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Abstract: Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing
economic and health problems globally. There is growing evidence that β-glucans can function as
bioactive macromolecules that help control type 2 diabetes with minimal side effects. However,
conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially
resulting from incomplete understanding of their precise structural characteristics. This review aims
to increase clarity on the structure–function relationships of β-glucans in treating type 2 diabetes by
examining detailed structural and conformational features of naturally derived β-glucans, as well
as both chemical and instrumental methods used in their characterization, and their underlying
anti-diabetic mechanisms. This may help to uncover additional structure and function relationships
and to expand applications of β-glucans.

Keywords: type 2 diabetes; β-glucan; molecular structure; anti-diabetic function; macronutrient
absorption; enzyme inhibitor

1. Introduction

Type 2 diabetes (T2D), a disease associated with insulin resistance and poor blood
glucose control, is a major public concern due to the potential severe complications and
associated morbidity and its increasing rate of occurrence in many developed and develop-
ing countries. The major characteristic of this metabolic disease is chronic hyperglycemia,
with severe complications leading to the long-term damage of various organs, including
the eyes, kidneys, heart, blood vessels and nerves [1]. According to projections from the
International Diabetes Federation, it has been estimated that in 2019 there were 463 million
people with diabetes globally, and this is expected to reach 700 million by 2045, which
will cost US$850 billion per year for diabetes healthcare [2,3]. Although several drugs
have been used clinically to control T2D, such as biguanides [4], sulfonylureas [5], sodium-
glucose co-transporter-2 (SGLT2) inhibitors [6], and thiazolidinediones [7], all of these
drugs have some serious side-effects, especially resulting in gastrointestinal disorders [8,9]
which affect both the drugs’ efficacy and the patient’s life. “Natural” medicine based on
the concept of “food as medicine” has been proposed as an alternative strategy in the
managing of metabolic diseases (such as T2D), due, among other things, to their safety [10].
Growing evidence has confirmed that certain bioactive nutrients in these foods, including
polysaccharides [11,12], can help mitigate metabolic abnormalities [13].

Polysaccharides, one of the most important biomacromolecules for life, are polymers
found in natural sustainable resources. From 1970, since the first discovery of the bioac-
tive properties of lentinan, there has been a drive to research the biological functions of
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polysaccharides [14,15]. β-glucans are a type of naturally-derived polysaccharide which
can be widely found in bacteria, alga, fungi, cereals, and higher plants. They are generally
biopolymers with β-glucopyranosyl units, which normally contain a β-(1,3)-linked and/or
β-(1,4)-linked backbone and may be branched with β-(1,6)-linked glucose.

β-glucans have been used in the food industry and in clinical practice because of
their significant biological functions. For example, β-glucans with high molecular weights
have been reported to enhance the binding capacity to the receptors involved in immune
responses (e.g., dectin-1: a natural killer (NK)-cell-receptor-like C-type lectin involving
in innate immune responses) and therefore improve their immunomodulatory activities,
which can help to control some chronic diseases such as diabetes [16]. However, many
studies have reported that degrading β-glucans to yield lower molecular weights can
increase their anti-diabetic effects in vitro, as well as their antioxidant and antibacterial
activities [17,18]. These differences in reported results may arise from differences in the
detailed molecular structures of the substrates [19]. Therefore, this paper reviews structural
and conformational features of naturally derived β-glucans, summarizing the potential
underlying mechanisms of their anti-diabetic functions, for a better understanding of the
structure–function relationships of β-glucans.

2. Structural Features of β-Glucans

It is commonly asserted that the functionalities of β-glucans are highly dependent on
their molecular structure. The structural characteristics of β-glucans, including molecular
weight distributions, glycosidic linkage patterns and branching degrees, vary with different
sources and extraction methods. There are three main glycosidic linkage patterns identified
in β-glucans (Figure 1): β-1,3-linked, β-1,4-linked and β-1,6-linked patterns. Normally, β-
1,3-linked and β-1,4-linked patterns appear in the backbone of β-glucan, and β-1,6- linkages
represent the branch points in the backbone.

