU 1), and the Lactobacillus crispatus (OTU 3) in prebiotic
and synbiotic diets (Figure 2). Both diets increased the abundance of OTU 1, which is an anaerobic
bacterium that ferments carbohydrates to lactic acid. Olsenella spp., has been identified in the GIT
of laying pullets being involved in lipid and cholesterol metabolism [25]. On the other hand, the
observed increase of L. crispatus (OTU 3) could be considered desirable, because this phylotype has been
classified as a beneficial probiotic, in poultry [26]. Due to its lactic acid production and competitive
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exclusion, supplementation of L. crispatus in broiler diets, reduces the colonization of Campylobacter
jejuni and exerts an inhibitory effect against the presence of Salmonella enterica serovar Enteritidis [27].
With a lower relative abundance overall, a propionic acid bacterium identified as Megamonas spp.
(OTU 28; [28]), increased in abundance, when feeding the diets mentioned above. This bacterium acts
as a hydrogen sink in the ceca, increasing the short chain fatty acids (SCFAs) production, which brings
benefits to the energy metabolism of the host [1].
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Figure 2. Box-plots with the relative abundance of the most abundant operational taxonomic units
(OTUs). The color code indicates, yellow for control, blue for the probiotic, red for the prebiotic, and
green for the synbiotic treatment. The symbols indicate statistical significance (p ≤ 0.05).

3.2. Metagenomic Analysis

Taxonomic assignations of the metagenomic reads showed that the main phyla in all diets were
Bacteroidetes (between 46% and 60%) and Firmicutes (26–33%), while less than 8% of the reads
belonged to Actinobacteria and Proteobacteria (Figure 3A). This fact was in accordance with the
study reported in laying hens from Bennett et al. [29], where Bacteroidetes was the dominant phylum,
followed by Firmicutes. The reads were annotated using the KEGG database, and 4265 total genes
were identified. They encoded microbial functions, and a core of 1764 (45.5%) was identified in the
metagenomes (Figure 3B).

These findings indicated that diverse taxon’s in the ceca microbiota maintained a conserved
core of genes, which was in agreement with Segerman [30]. However, microbial communities of the
supplemented diets encoded for more unique functions, in comparison to the control. Paired analysis
showed that all supplemented diets increased the microbial genes related to starch, sucrose, pyruvate,
and glycerophospholipids metabolism, while the control diet mainly increased the microbial pathways
for lysine degradation (Table 2), indicating a high activity of the central energy metabolism in the
supplemented treatments.
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Figure 3. (A) Taxonomical assignation based on the KEGG protein database. The groups are shown at
the phylum level. (B) Venn diagram depicting the percentage of genes assigned and shared between
the four metagenomes (the color convention indicates, yellow for control, blue for the probiotic, red for
the prebiotic, and green for the synbiotic. (C) KEGG orthologs obtained from the four metagenomes.
The classification corresponds to the second level, and it was plotted as follows—the inner circle
corresponds to the control, the second to the probiotic, the third to the prebiotic, and the outer circle
corresponds to the synbiotic diet.

An increase in the expression of genes related to butanoate and propanoate metabolism (Table 2)
was found in the prebiotic supplementation. These short chain fatty acids (SCFA’s) represent several
beneficial effects to the host, related to mineral metabolism, the maintenance of sanitary status, and the
energy metabolism. Their absorption by ceca mucosa provided up to 11% of the metabolizable energy,
for mature birds [31,32], which could be used for productive purposes. In fact, laying hens fed with
this prebiotic, showed a higher egg production, in comparison to the other diets [19]. Moreover, the
galactose metabolism, which resulted in the hydrolysis of the lactose to the SCFAs, increased in the
prebiotic diet (Figure 4A), probably exerted by the lactose from dry whey powder, as the only feed
additive in the prebiotic diet.
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Figure 4. Metabolic pathways obtained from the KEGG mapper for: (A) Galactose metabolism and (B)
Inositol phosphate metabolism. The color code indicates, respectively—yellow for control, red for the
prebiotic, blue for the probiotic, and green for the synbiotic.

