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Background: The tumor immune microenvironment (TIME) is an external immune

system that regulates tumorigenesis. However, cellular interactions involving the TIME

in hepatocellular carcinoma (HCC) are poorly characterized.

Methods: In this study, we used multidimensional bioinformatic methods to

comprehensively analyze cellular TIME characteristics in 735 HCC patients. Additionally,

we explored associations involving TIME molecular subtypes and gene types and

clinicopathological features to construct a prognostic signature.

Results: Based on their characteristics, we classified TIME and gene signatures into

three phenotypes (TIME T1–3) and two gene clusters (Gene G1–2), respectively. Further

analysis revealed that Gene G1 was associated with immune activation and surveillance

and included CD8+ T cells, natural killer cell activation, and activated CD4+ memory

T cells. In contrast, Gene G2 was characterized by increased M0 macrophage and

regulatory T cell levels. After calculation of principal component algorithms, a TIME score

(TS) model, including 78 differentially expressed genes, was constructed based on TIME

phenotypes and gene clusters. Furthermore, we observed that the Gene G2 cluster was

characterized by high TS, and Gene G1 was characterized by low TS, which correlated

with poor and favorable prognosis of HCC, respectively. Correlation analysis showed that

TS had a positive association with several clinicopathologic signatures [such as grade,

stage, tumor (T), and node (N)] and known somatic gene mutations (such as TP53 and

CTNNB1). The prognostic value of the TS model was verified using external data sets.

Conclusion: We constructed a TS model based on differentially expressed genes

and involving immune phenotypes and demonstrated that the TS model is an effective

prognostic biomarker and predictor for HCC patients.

Keywords: tumor immune microenvironment, gene, prognostic signature, immune activation, hepatocellular

carcinoma
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INTRODUCTION

A tumor is a neoplasm caused by gene mutations and
adaptation of resultant mutant cells to the microenvironment
(1). The tumor immune microenvironment (TIME) is a complex
and dynamic network system composed of immune cells,
stromal cells, and immune matrix, and it is associated with
tumorigenesis (2). Previous studies report that TIME plays
an immune surveillance role by inhibiting tumor proliferation
and preventing escape of tumor cells from immune system
regulation (3), whereas some studies report that TIME could
regulate the occurrence and development of tumors (4). More
recently, studies have shifted to better understanding the
association between TIME and tumorigenesis. Genomic analysis
is a standard approach for studying the structure, function,
evolution, and effects of genomes on organisms (5). Several
methods have been established to act as a bridge between gene
expression and immune cell components. Applying CIBERSORT,
a computational method for predicting cell composition in
tumor transcriptomes, may help map prognostic genes and
leukocyte subsets within and across cancers, elucidate the
effect of tumor heterogeneity on cancer prognosis, and identify
diagnostic and therapeutic biomarker targets (6). xCell is also
the usual method to calculate cell subsets of TIMEs from
transcriptomes, which helps to understand the complex cellular
heterogeneity in tumor tissues, improve existing treatments,
identify predictive biomarkers, and develop new treatment
strategies (7). Additionally, several studies have demonstrated
that TIME regulates host and immune cell populations and,
thus, can be used for tumor prognosis (8, 9). Notably, the
immunosuppressive effect of TIME on tumors is regulated
by immune cell components, such as T and B lymphocytes,
macrophages, natural killer cells, and dendritic cells. However,
changes to immune cell components, especially regulatory T cells
and macrophages, promote tumor progression (10). These cell
populations offer immunotherapeutic strategies and diagnostic
and prognostic biomarkers for many solid tumor types, such as
lung cancer, hepatocellular carcinoma (HCC), and breast and
gastric cancers (11–14).

HCC is the leading cause of cancer-related morbidity and
mortality worldwide, and most incidences are associated with
cirrhosis related to chronic hepatitis virus infection (15).
Currently, it is believed that immune escape contributes
to the development of HCC caused by viral hepatitis
infection—particularly hepatitis B virus (16). The liver is a
key immune organ that plays a protective role by promoting
immune tolerance. However, changes in immune tolerance
signals or escape from immune surveillance in pathological
conditions leads to HCC development (17). In addition,
immunosuppressive cancer environments adversely affect innate
and adaptive immunity function, resulting in HCC progression
and metastasis (18). The TIME of the liver is a homeostatic
system governed by effective regulatory mechanisms. However,
ineffective TIME mechanisms, such as an imbalance involving
immunosuppressive cell subsets, tumor signaling–mediated
immune response enhancement, and antitumor immune fatigue,
contribute to tumor progression (19). TIME-related immune

cells, such as tumor-associated macrophages, tumor-associated
neutrophils, tumor-infiltrating lymphocytes, regulatory T
cells, CD8+ cytotoxic T lymphocytes, and natural killer cells,
have been implicated in HCC pathogenesis. Moreover, TIME-
based targets for HCC immunotherapy guide and improve
the efficacy of various cancer therapies, particularly those
that work by enhancing host antitumor immune responses
(20). Immunotherapeutic approaches targeting immune
checkpoints have been extensively studied to improve HCC
immunotherapy effectiveness. Excessive immunomodulation,
angiogenesis, inflammation, and communication between
tumor cells and extracellular matrix can be targeted for HCC
immunotherapy development (19). Previous studies report
that TIME is important in the prediction of survival outcomes
and in the evaluation of therapeutic efficacy (8, 9). However,
immunomodulatory factors associated with HCC TIMEs
have not been fully explored. Notably, the development of
bioinformatics tools could facilitate efficient prediction of the
composition of and change in TIMEs in tumors (21). Therefore,
several studies have used bioinformatic tools to explore the
clinical significance of TIME, the association of TIME and
tumorigenesis, and the effect of immunotherapy on TIME
(22, 23). However, the cellular and molecular features of TIME
and their correlation with clinicopathological signatures in HCC
have not been explored. The aim of this study, therefore, was
to characterize TIME immune factors and explore their role
in HCC.

In this study, gene expression data were retrieved from
public databases and used to analyze 22 TIME immune cell
components in 735 HCC patients. Furthermore, three immune
phenotypes (TIME T1–3) were identified based on TIME
to further evaluate associations among immune phenotypes,
genomic characteristics (Gene G1–2), prognosis, and clinical
features. We developed a TIME score (TS) model with good
prognostic potential to be used as an immune biomarker for HCC
(Supplementary Figure 1). Analysis of TIME landscape features
may help in better understanding the role of immune factors
in HCC TIME and provide new HCC immune biomarker and
immunotherapy approaches.