Figure 1. Chemical structures of β-glucans. The glucose monomers are shown following the symbol
nomenclature for glycans. (A) The β-1,3-linked backbone of β-glucan with different branching
degree of β-1,6-linked glucose. (B) The β-1,3-1,4-linked backbone of β-glucan, DP3: cellotriosyl,
DP4: cellotetraosyl).

Branched or linear β-1,3-glucans (Figure 1A) are commonly isolated from fungi (e.g.,
mushroom [20]) and bacteria (e.g., yeast [20]). The occurrence of β-1,3-linkages together
with β-1,4-linked glycosidic bonds (Figure 1B) are observed in the β-glucans from cereal
grains (e.g., oat [21]). As shown in Figure 1B, there are two types of oligosaccharide
subunits; one is three β-1,4-linked glucose monomers, termed cellotriosyl (DP3), and the
other type is β-1,4-linked glucose monomers called cellotetraosyl (DP4). The molar ratio of
DP3 and DP4 in β-glucans is specific for different cereals; this can be used as a tool to trace
the origin of a given β-glucan structure [21].

The extraction methods of β-glucans vary from sample to sample. There are commonly
four types of isolation method used in extracting β-glucans, such as water extraction [22–24],
alkaline extraction [25,26], acidic extraction [27] and enzymatic extraction [28]. Some sug-
gested structures of naturally derived β-glucans are shown in Table 1. These structures
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are generally inferred from a combination of results collected by both chemical tests and
instrumental analysis. Interestingly, some similar repeating structural units exist in several
β-glucans from different sources. For example, β-glucans from Dictyophora indusiate, Heri-
cium erinaceus, Grifola frondosa, Schizophyllan and brown algae have the same repeating unit,
viz., three β-1,3-Glcp backbone residues with a branch comprising one β-1,6-linked glucose
residue. The branches of β-glucans, connected to the backbone via β-1,6 glycosidic bonds,
play a major role in the solubility of the β-glucan. For example, curdlan, a linear β-glucan
(i.e., without side chains) is insoluble in water [29], while the β-glucans with branched
glucose residues, such as lentinan and Schizophyllan, are water-soluble [30,31]. However,
these β-glucans exhibit some hydrophobicity due to hydrophobic carbon rings, resulting in
limited water-solubility. Thus, β-glucans adopt different chain conformations to achieve
stability. It is essential to consider their chain conformations in different solvents for the
application of β-glucans in the food industry and medicine.

Table 1. Sources and deduced chemical structures of several β-glucans.

Name/Abbr. Source Extraction Solvent Type of Glucan Structure a Ref.

Curdlan Alcaligenes faecalis var. NaOH β-1,3 glucan (A) a = 1, b = 0 [25,26]
APP Auricularia auricula NaCl β-1,3 glucan (A) a = 1, b = 2 [32–34]
DIP Dictyophora indusiata Water β-1,3 glucan (A) a = 2, b = 1 [22–24]
HEP Hericium erinaceus Water β-1,3 glucan (A) a = 2, b = 1 [35,36]
GFP Grifola frondosa Water β-1,3 glucan (A) a = 2, b = 1 [37–39]

Schizophyllan Schizophyllum Water β-1,3 glucan (A) a = 2, b = 1 [30,40]
Laminarin Algae Water β-1,3 glucan (A) a = 2, b = 1 [41,42]
Lentinan Lentinula edodes NaCl/NaOH β-1,3 glucan (A) a = 3, b = 2 [31,43]

GLP Ganoderma lucidum Water β-1,3 glucan (A) a = 5, b = 1 [44,45]
YBG Saccharomyces cerevisiae NaOH β-1,3 glucan (A) a = 5, b = 1 [46]
CSP Wild Cordyceps sinensis Water β-1,3 glucan (A) a = 5, b = 2 [47]

WBG Wheat Water β-1,3-1,4 glucan (B) DP3:DP4 = 3.0–4.5 [21,48]
BBG Barley Water/NaOH β-1,3-1,4 glucan (B) DP3:DP4 = 1.7–3.3 [48,49]
RBG Rye Water β-1,3-1,4 glucan (B) DP3:DP4 = 1.8–3.1 [50–52]
OBG Oat Water β-1,3-1,4 glucan (B) DP3:DP4 = 1.5–2.2 [48,53]

a The uppercase letters within this column represent the repeating units shown in Figure 1 (A. β-1,3-1,6 glucan;
B. β-1,3-1,4 glucan). The lowercase letters indicate the molar ratio of each part in the repeating units.