Synbiotic supplementation augmented the pathways for starch and sucrose metabolism,
in comparison to the others (Table 2). This treatment also increased the abundance of genes related
to retinol and the glycolysis/gluconeogenesis metabolism, and the steroid hormone biosynthesis,
in comparison to other diets. More pathways for amino sugar and nucleotide sugar metabolites were
promoted by the symbiotic, compared to the probiotic and the prebiotic, as well as for the nicotinate
(B3) and nicotinamide, with control.
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Table 2. Genes differentially present based on the dietary treatment assigned. The difference was calculated with the log2fold change (LFC), after read normalization,
using DESeq2 R package (Love et al., 2014) [33]. A cut-off criterion was established, which was p < 0.05 (Wald test). Positive or negative values indicate a higher or
lower presence, respectively, of the assigned function, for the first mention treatment.

Function Control vs.
Probiotic

Control vs.
Prebiotic

Control vs.
Synbiotic

Prebiotic vs.
Probiotic

Prebiotic vs.
Synbiotic

Probiotic vs.
Synbiotic

Starch and sucrose
metabolism

Beta-phosphoglucomutase [K01838] 1.64 1.72 2.33
Sucrose phosphorylase [K00690] −1.82
Maltose phosphorylase [K00691] −1.11

Maltose-6’-phosphate glucosidase [K01232] −1.03
Beta-phosphoglucomutase [K01838] −2.34

Cyclomaltodextrinase [K01208] −1.23 −2.32
Glucan endo-1,3-beta-d-glucosidase [K01199] −1.69 −3.05 −2.11
Cellulose synthase (UDP-forming) [K00694] −2.37

Glycolisis/gluconeogenesis Pyruvate decarboxylase [K01568] −1.1 −2.12
Acetyl-CoA synthetase (ADP-forming) [K01905] −2.1 −1.47 −3.17

Piruvate metabolism D-lactate dehydrogenase (cytochrome) [K00102] 3.48 4.13 3.69

Citrate cycle (TCA cycle) 2-methylisocitrate dehydratase [K01682] 1.4 2.05 1.84

Glycerophospholipid
metabolism Glycerol-3-phosphate dehydrogenase subunit B [K00112] 1.88 1.12 2.69

Glycine, serine and threonine
metabolism

Glycine amidinotransferase [K00613] 1.38 1.88 2.56
Cystathionine gamma-lyase [K01758] 1.63 1.63 2.56
Glycine N-methyltransferase [K00552] Not in Ctrl −1 Not in Syn Not in Prob Not in Syn

Creatinase [K08688] −1 −1 Not in Syn
Diaminobutyric acid acetyltransferase[K06718] −1 −1 Not in Syn

Cetaine-homocysteine S-methyltransferase [K00544] Not in Prob −1 Not in Syn
Choline dehydrogenase [K00108] −2.11 1.23 3.81

Arginine and proline
metabolism

Creatinine amidohydrolase [K01470] 1.2 1.44 1.52
Ornithine decarboxilase [K01581] 1.8 1.22 1.89

Cysteine metabolism Aromatic-amino-acid transaminase [K00832] 1.21 1.37 2.18

Cysteine and methionine
metabolism

Homocysteine S-methyltransferase [K00547] −1.76
Aromatic-amino-acid transaminase [K00832] −2.18
(R)-2-hydroxyacid dehydrogenase [K05884] −1.69 −1.05

Tyrosine metabolism 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase [K05921] 1.99 1.22 2.1

Pantothenate and CoA
biosynthesis

Type I pantothenate kinase [K00867] 1.02 1.2 1.68
Phosphopantothenoylcysteine decarboxylase [K01598] 1.79 1.8 1.1

Folate biosynthesis Para-aminobenzoate synthetase [K01247] 3.57 3.72 2.1
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Table 2. Cont.