METHODS

Data Sources and Preparation
We searched public databases for gene expression data and
clinical information regarding HCC patients. Six cohort data sets
from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases were downloaded. RNA-seq data
of 424 HCC patients were downloaded from TCGA using
the GDC API programmatic interface. Microarray data set
GSE15654 containing data for 216 HCC patients, GSE76427
for 96 HCC patients, GSE14520 for 247 HCC patients and
241 normal controls, GSE36376 for 240 HCC patients and 193
normal controls, and GSE25097 for 269 HCC patients and 243
normal controls were downloaded from the GEO database. All
samples from TCGA, GSE14520, GSE36376, and GSE25097 were
randomly divided into training and validation sets. The RNA-
seq read data from TCGA were preprocessed as follows: (1) HCC
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samples without clinical data and with overall survival (OS) <30
days were removed. (2) Normal tissue data were eliminated. (3)
Genecode V22 annotation was used to transfer RNA-seq read
data from fragments per kilobase million (FPKM) to transcripts
per million (TPM). The distribution of TPM data was more
similar to that of the microarray data than to the FPKM data.
(4) Genes with a TPM expression value of 0 and that appeared
in more than half of the samples were excluded. Microarray data
from GEO were preprocessed as follows: (1) Normal tissue data
were excluded, and thus, only primary tumor data were retained.
(2) HCC samples without clinical data and OS <30 days were
excluded. (3) The Bioconductor R package was used to map the
chip probe to human gene SYMBOL.

Calculation of Immune Cells in Time
The distribution of immune cells in TIME in HCC vs. normal
control tissues was estimated using the CIBERSORT algorithm.
Scores of each human immune cell in the three cohort data sets
were calculated using the LM22 gene signature as a reference
(the permutation parameter was 1,000) (6). The CIBERSORT
algorithm is an anticonvolution support vector regression
algorithm. This algorithm uses a set of minimum gene expression
values (for 547 genes) to represent each cell type as a reference to
infer the proportion of cell types in the data of a large number of
tumor samples with mixed cell types. In addition, CIBERSORT
can precisely and sensitively differentiate between 22 different
human immune cells based on gene expression data. Some of
these include T cells, macrophages, neutrophils, dendritic cells,
B cells, and natural killer cells. Gene expression profiles were
prepared using a standard annotation file, and the data were
uploaded to the CIBERSORT website (http://cibersort.stanford.
edu/), where the algorithm was executed using the LM22 gene
signature and 1,000 permutations.

Consensus Clustering of TIME-Infiltrating
Cells
Unsupervised clustering of TCGA samples and tumor TIME-
infiltrating cells was performed using the ConsensusClusterPlus
algorithm based on the value obtained from TIME calculations.
Euclidean distance calculation of similarity measures between
clusters and K-means of unsupervised clustering were used to
estimate the number of TIME clusters (24). The optimal number
of clusters was determined by the cumulative distribution
function (CDF) and the delta area and analyzed using the
ConsensusClusterPlus R package with 1,000 repeats.

Differential Gene Expression,
Identification, and Clustering
Associations involving genes and TIME-infiltrating cells were
explored by first dividing the genes into clusters based on the
TIME-infiltrating cells. The DEseq2 tool was used to classify
genes that were significantly differentially expressed and related
to the TIME cluster in TCGA. Next, differentially expressed
genes were selected by excluding genes with an expression
value of 0 in >50% of samples. Furthermore, the non-negative
matrix factorization (NMF) algorithm was used to perform
unsupervised clustering (25). NMF is an effective method

for identifying different molecular patterns and enabling class
discovery, especially for biological information from cancer-
related microarray data. In this study, we used the standard
“Brunet” pattern for NMF analysis with 50 iterations (26). We set
the number of clustering K-means from 2 to 10, determined the
average contour width of the common member matrix through
the NMF R package, and set the minimum member of each
cluster to 10. The optimal clustering number was determined
according to cophenetic, dispersion, and silhouette indicators.

Construction of TIME Score Model
Before construction of the TIME score model, we identified
common differentially expressed genes among the TIME clusters
by dimensionality reduction. These genes were first subjected to
univariate Cox analysis, after which a random forest algorithm
was used to evaluate the importance of the genes using the
R package (27). The random variable Mtry parameter was set
for each partition, and the value with the lowest error rate
was selected as the optimal Mtry value of the random Forest
algorithm. Subsequently, we picked Ntree parameters according
to the random Forest plot, and genes with cumulative importance
>95% were chosen as candidates. Next, the K-means algorithm
was used for cluster analysis through the ConsensusClusterPlus
R package. Further, the Psych R package was applied to conduct
principal component analysis (PCA). PCA uses dimensionality
reduction technology to reduce multiple variables into a few
principal components, which can reflect most attributes of the
original variables (28). For each gene signature in the groups,
100 repeats were performed to obtain the optimal principal
component numbers (PCs). The respective PC scores were
calculated, and principal component 1 (PC1) scores of each
cluster were selected as the signature score. Subsequently, Cox
multivariate regression analysis was used to construct a prognosis
risk model for each group. A TIME score =

∑
PC1∗β formula

was used to define the TIME score model, in which β is the
multivariate regression coefficient of each group, and PC1 is the
score of each group.

Statistical Analysis
A forest plot was created using the Forest plot R package,
based on univariate Cox regression analysis results of each
data set. A univariate Cox proportional hazard risk regression
model was used to calculate univariate risk ratio. The statistical
significance of normally and non-normally distributed data was
calculated using Student’s t-test, and two independent variables
were analyzed using Wilcoxon’s sign rank test. Non-parametric
testing of three or more sets of data was performed using
Kruskal–Wallis tests. The least absolute shrinkage and selection
(LASSO) and random-forest analyses were used to select suitable
immune cell fractions. These immune cell risk scores were used
to construct diagnostic models based on the coefficients of each
selected marker through a logistic regression algorithm. HCC
patients were assigned to high- and low-risk groups using the
median value or were adjusted by Z-scores such that >0 and
<0 were defined as high- and low-risk groups, respectively. The
Kaplan–Meier (KM) method was used to plot survival curves for
estimating survival rates of patients, and statistical differences
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among means were compared using the log-rank test. Immune
and stromal scores of each sample were calculated using the
ESTIMATE tool employing the R package. Receiver operating
characteristic (ROC) curves, which were generated with Package
pROC, were used to determine the sensitivity and specificity of
the KM analysis. A diagram showing the association between
TIME scores and gene biology was developed using the Corrplot
R package. NetworkD3 R packages were used to construct an
alluvial diagram of TIME clusters with different gene clusters
and survival outcomes. ComplexHeatmap R packages were used
to depict the mutational landscape of genes. HCC patients were
classified into high- and-low risk groups based on median TIME
scores for survival analysis. The limma R package was used
to analyze differential expression of TIME cluster genes, and
functional enrichment was performed using the cluster profile
R package. All statistical analyses in this study were conducted
using either the R package or SPSS software, and P < 0.05 was
considered statistically significant.