3. Conformational Features of β-Glucans

Several chain conformations of β-glucans are found in different solutions (Figure 2),
from a disordered conformation (e.g., random coil) to an ordered conformation (e.g., helix
conformation). These more organized conformations can easily form a stable network (e.g.,
a triple helix), and the stabilization of this network arises from its inter- and intra-molecular
hydrogen bonds. However, the dense triple helix conformation formed by the interaction of
intramolecular polyhydroxy groups may result in its insolubility in aqueous solution [54].

Figure 2. Various chain conformations of polysaccharides in different solvents.

There are many parameters that can affect conformational features of polysaccharides,
including the molar mass per unit of contour length (ML), the contour length of chains
(L), the persistence length (q) and the chain diameter (d). The contour length of a polymer
chain refers to its length at maximum physically possible extension, and the persistence
length reflects the bending stiffness of a chain. Several reports indicate that β-glucans that
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exhibit strong biological functions show a triple-helix conformation, such as lentinan [55],
curdlan [56] and yeast β-glucan [57]. Based on both theoretical and experimental results,
the ML and q values of a polysaccharide with a rigid triple-helix conformation usually range
from 2000 to 2800 nm−1 and from 100 to 250 nm, respectively [20]. For example, lentinan,
the first reported β-glucan with antitumor activities, exists as a triple-helix conformation
in aqueous solution, with a reported ML value of 2160 nm−1 and q value of 110 nm [58].
Schizophyllan, a widely studied β-glucan from Schizophyllum, has a reported ML value
of 2150 nm−1 and q value of 200 nm [59]. However, the triple-helix conformation of
these β-glucans can be transferred to other conformations under special conditions, such
as high temperature [60], high pH solvents [61] and strong polar solvents [62]. With
disrupted conformations, their bioactivities and solubilities are also changed. Therefore,
the structural and conformational features of β-glucan need to be well characterized for a
correct understanding of their functionalities.

4. Characterization Methods for β-Glucan Structure and Conformation Analysis

The structural determination of polysaccharides is more complicated than for other
biopolymers due to the diverse monosaccharide compositions and glycosidic linkage pat-
terns. In addition to classical chemical characterization methods, many newly developed
technologies for the characterization of polysaccharides have been, or could be, employed to
help understand the structure-function relationship of bioactive polysaccharides. For exam-
ple, enzymatic arrays [63] and matrix-assisted laser desorption ionization mass spectrome-
try [64] have been used to sequence polysaccharides, and ion mobility-mass spectrometry
has been developed to analyze carbohydrate anomers [65]. Advanced microscopy tech-
niques, such as atomic force microscopy [66] and confocal laser scanning microscopy [67],
provide a new level of microstructure analysis. Recently, low-temperature scanning tun-
neling microscopy has been successfully applied to observe single glycans [68]. However,
the exploration of polysaccharides has been much slower than that of polynucleotides and
proteins because of limitations on the structural theories, the complexity of their structures
and a poor understanding of the underlying mechanisms of their bioactivities.

The characterization of β-glucan structure therefore requires a combination of chemical
and instrumental analyses (Figure 3). The structural information of β-glucans usually
reported include its purity, molecular weight, monosaccharide composition, anomeric
configuration, glycosidic linkage pattern and sequence of residues.