Function Control vs.
Probiotic

Control vs.
Prebiotic

Control vs.
Synbiotic

Prebiotic vs.
Probiotic

Prebiotic vs.
Synbiotic

Probiotic vs.
Synbiotic

Riboflavin metabolism Low molecular weight phosphotyrosine protein Phosphatase [K14394] 1.31 1.22 3.1

Lysine degradation 5-aminovalerate aminotransferase [K14268] Not in Prob Not in Preb Not in Syn
Glutarate semialdehyde dehydrogenase [K14269] Not in Prob Not in Preb Not in Syn

β-lactam resistance Methicillin resistance protein [K02547] −2.82 −2.17 Not in Syn

Butanoate metabolism

Glutaconate CoA-transferase, subunit A [K01039] −1.4 Not in Prob 2.62
4-hydroxybutyrate dehydrogenase [K00043] / 1.09 2.44
3-hydroxybutyrate dehydrogenase [K00019] Not in Ctrl Not in Prob Not in Syn

Butanediol dehydrogenase/diacetyl reductase [K00004] Not in Ctrl Not in Prob Not in Syn

Propanoate metabolism

1-aminocyclopropane-1-carboxylate deaminase [K01505] −1.22 / 1.8
2-methylcitrate dehydratase [K05608] −1.57 1.61 Not in Syn

1-aminocyclopropane-1-carboxylate deaminase [K00923] −1.22 / 1.7
2-methylcitrate synthase [K01659] / / 1.73

Methylisocitrate lyase [K03417] / / 2.44

Fructose and mannose
metabolism

mannitol 2-dehydrogenase [K00045] / / 1.19
PFK; 6-phosphofructo-2-kinase [K00900] Not in Ctrl 1.01 1.7

Fructan beta-fructosidase [K03332] −1.63 1.32 Not in Syn

Inositol phosphate
metabolism

5-dehydro-2-deoxygluconokinase [K03338] −1.06 1.2 Not in Syn
iolB; 5-deoxy-glucuronate isomerase [K03337] Not in Ctrl 1.76 1.7

Galactose metabolism

Lactase-phlorizin hydrolase [K01229] −3.22 2.23 Not in Syn
Galactitol-1-phosphate 5-dehydrogenase [K00094] −1.37 2.38 Not in Syn

Tagatose 6-phosphate kinase [K00917] / / 1.17
2-dehydro-3-deoxyphosphogalactonate aldolase [K01631] / 2.97 1.12

Galactonate dehydratase [K01684] / / 1.35
Maltase-glucoamylase [K12047] Not in Ctrl Not in Prob Not in Syn

N-acetylgalactosamine-6-phosphate deacetylase [K02079] Not in Ctrl Not in Preb Not in Prob

Phenylalanine, tyrosine and
tryptophan biosynthesis

Anthranilate synthase/phosphoribosyltransferase [K13497] −4.96 1.8 /
Indole-3-glycerol phosphate synthase/Phosphoribosylanthranilate

isomerase [K13498] −1.42 1.26 1.26

Shikimate kinase/3-dehydroquinate synthase [K13829] −1.09 1.78 2.99
Chorismate mutase/prephenate dehydratase [K14170] / / 1.27

Cyclohexadienyl dehydratase [K01713] Not in Ctrl Not in Preb Not in Prob

Fatty acid metabolism
Long-chain-fatty-acid-[acyl-carrier-protein] Ligase [K05939] −2.17 1.55 /

Cytochrome P450, family 4, subfamily A [K07425] Not in Ctrl Not in Prob Not in Syn
Carnitine O-palmitoyltransferase 2 [K08766] Not in Ctrl Not in Prob Not in Syn
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Table 2. Cont.

Function Control vs.
Probiotic

Control vs.
Prebiotic

Control vs.
Synbiotic

Prebiotic vs.
Probiotic

Prebiotic vs.
Synbiotic

Probiotic vs.
Synbiotic

Fatty acid biosynthesis Fatty acid synthase, bacteria type [K11533] / 1.22 4.56
Oleoyl-[acyl-carrier-protein] hydrolase [K01071] −1.7 / −1.24

Thiamine metabolism
Hydroxyethylthiazole kinase [K14154] / 2.23 1.11

Thiamine-phosphate diphosphorylase [K14153] −1.22 / Not in Syn

Retinol metabolism
Retinol dehydrogenase 16 [K11154] Not in Ctrl Not in Prob Not in Syn

Diacylglycerol O-acyltransferase 2-like protein 4 [K11156] Not in Ctrl Not in Prob Not in Syn
All-trans-retinol 13,14-reductase [K09516] −1.1 −1.76 −1.83