RESULTS

Identification of TIME-Infiltrating Cells and
Classification of TIME Phenotypes
Analysis of the TIME-infiltrating cell component by the
CIBERSORT algorithm revealed 22 immune cell classifications.
These included B cells, T cells, natural killer (NK) cells,
macrophages, and dendritic cells (DCs). Correlation analysis
further grouped the 22 categories into four groups (Figure 1A).
These four groups were positively correlated, implying
communication among the 22 immune cell types. Furthermore,
we carried out univariate Cox analysis to test the prognostic
factor of the 22 immune cell types. Forest plots showed that
follicular helper T cells (P = 0.038) and M0 macrophages
(P = 0.008) were unfavorable prognostic markers [hazard
ratio (HR) >1], whereas CD8+ T cells (P = 0.021) and
resting CD4+ memory T cells (P = 0.031) were favorable
prognostic markers (HR < 1) (Supplementary Figure 2A).
We performed unsupervised clustering of 735 tumors from
three HCC cohorts with TIME-matched cell expression profiles
(Supplementary Figure 3A). The clustering results revealed
three phenotypes (TIME T1–3) of TIME-infiltrating cells based
on optimal K = 3 and verification of CDF and delta area
(Figure 1B, Supplementary Figures 3B,C). Additionally, we
observed that TIME T1 was characterized by high levels of
regulatory T cells (Tregs) and M0 macrophages. TIME T2 was
primarily associated with CD8+ T cells and activated CD4+
memory T cells, and TIME T3 was characterized by resting
CD4+ memory T cells, resting DCs, and activated NK cells. To
verify the value of infiltrating immune cells as biomarkers
for HCC, we compared the composition of infiltrating
immune cells between HCC and normal tissue in 4 data
sets (TCGA, GSE14520, GSE36376, GSE25097) to understand
their distribution and roles as potential HCC biomarkers.
We identified significant differences in the composition of
immune-infiltrating cells between HCC and normal tissue across
the four data sets. Notably, Treg and M0 macrophage numbers

were significantly higher in HCC tissue compared with normal
tissue, and CD8+ T and resting CD4+memory T cell levels were
significantly lower in HCC tissue (Supplementary Figure 4A).
The distribution of infiltrating immune cells in HCC tissue across
the clinical features showed that key immune cells, including M0
macrophages, resting CD4+ memory T cells, M1 macrophages,
activated NK cells, and CD8+ T cells constituted the majority of
such cells (Supplementary Figure 4B). In addition, we analyzed
associations involving key immune cells and clinical features
(tumor-node- metastasis (TNM), stage, and grade). Apart from
no statistical significance in some analyses, M0 macrophage
and Treg scores were higher in advanced pathological stages
(Supplementary Figures 5A,B). In contrast, resting CD4+
memory T cells and CD8+ T cell scores decreased in advanced
pathological stages (Supplementary Figures 5C,D). These
results reveal the components of immune infiltrating cells in
HCC and indicate that Tregs, M0 macrophages, CD8+ T cells,
resting CD4+ memory T cells, and activated CD4+ memory T
cells are key biomarkers in HCC.

KM survival analysis based on the three phenotypes identified
revealed that TIME T1 was associated with poor prognosis,
whereas TIME T2 and TIME T3 exhibited favorable HCC
prognosis (P < 0.0001) (Figure 1C). The distribution of TIME-
infiltrating cells among the three phenotypes was analyzed using
the Kruskal–Wallis test (Supplementary Figure 2B). TIME T1
was characterized by high levels of Tregs and M0 macrophages,
and the levels of M1 and M2 macrophages in TIME T1
were lower compared with the levels in TIME T2 and
T3 because M1 and M2 are regarded as classically and
alternatively activated macrophages, respectively. In different
immune microenvironments, three types of macrophages can be
activated and transformed into subsets with different molecular
and functional characteristics. In addition, TIME T2 exhibited
higher levels of CD8+ T cells and activated CD4+ memory T
cells, and TIME T3 was characterized by high numbers of resting
CD4+memory T cells, resting DCs, and NK cell activation.

However, it is not clear whether one or several specific
immune cells could be used as HCC biomarkers. Therefore,
we conducted random forest (Supplementary Figure 4C)
and LASSO (Supplementary Figure 4D) analysis of the 4
data sets (TCGA, GSE14520, GSE36376, GSE25097). The two
analysis methods revealed 8 possible HCC markers (Tregs,
M0 macrophages, CD8+ T cells, resting CD4+ memory T
cells, activated CD4+ memory T, activated NK cells, activated
mast cells, and T cell follicular helpers). Furthermore, a
diagnostic model based on the risk score involving these
immune cells was constructed using a logistic regression
method. The results show that the risk scores for HCC
patients are significantly higher than those for normal controls
among the four data sets (Supplementary Figure 4E). ROC
analysis verified the high accuracy of the diagnostic model
based on such immune cell risk scores to distinguish HCC
patients from normal controls (Supplementary Figures 4F,G).
In summary, our results illustrate that TIME-infiltrating
cells and phenotypes with different patterns of immune
cellular components could be used as potential HCC
prognostic biomarkers.
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FIGURE 1 | TIME-infiltrating cells and classification of TIME. (A) Correlations among 22 types of immune cells in TIME. Brown and blue nodes represent positive and

negative correlations, respectively. The larger the node, the stronger the correlation. (B) Heat map illustrating results of unsupervised clustering based on TIME

phenotypes. (C) Kaplan–Meier analysis for three TIME phenotypes.

Identification of Gene Clusters and
Analysis of Biological Function
Significant differences in patient prognosis involving TIME
T1 and TIME T2/T3 were observed. Therefore, we analyzed
differentially expressed genes (DEGs) between TIME T1 and
TIME T2 and TIME T1 and TIME T3. In total, we identified
432 DEGs between TIME T1 and TIME T2 and TIME
T1 and TIME T3 (Supplementary Figure 6A). After being
screened by the NMF algorithm (Supplementary Figure 3D),
the 432 DEGs were reduced to 365 and classified into
two clusters (Gene G1–2) based on the optimal K = 2
(Supplementary Figure 6B). Unsupervised clustering analysis
of the 365 DEGs grouped HCC patients into two classes
(Figure 2A). We observed that most Gene G1 members were
associated with TIME T2/T3 and were characterized by low risk,
and most Gene G2 members were associated with TIME T1
and were characterized by high risk. KM analysis showed that
Gene G1 and Gene G2 were associated with good and poor
prognoses, respectively (P < 0.0001) (Figure 2B). We used the
alluvial diagram to illustrate relationships involving the three
phenotypes (TIME T1–3) and the two clusters (Gene G1–2) as
well as their living status (Supplementary Figure 6C). Notably,
the distribution of TIME-infiltrating cells among the two gene
clusters (Figure 2C) was consistent with the three phenotypes
(Supplementary Figure 2B). These findings indicate that Gene
G2 is characterized by high levels of Tregs and M0 macrophages,

and Gene G1 is characterized by CD8+ T cells and activated
CD4+ memory T cells, resting CD4+ memory T cells, resting
DCs, and NK cells activation. In summary, classification of
patients based on genomic clusters is consistent with TIME
phenotype groups.

Gene G1 and Gene G2 represented significant differences

in the distribution of TIME-infiltrating cells and prognosis;

therefore, we further investigated differences in cellular

biological functions involving these genes. We conducted Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis using

biological pathways. We determined that Gene G1 is associated

with immune processes, such as T cell receptor signaling
pathways, Th1 and Th2 cell differentiation, immune system
function, and complement activation. In contrast, most members
of Gene G2 are involved in tumorigenesis processes, including
the P53 signaling pathway, PI3K-Akt signaling, hepatocellular
carcinoma, and apoptosis (Supplementary Figures 7A,B).
Therefore, we constructed a network of genes and pathways
that revealed a regulatory relationship between immune-related
pathways in Gene G1 and tumorigenesis-related pathways in
Gene G2, and these pathways interacted through overlapping
genes (Supplementary Figures 7C,D). The results reveal that
Gene G1 and Gene G2 are associated with immune and
tumorigenesis functions, respectively. Therefore, these findings
may explain the favorable prognosis of Gene G1 and the poor
prognosis of Gene G2 cases.
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FIGURE 2 | Construction of gene clusters and association between TIME signature and TIME gene patterns. (A) Heat map showing results of unsupervised clustering

based on gene cluster classification. (B) Kaplan–Meier analysis of 2 gene clusters. (C) Distribution and expression of 22 types of immune cells in the 2 gene clusters.