Figure 3. Chemical and instrumental methods used for β-glucan structure characterization.
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To investigate detailed structure–function relationships of polysaccharides, the “pu-
rity” is one of the most important factors. Generally, measuring the purity of β-glucans
includes obtaining several parameters, such as the sugar content and the molecular weight
distribution. Colorimetric methods are commonly used as the first step to determine the
purity of crude polysaccharides, including the measurement of sugar, uronic acid and
protein contents. Then, the molecular weight distributions of polysaccharides can be ana-
lyzed using several instrumental methods, such as size exclusion chromatography (SEC).
Sometimes, β-glucans coexists with other polysaccharides, such as arabinogalactans [69].
Therefore, it is essential to analyze its monosaccharide composition to identify the purity of
a β-glucan. Hydrolysis with acids or enzymes is the first step to analyze the monosaccha-
ride composition, after which the hydrolysate is characterized with various instruments.
High-performance anion exchange chromatography (HPAEC) is considered one of the most
effective instrumental analysis techniques to determine monosaccharide composition due
to the high sensitivity and simple sample preparation [70]. A high-purity β-glucan should
have a narrow molecular weight distribution and high glucose content.

Extraction of β-glucans from grains always results in some starch (an α-glucan) [54],
and it is difficult to distinguish β-glucans from α-glucans through their sugar content or
monosaccharide composition alone. However, a combination of glycosidase hydrolysis
and instrumental analysis, such as Raman spectra, FT-IR and NMR, can easily identify the
anomeric configuration of glucans. The sequence of residue and the branching degree of
naturally derived β-glucans is highly dependent on its source, and can be characterized
using NMR. For a comprehensive characterization of naturally derived β-glucans, it is
necessary to use both chemical methods and instrumental analysis.

To identify the conformation of β-glucans, weight-average molecular weight (Mw),
intrinsic viscosity ([η]), radius of gyration (Rg) and hydrodynamic radius (Rh) of β-glucan
samples can be measured by static light scattering (SLS), dynamic light scattering (DLS)
and viscometry, using the molecular-weight dependence of their solution properties. Sev-
eral models, including the helical wormlike chains model and the Kratky-Porod model,
can be used to deduce the four main parameters, ML, L, q and d based on the results
of measurements.

Conformation analysis can be performed using X-ray diffraction (XRD), e.g., for
measuring the triple-helix β-glucan [71]. Atomic force microscopy (AFM) is a powerful
tool to observe chain conformations in solution, including rod-, sphere- and fiber-like
shapes. AFM can provide information on the chain length, chain diameter and even the
ML of a β-glucan sample [58]. In addition to these experimental techniques, molecular
dynamics simulations have been used as a tool to explore the conformation of polymers,
which can help illustrate the chain movements and conformations of polymers in different
solutions [32], although the results always depend on the assumed model.

Although the characterization of β-glucans is complicated, an understanding of the
structure/function relationships of these molecules is crucial if they are to advance further
as a potential antidiabetic drug. Without this understanding the efficacy of a particular
β-glucan is difficult to predict.

5. Amelioration of Type 2 Diabetes and Associated Mechanisms

T2D is the most frequent metabolic disorder which involves insulin resistance, fol-
lowed by deficient insulin secretion by impaired pancreatic islet β-cells [72]. The two main
factors that typically account for T2D are genetic factors and environmental factors. A
genome-wide association study has confirmed that there are more than 400 gene variants
associated with T2D, with most of them involving islet function [73]. The environmental
factors that increase the risk of developing T2D include obesity, alcohol intake and smok-
ing. The predominant factor accounting for T2D is the consumption of unhealthy diets,
including those with energy-dense refined food [72].
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5.1. Pharmacotherapy for T2D and Anti-Diabetic Mechanisms

There is a lack of effective drugs to treat T2D due to the complexity of pathogen-
esis [72,74]. However, several drugs are used in controlling T2D, and these drugs can
be classified into seven main types based on their structures and mechanisms, including
biguanides, sulfonylureas, thiazolidinediones, glucagon-like peptide (GLP-1), dipeptidyl
peptidase (DPP-4) inhibitors, sodium-glucose co-transporter-2 (SGLT2) inhibitors and en-
zyme inhibitors. The underlying mechanisms and potential side-effects of these drugs are
summarized in Table 2. As well as the injection of insulin being essential to control type 1
diabetes, this is also adopted to control T2D under certain conditions, such as functional
failure of pancreatic islet β-cells due to the long-term suffering from T2D [75]. However,
it should be noticed that all of these anti-diabetic drugs are companied by some severe
side-effects (Table 2), such as gastrointestinal disorders, which have prolonged impact on
the patient.

Table 2. Drugs used in amelioration of T2D.

