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Abstract: Ceramic coatings may be applied onto metallic components of joint replacements for
improved wear and corrosion resistance as well as enhanced biocompatibility, especially for
metal-sensitive patients. Silicon nitride (SiNx) coatings have recently been developed for this purpose.
To achieve a high coating density, necessary to secure a long-term performance, is however challenging,
especially for sputter deposited SiNx coatings, since these coatings are insulating. This study
investigates the time-dependent performance of sputter-deposited SiNx based coatings for joint
applications. SiNx coatings with a thickness in the range of 4.3–6.0 µm were deposited by reactive
high power impulse magnetron sputtering onto flat discs as well as hip heads made of CoCrMo.
SiNx compositional analysis by X-ray photoelectron spectroscopy showed N/Si ratios between 0.8
and 1.0. Immersion of the flat disks in fetal bovine serum solution over time as well as short-term
wear tests against ultra-high molecular weight polyethylene (UHMWPE) discs showed that a high
coating density is required to inhibit tribocorrosion. Coatings that performed best in terms of chemical
stability were deposited using a higher target power and process heating.

Keywords: silicon nitride; coating; reactive high-power impulse magnetron sputtering; wear;
joint replacements

1. Introduction

In order to reduce metal ion release, while maintaining or improving the wear resistance,
different ceramic coatings have been evaluated for the metallic parts of joint implants, and are used in
knee implants in sensitive patients [1,2]. Examples of ceramic coatings that have been investigated
include alumina (Al2O3), chromium nitrides (CrN and CrCN), titanium nitride (TiN), nanocrystalline
diamond (NCD), diamond-like carbon (DLC), zirconium nitride (ZrN) and silicon nitride (Si3N4).
Alumina coatings, deposited with an Al3Ti interlayer, have been found to present a higher hardness
similar to that demonstrated by bulk alumina ceramic, and the use of interlayers can improve crack
resistance and adhesion to the substrate [3–5]. CrN and CrCN have shown reduced wear compared to
some DLC coatings, and when sliding against polyethylene the result was similar to that of a commonly
used bulk ceramic [6–10]. TiN has a well-known high wear resistance and with demonstrated reduced
metal ion release compared to CoCr [3,11–14]. Nanocrystalline diamond (NCD) has shown good
results after millions of cycles in wear simulators [3,15–17]. DLC is a coating with high hardness and a
low coefficient of friction due to self-lubricating characteristics that has been found to give a reduced
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metal ion release, but there is a concern of cytotoxicity due to release of graphite nanoparticles [3,18–22].
While ZrN is already in use in knee implants, with an estimated service life between 20–25 years [23,24],
there is a lack of coatings showing consistently good results in hip joint replacements, which have a
more challenging wear pattern. Si3N4 is a particularly promising material due to its ability to dissolve
into biocompatible elements, while most other coatings would show very limited solubility, which is
an issue once wear particles are produced. Alternatively, the other coatings would dissolve releasing
metallic ions, which is one of the reasons for applying the coating in the first place (to reduce metal
ion release). Si3N4, on the other hand, has shown bacteriostatic properties [25–33], and silicon may
actually have a positive effect on bone metabolism [34]. Its application could for these reasons result
in a considerable reduction of osteolysis [26,35–37]. However, a compromise in the dissolution rate
needs to be found, to allow for coatings with an adequate longevity, while permitting dissolution of
any small particles being released.

A previous study by Filho et al. [38] evaluated the wear resistance of SiNx coatings deposited with
1- and 3-fold rotation (needed for future implant deposition) in a ball-on-disc system, in a hard-on-hard
contact. While all coatings showed low wear rates against the Si3N4 balls, it was found that the
three-fold rotation reduced the coating density, which could influence the performance of the coating
in its targeted application. There is therefore a need to further investigate the effect of rotation and
coating density on SiNx coating performance, and particularly over time, and this was the aim of the
current study. Coatings deposited by three-fold rotation were taken a step further, by being deposited
also onto full three-dimensional implants. Coatings were assessed in terms of adhesion over time
in solution, as well as in wear tests against polymeric materials, as this is the most common counter
surface in joint implants.