*P < 0.05.

Establishment of TIME Score Model and
Analysis of Clinical Signature Associations
We performed dimension reduction to reduce redundant genes.
A total of 117 DEGs were identified after univariate Cox
analysis. Analysis of 117DEGs using the random forest algorithm
(Supplementary Figure 3E) identified 78 DEGs. Analysis of the
biological functions of the 78 DEGs by Gene Ontology (GO)
indicated that these genes are involved in cell differentiation,
cell–cell junction, inflammatory responses, and antibiotic
responses (Supplementary Figure 8A). KEGG pathway analysis
of the 78 genes enriched in the immune system indicated
HCC, Th1, and Th2 cell differentiation; immune responses;
innate complement; and Toll-like receptor signaling pathways

(Supplementary Figure 8B). These results show that the 78

DEGs are implicated in tumorigenesis and immune responses.

Based on clustering analysis, the 78 DEGs were classified into

five groups, which we assigned the signatures 1–5 (S1–5). There

were 13, 3, 43, 12, and 7 DEGs in the S1, S2, S3, S4, and S5
groups, respectively (Figure 3A). Among these, S2 was a high-
expression group, S1 and S3 were low-expression groups, and S4
and S5 were intermediate expression level groups. A heat map of
the 78 DEGs is presented in Figure 3B, which is consistent with
the clustering plot. Furthermore, we carried out PCA analysis
to construct a TIME score model according to the PC1 scores
of each group. In addition, we constructed a prognostic score
model, which we termed the TS score model. On comparing
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FIGURE 3 | Construction of TIME score model and its characteristics. (A) K-means clustering results of 78 differentially expressed genes. (B) A clustering heat map of

78 differentially expressed genes. (C) Comparation of TS between Gene G1 and Gene G2. (D) Distribution of TS between Gene G1 and Gene G2. (E) Kaplan–Meier

analysis for high TS and low TS.

Gene G1 and Gene G2, we found that the TS score of Gene G2
was significantly higher than that of Gene G1 (Figures 3C,D).
In addition, we performed ESTIMATE algorithm processing
to compare stromal and immune scores across TIME1–3 and
observed significant increases in stromal and immune scores
in TIME1. Although no statistical significance was observed,
the ESTIMATE score for TIME1 was higher than that for
TIME1 and TIME2 (Supplementary Figure 9). HCC patients
were assigned to a high TS or low TS score using a median
value (−0.185). High and low TS scores were associated
with poor and good prognosis, respectively (P < 0.0001)
(Figure 3E). These results were consistent with the KM analysis
of gene clusters (Figure 2B), in which Gene G2 indicated poor
prognosis compared with Gene G1. We further analyzed the
association between TS scores and clinical signatures, and the
results showed that the grade, tumor (T), node (N), and stage
classifications exhibited significantly different TS scores (P <

0.05) (Figures 4A,D,F,G). However, we did not observe any
clinical significance between metastasis (M), gender, and age
(P > 0.05) (Figures 4B,C,E). To study the role of immune
factors involving TS scores, we investigated potential associations

between TS scores and previously studied immune genes
(14). In this analysis, immune-activated genes (TBX21, CXCL9,
GZMA, GZMB, PRF1, IFNG, TBX2, TNF, and CD8A), immune
checkpoint genes (PDCD1, CTLA4, LAG3, PDCD1LG2, CD274,
and HAVCR2), and transforming growth factor/epithelial-
mesenchymal transition genes (TGF/EMT) (VIM, ACTA2,
COL4A1, TGFBR2, ZEB1, CLDN3, SMAD9, and TWIST1) were
used. The results reveal differences in gene-expression patterns
between different gene clusters, TS scores, and TIME phenotypes
(Supplementary Figure 10A). However, we found that TS scores
were closely associated with immune genes. Furthermore, we
explored the correlation between known signatures [EMT,
immune checkpoints, tumorigenesis, biological processes (cell
cycle, angiogenesis, mismatch repair)] and TS scores to describe
the function of our TS score model. We observed that high
TS scores were associated with tumorigenic features, such as
apoptosis, cell cycle, DNA replication, mismatch repair, and
WNT targeting. On the other hand, low TS scores were associated
with factors implicated in immune activation, including CD8+ T
effector, antigen-processing machinery, and immune checkpoint
steps (Figure 4H). Furthermore, when the TS model was tested
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FIGURE 4 | Association of TS with clinical characteristics and biological signatures. (A–G) Association of TS with clinical characteristics, including grade, gender, age,

stage, M, T, and N. (H) Association involving TS and known biological signatures. (J) Forest plot showing results of multivariate Cox analysis for TS and clinical

characteristics.

as a variable signature by Cox regression, the forest plot showed
that the TS model was an independent HR prognostic factor,
with a more substantial HR value than other clinical signatures
(Supplementary Figure 10B). All of these results demonstrate
that the TS model is a robust feature and can, therefore, be
used to predict patient HCC prognosis. Furthermore, these
findings reveal that the TS model is associated with several
clinical signatures.

Comparison Between TS Model and
Known Signatures
Having shown that the TS model is a useful prognostic
biomarker, we sought to understand associations involving the
identified TS model and known HCC signatures. Therefore, we
analyzed the expression of immune-activated genes, immune
checkpoint genes, and TGF/EMT genes in the high and low
TS score categories. The results indicate that low TS scores
are associated with elevated expression of immune-activated
and immune checkpoint genes (Figures 5A,B), whereas high
TS scores are characterized by high expression of TGF/EMT

genes (Figure 5C). Additionally, we evaluated the expression
of immune-activated genes, immune checkpoint genes, and
TGF/EMT genes in the TS scores of TIME T1–3 and observed
that the expression of immune-activated and immune checkpoint
genes in TIME T2 and TIME T3 was elevated compared with
that in TIME T1 (Figures 5D,E). In contrast, the expression
of TGF/EMT genes in TIME T1 was higher than in TIME
T2/T3 (Figure 5F). These findings suggest that low TS scores
related to TIME T2/T3 are associated with immune-activated
and immune checkpoint genes, which trigger immune functions
to suppress tumor development. Therefore, low TS scores may
represent a favorable HCC prognostic marker. However, high TS
scores related to TIME T1 were associated with TGF/EMT genes,
which are linked to tumorigenesis, which results in unfavorable
HCC prognosis. Furthermore, we explored the distribution
of known somatic mutations involving gene expression and
analyzed relationships between TS scores and these genes. Using
the Fisher’s exact test (P < 0.05), we compared known somatic
gene alterations exhibiting significant differences in mutation
frequency between high and low TS score groups. A total
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FIGURE 5 | Gene expression profiles of (A) immune activation, (B) immune checkpoint proteins, and (C) TGF/EMT in high and low TS. Gene-expression profiles of