Type Drug Name Mechanisms Side-Effects Ref.

Biguanides Metformin, Phenformin

Lowering fasting plasma insulin
concentration; enhancing insulin sensitivity;

changing gut microbiota composition;
promoting functional shifts in

gut microbiome.

Gastrointestinal disorders; folate
deficiency; increasing
homocysteine levels

[8,76,77]

Sulfonylureas Glibenclamide, Glipizide As insulin secretagogues to stimulate
insulin secretion. Gastrointestinal disorders, headache [9,78,79]

Thiazolidinediones Rosiglitazone,
Pioglitazone

Improving insulin sensitivity by up-regulation
of adipokine.

Peripheral and pulmonary edema;
fluid retention. [80,81]

GLP-1 Liraglutide, Semaglutide Suppressing glucagon release; delaying
gastric emptying and increasing satiety. Nausea, vomiting and diarrhoea [82,83]

DPP-4 inhibitors Vidagliptin, Saxagliptin
Enhancing incretin axis; improving

meal-stimulated insulin secretion by sparing
incretin hormones.

Nausea and gastrointestinal problems [78,84–86]

SGLT2 inhibitors Dapagliflozin,
Cangliflozin

Inhibition of renal glucose reabsorption to
lower plasma glucose levers.

Increasing the risk of developing
diabetic ketoacidosis. [6,87]

Enzyme inhibitors α-amylase inhibitors,
α-glucosidase inhibitors,

Reduction in the rate of glucose absorption in
post-prandial blood

Lactic acidosis, diarrhoea, liver
function disorders. [88]

5.2. Glucans Used in Controlling T2D and Underlying Mechanisms

Naturally derived β-glucans have been promoted due to their various reported health-
promoting activities and minimal side-effects. They have been widely adopted as health-
improving ingredients to prevent some chronic diseases, especially for T2D. For example,
a clinical trial showed that oat β-glucan can help manage glycemic index, carbohydrate
metabolism and alter gut microbiota profile in T2D [89,90]. There are two main underlying
mechanisms for the roles of β-glucans in controlling T2D, which can be explained through
their detailed structural and/or conformational features.

5.2.1. Retardation of Macronutrient Absorption

Macronutrients within daily diets are necessary for life. However, ongoing quick
absorption of these macronutrients in T2D can induce hyperglycemia and hyperlipidemia,
and thereby cause metabolic disorders [91]. Hence, a way to help manage T2D is by
preventing the absorption of macronutrients, resulting in a reduction in blood cholesterol
levels and suppressing the postprandial increase of blood sugar levels [92]. This retardation
effect of β-glucans has been shown to be highly dependent on their molecular weight and
concentration. Wood et al. established the relationship of plasma glucose increment (DGpg)
and structural features of oat β-glucan (concentration (c) and weight-average molecular
weight (Mw)) as shown in the formula: DGpg = A + B × log10(c) + 0.72B log10(Mw) [93]. In
addition, depolymerization of β-glucans (reducing molecular size) as a result of processing
was reported to decrease its effect on decreasing the peak blood glucose response [17].

Additionally, β-glucans can play a role in increasing the viscosity of a meal during
gastrointestinal digestion, limiting the absorption of macronutrients, slowing down gastric
emptying, and entrapping bile acids and cholesterol throughout digestion. This lowers
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serum sugar and cholesterol levels in T2D [94]. These benefits are highly dependent on the
structure and conformation of β-glucans, which can be explained by the Mark–Houwink
equation for the intrinsic viscosity: [η] ∝ K Mα, where the values of the parameters K and
α depend on the particular polymer solution system [95].