2. Materials and Methods

2.1. Materials

CoCrMo flat discs [39], (Peter Brehm GmbH, Weisendorf, Germany) of 21.9 mm diameter and 5 mm
thickness were used as substrates, as this is the most commonly used alloy for hip joint heads [40].
For the 3D set-up, uncoated and coated CoCrMo heads (Peter Brehm GmbH, Weisendorf, Germany)
for hip implants were used [41], with 32 and 36 mm of diameter.

For the wear tests of the hip heads, ultra-high molecular weight polyethylene (UHMWPE) GUR
1020 discs with 39.8 mm of diameter and 5 mm thickness were used, as UHMWPE is one of the most
commonly used polyethylenes in joint implants [40].

A reactive high power impulse magnetron sputtering (rHiPIMS) process was developed for the
deposition of a CrN interlayer, followed by a top layer of SiNx or SiCN on CoCrMo flat discs and
CoCrMo heads for hip implants, based on an earlier study [42]. A base pressure of less than 2 MPa was
achieved prior to deposition. Process conditions applied are listed in Table 1. Group names indicate
the substrate shape (2D for flat discs and 3D for hip heads), one- or three-fold rotation, process heating
and the average silicon target power in kW, e.g., 2D-1f-H0-P3.4 indicates a silicon nitride-based coating
deposited onto a CoCrMo flat disc using one-fold rotation, with a process heating of 0 kW and 3.6
and 3.2 kW silicon target powers, resulting in an average target power of 3.4 kW. A P1.7 silicon target
power represents 1.8 and 1.6 kW, i.e., an average target power of 1.7 kW.
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Table 1. SiNx coating deposition parameters of process heating, substrate temperature, deposition
pressure, N2/Ar flow ratio and resulting layer thicknesses.

Substrate Group Name Process
Heating (kW)

Substrate
Temperature (◦C)

Deposition
Pressure (MPa) N2/Ar SiNx

Thickness (nm)
Interlayer

Thickness (nm)

CoCrMo discs

2D-1f-H0-P3.4 0 120 600 0.255 5385 1100

2D-1f-H3-P3.4 3 300 600 0.255 5240 1030

2D-1f-H0-P3.4-rep 0 120 600 0.26 6050 1700

2D-3f-H0-P3.4 0 120 600 0.26 4399 1461

CoCrMo
hip heads,

32 and 36 mm

3D-3f-H0-P3.4 0 120 600 0.28 4399 1461

3D-3f-H0-P1.7 0 120 600 0.28 4492 1140

3D-3f-H3-P3.4-C 3 300 600 0.28 4391 1169

2.2. Methods

2.2.1. Composition

The chemical composition of the SiNx coatings, deposited onto Si(001) substrates, was assessed
by X-ray photoelectron spectroscopy (XPS) (Axis UltraDLD, Kratos Analytical, Manchester, UK).
The X-ray source was a monochromatic Al(Kα) X-ray radiation (hν = 1486.6 eV). During acquisition,
the pressure in the analysis chamber was less than 1 × 10−7 Pa. XPS survey and high-resolution core
level spectra of Si2p, Si2s, Ar2p, N1s, C1s and O1s were recorded on as-received samples and after
a sputter clean for 120 s with a 2000 eV Ar-ion beam with an incidence angle of 70◦ with respect to
the surface normal. Low energy electrons generated from a flood-gun was applied for automatic
charge compensation throughout the acquisition due to the low conductivity of the SiNx coatings.
After subtraction of a Shirley-type background the composition of the coating was extracted with
elemental cross sections provided by Kratos Analytical. The quantification accuracy of XPS is typically
around ±5% for elements <10 at.% and ±2–3% for elements >10 at.%.

2.2.2. Surface Roughness

Coated and uncoated materials were characterized by vertical scanning interferometry (WYKO
NT-110, Vecco, Germany) using a field of view (FOV) of 1× and objective lens 10×. UHMWPE discs
were characterized by an optical profilometer (ZYGO NexView, Middlefield, CT, USA). The arithmetic
average from five measurements was calculated for later statistical analysis.