(D) immune activation, (E) immune checkpoint proteins, and (F) TGF/EMT in 3 TIME phenotypes. *P < 0.05.

of 49 variants were found to be associated with TS scores
(Supplementary Figure 11). TP53, an anticancer gene (29), for
instance, was mainly distributed in high TS scores. However,
mutated TP53 lost intrinsic cancer inhibitory function and
exhibited poor patient prognosis. The CTNNB1 gene causes
cancer, and mutated CTNNB1 was distributed in both high and
low TS scores. A previous study reports that TP53 mutation is
implicated in tumor development, and TP53 can be targeted with

HCC checkpoint inhibitors for immunotherapy development
(30). Other genes, such as RB1, TLL1, and PIK3CA, are
implicated as important factors in genetic alterations in HCC
(31, 32). RB1 is one of the most significantly mutated genes in
HCC and is related to proteogenomic phenotype classification
and involved in distinct features in metabolic reprogramming,
microenvironment dysregulation, and cell proliferation (33).
Genome-wide association studies have found that TLL1 variants
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are associated with HCC after hepatitis C virus infection
eradication (34). A previous study reports that blood-derived
circulating tumor DNA markers, such as PIK3CA with frequent
alteration, may be key biomarkers in diagnosis of advanced HCC
and for HCCmolecular diagnosis (35). This study presents a new
perspective for exploring the immune mechanisms involved in
immunotherapy of tumors.

Validation of the TS Model
The prognostic efficacy of the TS model was validated using the
GSE15654, GSE76427, and GSE14520 data sets by KM analysis.
The results indicate that a high TS score is significantly associated
with poor prognosis, whereas a low TS score is significantly
associated with favorable prognosis in the GSE15654 (P =

0.03535), GSE76427 (P= 0.04572), and GSE14520 (P= 0.00273)
data sets (Figures 6A–C). The sensitivity of KM analysis was
verified by ROC analysis. The results of ROC analysis show
that the TS model is a predictive biomarker for HCC patients
(GSE15654: AUC of 1 year= 0.65, 5 years= 0.64, 10 years= 0.58;
GSE76427: AUC of 1 year = 0.61, 5 years = 0.70, 6 years = 0.71;
GSE14520: AUC of 1 year = 0.60, 3 years = 0.67, 5 years = 0.64)
(Figures 6C–F). These results further suggest that the TS model
is an effective HCC predictor of prognostic signature and has
defined replicability for different data sets

DISCUSSION

In this study, data obtained by comprehensive analysis of
TIME-infiltrating cells and relevant genes were used to
construct a TS model. This model accurately predicted the
prognosis of HCC patients. Systematic analysis revealed that
high TS scores were associated with poor prognosis, immune
suppression, and tumorigenesis, whereas low TS scores were
correlated with favorable prognosis, immune activation, and
immune checkpoint progression. Liver cells are highly immune-
tolerant. This is because immune cells in the liver form
an immune-tolerance state that protects against autoimmune-
induced damage. Carcinogenic factors, such as persistent
viral infection, compromise immune tolerance or balance
rendering immune cells unable to clear carcinogenic factors
(17, 36). In the early stages of tumor growth, immune
suppression decreases immune surveillance (37). Thus, the
primary target of tumor immunotherapies, such as PD-1/PD-
L1, is to activate and restore immune function for optimal
ablation of tumor cells (38). In low-TS groups, our results
show that immune activation correlates with better prognosis,
suggesting that immune activation inhibits HCC tumorigenesis.
This is consistent with a previous study in which key genes
and tumor-associated leukocytes were identified to predict the
prognosis of cancer patients and their responses to targeted
therapy (39). However, the significance of our study involves
not only the analyzed composition of infiltrating immune
cells in HCC and classified HCC patients based on molecular
phenotypes, but also systematically associated TIME phenotypes
and gene clusters with genomic characteristics and clinical
and pathologic features. In so doing, we identified biomarkers
with potential clinical application. These biomarkers were used

to construct a TS model that could predict the prognosis of
HCC patients.

Analysis of TIME-infiltrating cells and phenotypes reveale
that M0 macrophages were unfavorable factors assigned to TIME
T1, whereas CD8+ T cells and CD4+ T cells were favorable
factors assigned to TIME T2/T3. These results are consistent with
those from previous research in which T cells and macrophages
are reported to inhibit and promote HCC, respectively (40).
M0 macrophages are undifferentiated macrophages with the
potential to transform into specific subtypes of macrophages
(41). Different subtypes of liver macrophages exhibit diverse
ontogeny, differentiation, and function, especially Kupffer cells
and tumor-associated macrophages (TAMs) (42). TAMs play
an important role in the occurrence, development, invasion,
metastasis, immune evasion, and angiogenesis in HCC (43).
Kupffer cells enhance virus-mediated inflammation, causing
liver cirrhosis and HCC (44). Liver macrophages exhibit highly
variable phenotypes that are modulated by signals derived
from the liver microenvironment (42). We hypothesized that
M0 macrophages may stimulate the production of TAM and
Kupffer cells in the presence of carcinogenic factors and,
thus, promote inflammation and suppress immunity leading
to HCC development. Compared to normal tissues, M0,
M1, and M2 macrophage levels were generally higher in
HCC cells. Macrophages are classically polarized into activated
macrophages (M1) and alternatively activatedmacrophages (M2)
under the stimulation of different immune microenvironments
(45). The induction of M1 from M0 macrophages and the
mutual transformation of M1 and M2 macrophages modulates
tumorigenesis (46). Our research reveals that enrichment of
macrophages in HCC predicts poor prognosis. T cells (CD8+
T cells and CD4+ T cells) are the key immune cells that
kill tumor cells by activating the immune system (47). For
this reason, novel immunotherapies, such as PD-1 and PD-
L1, have been designed to modulate the activity of T cells.
The role of PD-1/PD-L1 is to block the binding of tumor
cells and T cells, allowing guardian T cells to identify and
eliminate tumor cells (48). Activation of T cells in TIME
inhibits tumor cells, and this may explain why CD8+ T
cells and CD4+ T cells in TIME T2/T3 were associated with
good prognosis.

Integrated analysis identified our TS model to be a prognostic
biomarker associated with previously studied immune genes. In
line with prior studies, upregulation of genes associated with
immune activation and immune checkpoint proteins correlates
with better prognosis, whereas upregulation of genes associated
with TGF/EMT correlates with poorer prognosis (14, 49).
In this study, we find that low TS reflects good prognosis,
and high TS indicates poor prognosis, suggesting that the TS
model is a robust prognostic biomarker. Further analysis of
TS scores revealed that elevated TS was accompanied with
tumorigenesis signatures, such as cell cycle, DNA replication,
mismatch repair, and WNT targeting, whereas low TS was
characterized by activation of CD8+ T cell effector and antigen-
processing machinery. These results are in agreement with the
prevailing knowledge that pathological division of cells is the
basis of tumorigenesis (50) and that CD8+ T cells can kill
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FIGURE 6 | Validation of TS model involving 3 independent data sets. Kaplan–Meier analysis for high and low TS in (A) GSE15654, (B) GSE76427, and (C)

GSE14520 data sets. ROC curves of (D) GSE15654, (E) GSE76427, and (F) GSE14520 illustrating the predictive value of TS.

tumor cells by facilitating antigen processing (51). In addition, we
observed that our TS model was associated with several known
somatic mutations, involving TP53 and CTNNB1. Alterations of
these somatic genes may inactivate tumor suppressor genes and
cause mutations in proto-oncogenes, resulting in tumorigenesis
(52). Therefore, our study contributes to the identification
of immunotherapeutic targets aimed at inhibiting pathways
involved in tumorigenesis.