5.2.2. Inhibition of Digestive Enzyme

a-amylase and a-glucosidase are the two main enzymes necessary to hydrolyze car-
bohydrates in the digestive system. a-amylase can initiate carbohydrate hydrolysis by
cleaving a-(1,4)-linked glycosidic bonds and yield smaller fractions, such as sucrose and
maltose [96]. Then, a-glucosidase can hydrolyze these fractions into absorbable monosac-
charides, such as glucose and fructose, during intestinal digestion [97]. Adequate free
glucose can be generated after this digestive process, which may be excessively ingested
into the bloodstream in T2D patients, leading to hyperglycemia. Therefore, inhibition
of these enzymes to cause lower carbohydrate digestion can help control T2D. Ma et al.
showed that a β-glucan adopting a triple helix conformation from Hericium erinaceus re-
duced wheat starch digestibility from 70% to less than 60% by inhibiting the digestive
enzymes [98]. Qin et al. compared the glucose availability of the digestive system after
adding different modified oat β-glucans, and all of these β-glucans decreased glucose
availability, which indicated their potential hypoglycemic effect [17].

Lipases play an important role in hydrolyzing diet lipids; they convert lipids into
cholesterol and fatty acids, which can be absorbed by enterocytes through lipid trans-
porters [99]. Many studies have reported that β-glucans can inhibit lipase activity and
therefore alleviate the hyperlipidemia seen in T2D. For example, barley β-glucans can
slow lipolysis and reduce the release of free fatty acids; these inhibition effects were highly
dependent on the molecular weights of the β-glucans [100].

There are some possible underlying mechanisms related to the enzyme inhibitor role
of β-glucans, as shown in Figure 4. For example, these β-glucans, which can only be
fermented in the large intestine, play a physical barrier role in the digestive system to
inhibit the activity of these digestive enzymes [101]. At the same time, β-glucans can inhibit
these digestive enzymes by mixed competitive and uncompetitive inhibition to suppress
enzyme–substrate interactions and therefore reduce the digestion of substrates [102]. Both
of these proposed mechanisms rely on the physiological conformations of the β-glucans
in vivo. For example, the binding between β-glucans and enzymes follows the lock-and-key
principle; therefore, the shapes (confirmations) of β-glucans under physiological conditions
are a decisive factor for binding efficiency, thereby controlling the inhibition effect of these
β-glucans [20,103].

It should be noted that other possible anti-diabetic mechanisms of β-glucans have
been proposed. For example, the modulation effects of β-glucan on gut microbiota have
been widely reported [89,104]. β-glucans can function as prebiotics, as they are mainly
fermented in the large bowel and benefit the host-microbiota interactions in the whole
gastrointestinal process. As a prebiotic, β-glucans alter the microbiota compositions by
improving the number of beneficial bacteria, such as Lactobacillus, during large bowel
fermentation [105,106], leading to an increase in short-chain fatty acids (SCFA), which
can improve the colonic defense barrier in T2D [107]. In addition, β-glucans can regulate
the superoxide dismutase and malondialdehyde levels in the livers of diabetic mice [108].
However, these reported effects need to be further explored. For example some particular
structural features of β-glucans may be preferred by these beneficial bacteria. Again a
better understanding of the structure and function relationship of β-glucans may help yield
more potent health benefits.
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Figure 4. The proposed mechanism of enzyme inhibition. (A) The normal enzyme–substrate in-
teractions during digestion. (B) β-glucans play as a physical barrier to inhibit enzyme–substrate
interactions. (C) β-glucans bind to enzymes to inhibit enzyme–substrate interactions.

6. Conclusions

β-glucans are sustainable polymers that widely exist in natural resources. These
biomacromolecules mainly contain β-(1,3)-linked, β-(1,4)-linked and β-(1,6)-linked gly-
cosidic bonds, and adopt several different conformations in solutions, such as a helical
conformation, which seems to be the origin of their versatile biofunctions and thus furnish a
target for targeting efficacy. For a detailed characterization of β-glucans, both chemical and
instrumental methods should be combined to give accurate structural and conformational
features, which can then be linked to an understanding of their functionalities. Although
there are many reported anti-diabetic mechanisms of β-glucans, only two mechanisms,
retardation of macronutrient absorption and inhibition of digestive enzymes, can be well
explained through their detailed structures and conformations. However, current research
on the anti-diabetic functions of β-glucans is focused on naturally derived β -glucans.
It would be worthwhile to explore the underlying anti-diabetic mechanisms using syn-
thetic β-glucans with detailed structural information. With improved understanding of
the structure/function relationship of these molecules, precision designs of β-glucans with
particular structures and/or conformations could be produced to help control T2D.
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