2.2.3. Scratch Resistance over Time in Solution

Seven discs, one for each 2D process, were soaked in 25 vol.% of FBS solution for a period of 1,
3 and 6 weeks. Between these time points, samples were cleaned and dried following a previously
defined protocol [43]. Further characterization by a scratch test was performed, using three repetitions,
with progressive loads from 0 to 100 N, a Rockwell C diamond with a tip radius of 200 µm and a
scratch length of 5 mm. A loading rate of 120 N/min and a horizontal displacement rate of 6 mm/min
were used. Evaluation was conducted in a light optical microscope at 20× according to ref. [44].

2.2.4. Wear Resistance

A custom-made holder was used to perform reciprocal wear tests of the implant heads against
UHMWPE discs. Three repetitions were performed for each head (three per size and coating type),
by turning the implant head in the holder to start with a pristine area. Tests were performed at a
frequency of 1 Hz and stroke length of 10 mm, for 104 cycles. During the tests all materials were kept in a
heated PTFE bath at a temperature of 37± 3 ◦C. In order to mimic body fluid, 25 vol.% fetal bovine serum
was used (FBS, HyClone, EU approved, origin South America), complemented with 0.075 wt.% sodium
azide (Sigma-Aldrich, St. Louis, MO, USA, S8032-25G) and 20.0 mM ethylene-diaminetetraacetic
acid solution (EDTA, Sigma-Aldrich, 03690), according to ASTM F32-00 (2006). The contact pressure
applied for full heads against the polymer discs was 9 MPa [45]. The polymer disc wear rate was
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estimated from the cross sectional area of the wear tracks based on Archard’s wear equation [46].
This was measured using a Nexview™ NX2 3D Optical Surface Profiler.

2.2.5. Cross Section Characterization

A focused ion beam was used to obtain the cross sections (FIB; FEI Strata DB235, FEI,
Hillsboro, OR, USA). Before milling, all coated samples were sputtered with (Au/Pd) for 30 s then
deposited with a platinum layer (1 µm) to avoid Ga+ damage. Milling energy used was 7000 pA
and 500 pA for final polishing both at 30 kV. For the 2D materials the cross sections were performed
before and after the specified time points in solution (see section on scratch resistance over time
in solution) and for 3D materials before and after wear tests (see section on wear resistance).

2.2.6. Statistical Analysis

Analysis of variance (one-way ANOVA) was used to assess differences between groups.
A Levene’s test was used to assess homogeneity of variances between groups. If significant, Welch’s
robust ANOVA was used together with Tamhane’s post-hoc test to assess differences between groups.
Otherwise Scheffe’s post-hoc test was used. A critical value of α = 0.05 was used to assess significance.

3. Results

3.1. Composition

The amount of material deposited (at.%) on the coatings, as measured by XPS, is shown in Table 2.
Samples with one-fold rotation presented higher silicon and nitrogen contents, lower oxygen and
carbon contents, and slightly higher N/Si ratios compared to three-fold rotation coatings.

Table 2. Results from X-ray photoelectron spectroscopy analysis for 2D and 3D coatings showing
silicon, nitrogen, N/Si ratio, oxygen and carbon at.%. The quantification accuracy of XPS is typically
around ±5% for elements <10 at.% and ±2%–3 % for elements >10 at.%.

Substrate Process Si (at.%) N (at.%) N/Si O (at.%) C (at.%)

CoCrMo disc

2D-1f-H0-P3.4 49.2 46.7 0.95 2.3 0.5

2D-1f-H3-P3.4 47.4 48.8 1.03 1.7 0.8

2D-1f-H0-P3.4-rep 48.49 44.19 0.91 6.51 0.81

2D-3f-H0-P3.4 46.1 37.8 0.82 14.2 1.87

CoCrMo
hip head

32 and 36 mm

3D-3f-H0-P3.4 46.1 37.8 0.82 14.2 1.87

3D-3f-H0-P1.7 41.6 39.4 0.95 16.5 2.52

3D-3f-H3-P3.4-C 40.6 31.5 0.78 12.2 15.7

3.2. Surface Roughness

The average surface roughness for all samples is shown in Tables 3 and 4.
All of the coated 2D and 3D samples showed roughness values <50 nm, in accordance with

standard requirements for the application [47].
Before wear tests the UHMWPE discs were polished to achieve a surface roughness of <2 µm,

as confirmed in Table 4 [47]. No statistically significant difference was found between the different
UHMWPE discs.
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Table 3. Surface roughness of 2D coatings on CoCr discs (average ± standard deviation).