Compared with previous studies regarding TIME and HCC
(53), this investigation was performed using a large number of

HCC samples. Moreover, unlike previous studies (54), which
focused only on the function of immune cells in TIME,
we comprehensively mapped the landscape of interactions
involving TIME-infiltrating cells, genes, and clinicopathological
features. Using bioinformatics algorithms, we constructed a
TS model and assessed the association between the TS
model and clinicopathological features. We find that the
TS model is significantly associated with grade, T, N, and,
stage. Moreover, we find that the prognostic value of the
TS model is superior to that of other clinical signatures.
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Previous studies find a correlation between clinicopathological
classification and immune response, and this implies that
an immune response–related signature can be used for
clinicopathological classification (55). Yutaka et al. analyze the
immune microenvironment of HCC tissues and intratumor
heterogeneity. They observe that several immune subtypes are
associated with poor differentiation of HCC (55). In a study
by Sia et al., HCC is subcategorized into 2 subclasses based on
immune-specific characteristics; adaptive and exhausted immune
responses. Notably, the exhausted immune subclass exhibited
immunosuppression due to overexpression of TGF-1-regulated
genes, which led to poor prognosis (40). Our study provides
a better understanding of the TIME, upon which general
histological/molecular classification of HCC based on TIME, can
be achieved.

CONCLUSIONS

In conclusion, this study reveals that immune characteristics
of TIME modulate the pathogenesis of HCC. A TS model
was constructed based on TIME phenotypes and gene clusters,
which exhibited robust prognostic predictive value for HCC
patients. We also reveal promising candidate immune-based
biomarkers for diagnosis, prognosis, and immunotherapy
in HCC.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

The study was approved by the Clinical Research Ethics
Committee of College of Medicine, Zhejiang University. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

HD: research design and funding acquisition. WC, XZ, KB,
YD, HZ, and JX: acquisition, interpretation, and analyses
of data. WC, XZ, KB, and HZ: manufacture of figures.
WC: writing of manuscript and article language modification.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Key Research & Development
Plan of Zhejiang Province (2019C04005), the Major National
S&T Projects for Infectious Diseases (2018ZX10301401),
the National Key Research and Development Program of
China (2018YFC2000500).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.554165/full#supplementary-material

Supplementary Figure 1 | A flow chart of the study.

Supplementary Figure 2 | (A) Forest plot illustrating results of univariate Cox

analysis for the 22 types of immune cells investigated. (B) Heat map showing

results of unsupervised clustering based on TIME phenotypes.

Supplementary Figure 3 | Algorithms used to classify TIME phenotypes.

(A) Consensus matrix of TIME-infiltrating cells for each K (2–5) with the

corresponding heat maps. (B) CDF analysis for consensus cluster analysis.

(C) Delta area curves for consensus cluster analysis. (D) Algorithms used to

classify non-negative matrix factorization of gene clusters. (E) Distribution of

random forest error rates across tree parameters. (F) Multidimensional scaling plot

for Gene G1 and Gene G2 data. (G) Random Forest plot for significant DEGs with

mean decrease in gini index (blue) and mean decreased accuracy (red).

Supplementary Figure 4 | Comparison of immune cells in HCC and normal

control samples. (A) Comparison of immune cell fraction differences in HCC and

normal tissues. (B) Distribution of immune cell fraction across the clinical

characteristics of HCC tissues. (C) A random forest plot showing the

multidimensional scale plot of adjacent matrix. (D) LASSO regression model

illustrating misclassification errors across different quantitative variables.

(E) Comparison of immune scores between HCC and normal tissue control

samples. ROC analysis of the diagnostic model in (F) training and (G) validation

set.

Supplementary Figure 5 | Association involving key immune cells and clinical

features. Comparison of immune scores of (A) M0 macrophages, (B) Tregs,

(C) resting CD4+ memory T cells, and (D) CD8+ T cells across TNM, stage, and

grade.

Supplementary Figure 6 | (A) Venn diagram illustrating intersection of

differentially expressed genes across TIME T1 and TIME T2 and TIME T1 and TIME

T3. (B) Consistency matrix heat map of NMF algorithm. (C) An alluvial diagram

showing the association between 3 TIME phenotypes and 2 gene clusters.

Supplementary Figure 7 | Biological function of genes in 2 gene clusters. The

main KEGG pathways of (A) Gene G1 and (B) Gene G2. Relationship network of

genes and pathways in (C) Gene G1 and (D) Gene G2.

Supplementary Figure 8 | (A) GO and (B) KEGG analyses of the 78 identified

differentially expressed genes.

Supplementary Figure 9 | Comparison of (A) stromal, (B) immune, and

(C) ESTIMATE scores across TIME1–3 groups.

Supplementary Figure 10 | (A) Heat map showing genes associated with

immune activation, immune checkpoint proteins, and TGF/EMT. (B) A Forest plot

showing results of multivariate Cox analysis for TS and clinical characteristics.

Supplementary Figure 11 | Association between TS and somatic mutations.

REFERENCES

1. Ladanyi A, Timar J. Immunologic and immunogenomic

aspects of tumor progression. Semin Cancer Biol.

(2019) 60:249–61. doi: 10.1016/j.semcancer.2019.

08.011

2. Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK.

Immunomodulation of the tumor microenvironment: turn foe into friend.

Front Immunol. (2018) 9:2909. doi: 10.3389/fimmu.2018.02909

3. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating

immunity’s roles in cancer suppression and promotion. Science. (2011)

331:1565–70. doi: 10.1126/science.1203486

Frontiers in Oncology | www.frontiersin.org 12 September 2020 | Volume 10 | Article 554165

https://www.frontiersin.org/articles/10.3389/fonc.2020.554165/full#supplementary-material
https://doi.org/10.1016/j.semcancer.2019.08.011
https://doi.org/10.3389/fimmu.2018.02909
https://doi.org/10.1126/science.1203486
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. TIME and Relevant Genes in HCC

4. Principe DR, DeCant B, Mascarinas E, Wayne EA, Diaz AM, Akagi N,

et al. TGFbeta signaling in the pancreatic tumor microenvironment promotes

fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res. (2016)

76:2525–39. doi: 10.1158/0008-5472.CAN-15-1293

5. Huntsman DG, Ladanyi M. The molecular pathology of cancer:

from pan-genomics to post-genomics. J Pathol. (2018) 244:509–11.

doi: 10.1002/path.5057

6. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust

enumeration of cell subsets from tissue expression profiles. Nat Methods.