Ascorbate and aldarate
metabolism

D-threo-aldose 1-dehydrogenase [K00064] −1.23 / 2.13
l-ribulose-5-phosphate 3-epimerase [K03079] −1.1 −3.05 1.58

Glyoxylate and dicarboxylate
metabolism

Formate dehydrogenase [K00122] Not in Ctrl −2.94 /
Oxalyl-CoA decarboxylase [K01577] / −2.4 1.07
N,N-dimethylformamidase [K03418] Not in Ctrl Not in Preb Not in Syn

Formate dehydrogenase-N, gamma subunit [K04509] Not in Ctrl Not in Preb Not in Syn
Glycolate oxidase FAD binding subunit Not in Ctrl Not in Preb Not in Syn

Oxalate decarboxylase [K01569] Not in Ctrl Not in Preb Not in Syn
Malate dehydrogenase [K00025] Not in Ctrl −0.15 Not in Syn

Alanine, aspartate and
glutamate metabolism

Aspartate 4-decarboxylase [K09758] / −1.17 2.61
1-pyrroline-5-carboxylate dehydrogenase [K00294] / / 1.01

Carbamoyl-phosphate synthase [K01954] / −1.27 1.97
Delta 1-pyrroline-5-carboxylate dehydrogenase [K13821] −1.59 / 2.3

Phenylalanine metabolism
Phenylacetaldehyde dehydrogenase [K00146] −2.47 −2.94 /

2-keto-4-pentenoate hydratase [K02554] −1.57 −1.94 /
Cinnamic acid dioxygenase subunit alpha [K05708] −1.31 −2.67 /

Nicotinate and nicotinamide
metabolism

UDP-sugar diphosphatase [K11751] −1.49 / /
5′-nucleotidase [K01081] / −1.05 /

NAD(P) transhydrogenase [K00322] / −1.81 /
Nicotinamide-nucleotide adenylyltransferase [K00952] / −3.16 /

Purine nucleosidase [K01239] −1.08 / /
NAD(P) transhydrogenase subunit alpha [K00324] −1.1 / /

Amino sugar and nucleotide
sugar metabolism Chitin deacetylase [K01452] / −2.47 −2.12

Valine, leucine and isoleucine
biosynthesis Valine—pyruvate aminotransferase [K00835] −3.69 −4.05 /

Steroid hormone biosynthesis Steroid delta-isomerase [K01822] / −1.68 −1.17
Steryl-sulfatase [K01131] −1.1 −2.45 −2.12
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Regarding the mineral metabolism, prebiotic increased the abundance of inositol phosphate (InsP)
metabolism-related genes (Figure 4B), which was in agreement with previous reports, indicating that
the degrading activities of InsP were mainly carried out in the ceca of laying hens [34]. Our results
supported the role of the cecal microorganisms in the InsP degradation and phosphorous release, which
was previously reported by Rodehutscord and Rosenfelder [35]. It was a positive finding for the laying
hens because more phosphorus availability was desirable for the eggshell formation, hen skeletal
integrity, and bone mineralization [36,37].

With regards to antibiotic resistance, it was interestingly observed that supplemented diets
exhibited less of a presence of β-lactams resistance-related genes (Table 2). Specifically, our results
showed less abundance of methicillin-resistant protein-related genes, in prebiotic and probiotic
supplementation, and an absence of it in synbiotic supplementation, suggesting that the tested
additives interfere with the presence of bacteria that harbor this resistance gene pools. However,
the reasons why the additives might have inhibited the transfer of antibiotic resistance genes, are unclear.
Nonetheless, it is a relevant finding because antibiotic resistance is a well-known threat to global animal
and human health, compromising the therapeutic effectiveness of antibiotics in veterinary and human
medicine [38]. Specifically, methicillin belongs to the penicillin antibiotic family, and, in an animal
medicine context, it is widely used for treating the mainly staphylococcal infections in poultry [39].

Thus, prebiotic and synbiotic supplementation have a modulatory impact on the microbiota
composition, while feeding laying hens with a probiotic or a basal diet, showed similar bacterial
structures. All dietary supplementations induced modulations in the abundance or specific presence of
microbial functional genes, although these did not imply a disturbance in their central biological roles.
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