Samples Ra (nm)

2D-1f-H0-P3.4 15.6 ± 3.9
2D-1f-H3-P3.4 8.3 ± 0.6

2D-1f-H0-P3.4-rep 36.1 ± 15.5
2D-3f-H0-P3.4 8.9 ± 0.5

Table 4. Surface roughness of 3D coated, uncoated substrate and ultra-high molecular weight polyethylene
(UHMWPE) discs used for reciprocal wear tests for 32 mm and 36 mm (average ± standard deviation).

Samples
Coated (3D) Implants UHMWPE Discs

32 mm 36 mm 32 mm 36 mm

Ra (nm) Ra (µm)

CoCr 11.7 ± 1.6 9.6 ± 1.8 1.1 ± 0.2 1.6 ± 0.4
3D-3f-H0-P3.4 39.9 ± 3.7 31.8 ± 1.8 0.8 ± 0.2 1.1 ± 0.5
3D-3f-H0-P1.7 43.1 ± 4.9 40.0 ± 5.5 0.7 ± 0.0 1.5 ± 0.3

3D-3f-H3-P3.4-C 29.5 ± 3.7 29.5 ± 3.5 1.1 ± 0.5 1.9 ± 0.2

3.3. Scratch Resistance over Time

The scratch test tended to give increasing critical Lc2 loads over time (Figure 1). These were
statistically significant (p < 0.05) between week 0 and 6 for 2D-1f-H0-P3.4, between week 0 and 6 and
between week 1 and 6 for 2D-1f-H3-P3.4. For coatings 2D-1f-H0-P3.4-rep and its three-fold version
(2D-3f-H0-P3.4), there was a statistically significant difference between time points 0 and 1 weeks,
but at 3 weeks these coatings had failed through dissolution and could not be tested.
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3.4. Wear Resistance

3.4.1. Coefficient of Friction

The coefficient of friction between uncoated and coated hip heads running against UHMWPE
discs, as averaged between 2000–10,000 cycles, is shown in Figure 2.
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For the hip head size of 32 mm, statistical significance (p < 0.05) was found between uncoated
CoCr and 3D-3f-H0-P3.4, uncoated CoCr and 3D-3f-H0-P1.7, 3D-3f-H0-P3.4 and 3D-3f-H3-P3.4-C and
between 3D-3f-H0-P1.7 and 3D-3f-H3-P3.4-C.

The 36 mm head implants generally showed higher coefficient of friction values (Figure 2).
The statistical analysis showed significance (p < 0.05) between uncoated CoCr and 3D-3f-H0-P3.4,
between uncoated CoCr and 3D-3f-H0-P1.7 and between 3D-3f-H0-P1.7 and 3D-3f-H3-P3.4-C.
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3.4.2. Specific Wear Rate

For the 32 mm heads, 3D-3f-H0-P3.4 and 3D-3f-H0-P1.7 showed a tendency for reduced specific
wear rates compared to the uncoated samples (Figure 3). However, statistical significance (p < 0.05)
was found only between 3D-3f-H0-P3.4 and 3D-3f-H3-P3.4-C for the 32 mm heads.

For the 36 mm heads, the uncoated sample exhibited the lowest wear rate and 3D-3f-H0-P1.7 the
highest specific wear rate. A statistically significant difference was found only between uncoated CoCr
and 3D-3f-H0-P1.7 for the 36 mm heads.
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3.5. Cross Sectional Morphology

The dissolution tests of the 2D samples showed that samples deposited with one-fold rotation
gave denser coatings than the three-fold ones at the 0 week time point (Figure 4). After 6 weeks in FBS
solution, an increased surface roughness was observed on all samples due to the dissolution process.
Samples with three-fold rotation presented a rougher surface before exposure and failed through
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dissolution already at a time point of 1 week. In Figures 4–7 vertical lines can be observed, starting
from the small voids in the coating, which are related to tracks of the Ga+ ions and are therefore an
artifact known as curtaining [48].
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Cross sections were also made on the hip heads before and after the reciprocal wear tests
against UHMWPE. A tribocorrosive process could be observed in the top layers, which was most
severe for 3D-3f-H0-P1.7 (Figures 5–7). Sample 3D-3f-H3-P3.4-C, which had a higher power in the
process heating, as well as a SiCN top layer, showed the best resistance to the wear test (Figure 7).
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4. Discussion

This work evaluated coating composition, adhesion, wear performance against UHMWPE and
cross-sectional morphology as a function of soaking time and deposition parameters, including different
rotation settings.