(2015) 12:453–7. doi: 10.1038/nmeth.3337

7. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue

cellular heterogeneity landscape. Genome Biol. (2017) 18:220.

doi: 10.1186/s13059-017-1349-1

8. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman

WH. Immune infiltration in human tumors: a prognostic factor that should

not be ignored. Oncogene. (2010) 29:1093–102. doi: 10.1038/onc.2009.416

9. Smid M, Rodriguez-Gonzalez FG, Sieuwerts AM, Salgado R, Prager-Van der

SmissenWJ, Vlugt-Daane MV, et al. Breast cancer genome and transcriptome

integration implicates specific mutational signatures with immune cell

infiltration. Nat Commun. (2016) 7:12910. doi: 10.1038/ncomms12910

10. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune

contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. (2017)

14:717–34. doi: 10.1038/nrclinonc.2017.101

11. Soysal SD, Tzankov A, Muenst SE. Role of the tumor microenvironment in

breast cancer. Pathobiology. (2015) 82:142–52. doi: 10.1159/000430499

12. Faget J, Groeneveld S, Boivin G, Sankar M, Zangger N, Garcia M,

et al. Neutrophils and snail orchestrate the establishment of a pro-

tumor microenvironment in lung cancer. Cell Rep. (2017) 21:3190–204.

doi: 10.1016/j.celrep.2017.11.052

13. Tahmasebi Birgani M, Carloni V. Tumor microenvironment, a paradigm

in hepatocellular carcinoma progression and therapy. Int J Mol Sci. (2017)

18:405. doi: 10.3390/ijms18020405

14. Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, et al. Tumor

microenvironment characterization in gastric cancer identifies prognostic and

immunotherapeutically relevant gene signatures. Cancer Immunol Res. (2019)

7:737–50. doi: 10.1158/2326-6066.CIR-18-0436

15. Xie Y. Hepatitis B virus-associated hepatocellular carcinoma. Adv Exp Med

Biol. (2017) 1018:11–21. doi: 10.1007/978-981-10-5765-6_2

16. Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis

B infection associated liver disease: a review. World J Gastroenterol. (2019)

25:3527–37. doi: 10.3748/wjg.v25.i27.3527

17. Wang L, Wang FS. Clinical immunology and immunotherapy for

hepatocellular carcinoma: current progress and challenges. Hepatol Int.

(2019) 13:521–33. doi: 10.1007/s12072-019-09967-y

18. Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The

immunology of hepatocellular carcinoma. Nat Immunol. (2018) 19:222–32.

doi: 10.1038/s41590-018-0044-z

19. Ilan Y. Immune therapy for hepatocellular carcinoma. Hepatol Int. (2014)

8(Suppl. 2):499–504. doi: 10.1007/s12072-013-9501-9

20. Nishida N, Kudo M. Immunological microenvironment of hepatocellular

carcinoma and its clinical implication. Oncology. (2017) 92(Suppl. 1):40–9.

doi: 10.1159/000451015

21. Zeng D, Zhou R, Yu Y, Luo Y, Zhang J, Sun H, et al. Gene expression profiles

for a prognostic immunoscore in gastric cancer. Br J Surg. (2018) 105:1338–48.

doi: 10.1002/bjs.10871

22. Lee K, Hwang H, Nam KT. Immune response and the tumor

microenvironment: how they communicate to regulate gastric cancer.

Gut Liver. (2014) 8:131–9. doi: 10.5009/gnl.2014.8.2.131

23. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al.

TGFbeta attenuates tumour response to PD-L1 blockade by contributing to

exclusion of T cells. Nature. (2018) 554:544–8. doi: 10.1038/nature25501

24. Nidheesh N, Abdul Nazeer KA, Ameer PM. An enhanced deterministic

K-Means clustering algorithm for cancer subtype prediction

from gene expression data. Comput Biol Med. (2017) 9:213–21.

doi: 10.1016/j.compbiomed.2017.10.014

25. Zong L, Zhang X, Zhao L, Yu H, Zhao Q. Multi-view clustering via multi-

manifold regularized non-negative matrix factorization. Neural Netw. (2017)

88:74–89. doi: 10.1016/j.neunet.2017.02.003

26. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and

molecular pattern discovery using matrix factorization. Proc

Natl Acad Sci USA. (2004) 101:4164–9. doi: 10.1073/pnas.03085

31101

27. Deng W, Zhang K, Busov V, Wei H. Recursive random forest algorithm

for constructing multilayered hierarchical gene regulatory networks

that govern biological pathways. PLoS ONE. (2017) 12:e0171532.

doi: 10.1371/journal.pone.0171532

28. David CC, Jacobs DJ. Principal component analysis: a method for determining

the essential dynamics of proteins. Methods Mol Biol. (2014) 1084:193–226.

doi: 10.1007/978-1-62703-658-0_11

29. Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database

reassessment and prospects for the next decade. Hum Mutat. (2014) 35:672–

88. doi: 10.1002/humu.22552

30. Khemlina G, Ikeda S, Kurzrock R. The biology of Hepatocellular carcinoma:

implications for genomic and immune therapies. Mol Cancer. (2017) 16:149.

doi: 10.1186/s12943-017-0712-x

31. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, et al.

Trans-ancestry mutational landscape of hepatocellular carcinoma genomes.

Nat Genet. (2014) 46:1267–73. doi: 10.1038/ng.3126

32. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and

dynamics of single immune cells in hepatocellular carcinoma. Cell. (2019)

179:829–45.e820. doi: 10.1016/j.cell.2019.10.003

33. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated

proteogenomic characterization of HBV-related hepatocellular carcinoma.

Cell. (2019) 179:561–77.e522. doi: 10.1016/j.cell.2019.08.052

34. Matsuura K, Sawai H, Ikeo K, Ogawa S, Iio E, Isogawa M, et al. Genome-

wide association study identifies TLL1 variant associated with development

of hepatocellular carcinoma after eradication of hepatitis C virus infection.

Gastroenterology. (2017) 152:1383–94. doi: 10.1053/j.gastro.2017.01.041

35. Ikeda S, Tsigelny IF, Skjevik AA, Kono Y, Mendler M, Kuo A, et al.

Next-generation sequencing of circulating tumor DNA reveals frequent

alterations in advanced hepatocellular carcinoma. Oncologist. (2018) 23:586–

93. doi: 10.1634/theoncologist.2017-0479

36. Chen Y, Tian Z. HBV-induced immune imbalance in the development of

HCC. Front Immunol. (2019) 10:2048. doi: 10.3389/fimmu.2019.02048

37. Owusu Sekyere S, Schlevogt B, Mettke F, Kabbani M, Deterding K, Wirth TC,

et al. HCC immune surveillance and antiviral therapy of hepatitis C virus

infection. Liver Cancer. (2019) 8:41–65. doi: 10.1159/000490360

38. Makarova-Rusher OV, Medina-Echeverz J, Duffy AG, Greten TF. The yin and

yang of evasion and immune activation in HCC. J Hepatol. (2015) 62:1420–9.

doi: 10.1016/j.jhep.2015.02.038

39. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The

prognostic landscape of genes and infiltrating immune cells across human

cancers. Nat Med. (2015) 21:938–45. doi: 10.1038/nm.3909

40. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de

Moura M, et al. Identification of an immune-specific class of hepatocellular

carcinoma, based on molecular features. Gastroenterology. (2017) 153:812–26.

doi: 10.1053/j.gastro.2017.06.007

41. Enderlin Vaz da Silva Z, Lehr HA, Velin D. In vitro and in vivo repair activities

of undifferentiated and classically and alternatively activated macrophages.

Pathobiology. (2014) 81:86–93. doi: 10.1159/000357306

42. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol.

(2017) 66:1300–12. doi: 10.1016/j.jhep.2017.02.026

43. Fu XT, Song K, Zhou J, Shi YH, Liu WR, Shi GM, et al. Tumor-

associated macrophages modulate resistance to oxaliplatin via inducing

autophagy in hepatocellular carcinoma. Cancer Cell Int. (2019) 19:71.

doi: 10.1186/s12935-019-0771-8

44. Hyun J, McMahon RS, Lang AL, Edwards JS, Badilla AD, Greene ME, et al.

HIV and HCV augments inflammatory responses through increased TREM-

1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog. (2019)

15:e1007883. doi: 10.1371/journal.ppat.1007883

45. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage

activation. Nat Rev Immunol. (2008) 8:958–69. doi: 10.1038/nri2448

46. Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, et al. Monoacylglycerol

lipase regulates cannabinoid receptor 2-dependent macrophage

activation and cancer progression. Nat Commun. (2018) 9:2574.

doi: 10.1038/s41467-018-04999-8

Frontiers in Oncology | www.frontiersin.org 13 September 2020 | Volume 10 | Article 554165

https://doi.org/10.1158/0008-5472.CAN-15-1293
https://doi.org/10.1002/path.5057
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/onc.2009.416
https://doi.org/10.1038/ncomms12910
https://doi.org/10.1038/nrclinonc.2017.101
https://doi.org/10.1159/000430499
https://doi.org/10.1016/j.celrep.2017.11.052
https://doi.org/10.3390/ijms18020405
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1007/978-981-10-5765-6_2
https://doi.org/10.3748/wjg.v25.i27.3527
https://doi.org/10.1007/s12072-019-09967-y
https://doi.org/10.1038/s41590-018-0044-z
https://doi.org/10.1007/s12072-013-9501-9
https://doi.org/10.1159/000451015
https://doi.org/10.1002/bjs.10871
https://doi.org/10.5009/gnl.2014.8.2.131
https://doi.org/10.1038/nature25501
https://doi.org/10.1016/j.compbiomed.2017.10.014
https://doi.org/10.1016/j.neunet.2017.02.003
https://doi.org/10.1073/pnas.0308531101
https://doi.org/10.1371/journal.pone.0171532
https://doi.org/10.1007/978-1-62703-658-0_11
https://doi.org/10.1002/humu.22552
https://doi.org/10.1186/s12943-017-0712-x
https://doi.org/10.1038/ng.3126
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1016/j.cell.2019.08.052
https://doi.org/10.1053/j.gastro.2017.01.041
https://doi.org/10.1634/theoncologist.2017-0479
https://doi.org/10.3389/fimmu.2019.02048
https://doi.org/10.1159/000490360
https://doi.org/10.1016/j.jhep.2015.02.038
https://doi.org/10.1038/nm.3909
https://doi.org/10.1053/j.gastro.2017.06.007
https://doi.org/10.1159/000357306
https://doi.org/10.1016/j.jhep.2017.02.026
https://doi.org/10.1186/s12935-019-0771-8
https://doi.org/10.1371/journal.ppat.1007883
https://doi.org/10.1038/nri2448
https://doi.org/10.1038/s41467-018-04999-8
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. TIME and Relevant Genes in HCC

47. Hou X, Zeng P, Zhang X, Chen J, Liang Y, Yang J, et al. Shorter TCR beta-

chains are highly enriched during thymic selection and antigen-driven

selection. Front Immunol. (2019) 10:299. doi: 10.3389/fimmu.2019.

00299

48. Kudo M. Immune checkpoint inhibition in hepatocellular carcinoma:

basics and ongoing clinical trials. Oncology. (2017) 92(Suppl. 1):50–62.

doi: 10.1159/000451016

49. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al.

Epigenetic silencing of TH1-type chemokines shapes tumour immunity and

immunotherapy. Nature. (2015) 527:249–53. doi: 10.1038/nature15520

50. Wahab SMR, Islam F, Gopalan V, Lam AK. The identifications and clinical

implications of cancer stem cells in colorectal cancer. Clin Colorectal Cancer.

(2017) 16:93–102. doi: 10.1016/j.clcc.2017.01.011

51. Sefrin JP, Hillringhaus L, Mundigl O, Mann K, Ziegler-Landesberger D, Seul

H, et al. Sensitization of tumors for attack by virus-specific CD8+ T-cells

through antibody-mediated delivery of immunogenic T-cell epitopes. Front

Immunol. (2019) 10:1962. doi: 10.3389/fimmu.2019.01962

52. Wang E. Understanding genomic alterations in cancer genomes using

an integrative network approach. Cancer Lett. (2013) 340:261–9.

doi: 10.1016/j.canlet.2012.11.050

53. Novikova MV, Khromova NV, Kopnin PB. Components of the hepatocellular

carcinoma microenvironment and their role in tumor progression.

Biochemistry. (2017) 82:861–73. doi: 10.1134/S0006297917080016

54. Yarchoan M, Xing D, Luan L, Xu H, Sharma RB, Popovic A,

et al. Characterization of the immune microenvironment in

hepatocellular carcinoma. Clin Cancer Res. (2017) 23:7333–9.

doi: 10.1158/1078-0432.CCR-17-0950

55. Kurebayashi Y, Ojima H, Tsujikawa H, Kubota N, Maehara J, Abe Y, et al.

Landscape of immune microenvironment in hepatocellular carcinoma and

its additional impact on histological and molecular classification. Hepatology.

(2018) 68:1025–41. doi: 10.1002/hep.29904

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

The handling editor declared a shared affiliation, though no other collaboration,

with the authors.

Copyright © 2020 Chen, Zhang, Bi, Zhou, Xu, Dai and Diao. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 14 September 2020 | Volume 10 | Article 554165

https://doi.org/10.3389/fimmu.2019.00299
https://doi.org/10.1159/000451016
https://doi.org/10.1038/nature15520
https://doi.org/10.1016/j.clcc.2017.01.011
https://doi.org/10.3389/fimmu.2019.01962
https://doi.org/10.1016/j.canlet.2012.11.050
https://doi.org/10.1134/S0006297917080016
https://doi.org/10.1158/1078-0432.CCR-17-0950
https://doi.org/10.1002/hep.29904
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Comprehensive Study of Tumor Immune Microenvironment and Relevant Genes in Hepatocellular Carcinoma Identifies Potential Prognostic Significance
	Introduction
	Methods
	Data Sources and Preparation
	Calculation of Immune Cells in Time
	Consensus Clustering of TIME-Infiltrating Cells
	Differential Gene Expression, Identification, and Clustering
	Construction of TIME Score Model
	Statistical Analysis

	Results
	Identification of TIME-Infiltrating Cells and Classification of TIME Phenotypes
	Identification of Gene Clusters and Analysis of Biological Function
	Establishment of TIME Score Model and Analysis of Clinical Signature Associations
	Comparison Between TS Model and Known Signatures
	Validation of the TS Model

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