It has been found that when the N/Si ratio is ≥ 1.1, a stable, higher binding energy of Si–N
results in an improved performance of these types of coatings in dissolution tests, in comparison to
coatings with a N/Si ratio below 0.8 [49,50]. The coatings in this study showed a N/Si ratio between
0.8 and 1.0. The rotation applied during deposition plays an important role for the coating’s final
morphology. Coatings with one-fold rotation exhibited denser morphologies (Figures 4–7) due to the
fact that sputtering is a line-of-sight deposition technique. Thus substrates deposited using one-fold
rotation received a higher ad-atom flux and ion energies compared to those with three-fold rotation [51].
In other words, in three-fold rotation the substrate moved further away and closer to the plasma region
influencing the plasma exposure time and deposition rate [52–54]. In this work, 2D coatings deposited
with one-fold rotation, a high silicon target power and an N/Si ratio close to 1 (ranging from 0.98
to 1.03) showed higher coating densities compared to the 3D coatings (with a N/Si ratio ranging from
0.78 to 0.95). This was likely due to more Si–O bonds being formed [49,50] and three-fold rotation gave
rise to lower density coatings resulting in increased porosity, which amplified the attachment of C and
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O when exposed to the air [42]. A further increase in Si target power or N content might improve the
density and quality of these coatings.

The average surface roughness was comparable to the standard requirements and was achieved
on both 2D and 3D coatings. However, a final polishing procedure would be needed for
commercial purposes. 3D coatings had higher values for average surface roughness, which again can
be explained by the increased rotation, as the substrate is bombarded with a lower and non-uniform
material arrival rate [55].

SiNx coating adhesion can be improved by the application of a CrN interlayer [55], which was also
used in all coatings of this study. The less favorable performance of 2D-1f-H0-P3.4-rep in the scratch
test over time, could be related to the higher O content of this coating, indicative of a lower density.
Similarly, the generally less favorable performance of the 3D coatings without C was probably related
to the deposition process (lower target power and process heating) resulting in less dense coatings,
resulting from less flux of ion bombardment as well as less material being deposited [56,57], leading to
a higher dissolution rate.

Despite the higher surface roughness of the coated samples compared to uncoated CoCr (Table 4),
the coefficient of friction against the UHMWPE discs was in the same order of magnitude (Figure 2).
Similarly for the specific wear rate of the UHMWPE discs (Figure 3). The coated 32 mm samples showed
somewhat lower wear rate compared to the CoCr control, while the 36 mm samples showed a somewhat
higher wear rate. Compared to previous studies on hard-on-soft contacts for joint implants, the specific
wear rate results obtained were of a similar order of magnitude [58,59]. For example, Datta et al. [58]
used a pin-on-disc system of UHMWPE pins running against TiN coatings at a contact pressure of
12 MPa in Hank’s solution at 37 ◦C, and found a specific wear rate of 1.9 ± 0.7 × 10−5 mm3/N·m.
Berni et al. [59] ran stainless steel balls coated with yttria-stabilized zirconia against UHMWPE discs in
a fetal bovine serum solution, and found a higher specific wear rate, of around 6 × 10−4 mm3/N·m,
but also used a higher contact pressure of 30 MPa.

5. Conclusions

SiNx coatings deposited by rHiPIMS with one- and three-fold rotation onto 2D and 3D CoCrMo
substrates were evaluated. In summary, it was found that a high coating density was desirable to
inhibit tribocorrosion. Coatings that performed best in terms of chemical stability were deposited
using a higher target power and process heating.

6. Patents

Håkan Engqvist is co-inventor on a patent related to similar coatings.
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