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Abstract

Chromosome number changes during the evolution of angiosperms are likely to have played a major role in speciation. Their study is

of utmost importance, especially now, as a probabilistic model is available to study chromosome evolution within a phylogenetic

framework. In the present study, likelihood models of chromosome number evolution were fitted to the largest family of flowering

plants, theAsteraceae.Specifically,aphylogenetic supertreeof this familywasusedtoreconstruct theancestral chromosomenumber

and infer genomic events. Our approach inferred that the ancestral chromosome number of the family is n = 9. Also, according to the

model that best explained our data, the evolution of haploid chromosome numbers in Asteraceae was a very dynamic process, with

genome duplications and descending dysploidy being the most frequent genomic events in the evolution of this family. This model

inferred more than one hundred whole genome duplication events; however, it did not find evidence for a paleopolyploidization at

the base of this family, which has previously been hypothesized on the basis of sequence data from a limited number of species. The

obtained results and potential causes of these discrepancies are discussed.
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Introduction

The remarkable diversity of land plants is associated with strik-

ing variation in genome sizes and chromosome numbers

(Lysák and Schubert 2013). Whereas genome size of land

plants varies more than 2,300-fold, from 64 Mb (Genlisea

aurea; Greilhuber et al. 2006) to approximately 150,000 Mb

(Paris japonica; Pellicer et al. 2010), chromosome numbers

vary from n = 2 in six angiosperm species (Vanzela et al.

1996; Cremonini 2005) to n>320 in Sedum suaveolens

(Uhl 1978). This large variation in chromosome numbers has

been driven by two major mechanisms operating in opposite

directions: increases through polyploidy (whole genome du-

plications [WGD]) and decreases or increases through struc-

tural chromosomal rearrangements (chromosome fusion, i.e.,

descending dysploidy; and chromosome fission, i.e., ascend-

ing dysploidy) (Lysák and Schubert 2013). Indeed, polyploidy is

considered one of the main mechanisms responsible for the

evolutionary success of many species, in particular by enabling

the adaptation of newly arisen polyploids to different habitats.

For example, the recurrent presence of polyploids in habitats

different from those of their diploid progenitors constitutes

strong evidence of the ability of polyploids to colonize new

environmental niches (Hegarty and Hiscock 2008). Still, the

evolutionary success of polyploids has been a controversial

topic, with some authors considering that, in general, fairly

recent polyploids have reduced diversification rates when

compared with their diploid relatives and fail to persist

(Mayrose et al. 2011, 2014). Other authors state that poly-

ploidy is a fundamental process in the evolution of flowering

plants (Soltis and Soltis 2000; Hegarty and Hiscock 2008; Lim

et al. 2008; Soltis et al. 2014). Regardless of the effect of

polyploidy in diversification patterns (Van de Peer et al.

2009; Wood et al. 2009; Fawcett and Van de Peer 2010;
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Vanneste et al. 2014; Tank et al. 2015), phylogenomic anal-

yses of sequenced plant genomes have shown WGD in an-

cestral lineages before the diversification of extant seed plants,

angiosperms, and eudicots (Jaillon et al. 2007; Jiao et al. 2011;

Jiao et al. 2012; Amborella Genome Project 2013). In contrast,

dysploidy has been thought to arise accidentally, and no adap-

tive reason has been found that could explain its predominant

occurrence in particular clades (Chacón et al. 2014; Escudero

et al. 2014). Nevertheless, in plants, changes in chromosome

number have long been recognized as important evolutionary

forces, their study being of utmost importance.

The development of new molecular and bioinformatic

techniques has facilitated the inference of ancient WGDs.

Until recently, the study of ancient WGDs implied the use of

threshold techniques to infer the occurrence and location of

polyploidy events (from Stebbins 1938 to Wood et al. 2009).

However, in most cases, these studies did not consider the

phylogenetic relationships among taxa and the possible occur-

rence of aneuploidy or dysploidy events during genome evo-

lution (Glick and Mayrose 2014). Alternative methods such as

comparative genetic mapping, analysis of specific gene fam-

ilies, identification of duplicated genes in expressed sequence

tag (EST) collections, and fingerprinting techniques (e.g.,

AFLP) have also been used (Ainouche et al. 2003; Bowers

et al. 2003; Schranz and Mitchell-Olds 2006; Mondragón-

Palomino et al. 2009; Jiao et al. 2011); still, their application

in large clades and using broad sampling is hardly feasible.

Recently, a probabilistic model of chromosome evolution

within a phylogenetic framework, chromEvol, was made avail-

able (Mayrose et al. 2010), and is already in its second iteration

(Glick and Mayrose 2014). This model uses the haploid chro-

mosome number, defined as the number of apparently original

unique chromosomes in a haploid set (Cusimano et al. 2012;

Glick and Mayrose 2014), to describe the evolution of chromo-

some numbers in a given lineage, working under a robust

probabilistic inference framework that considers both dysploidy

and polyploidy. Therefore, it is now possible to evaluate the

importance of genomic events, such as WGDs, dysploidy, and

demipolyploidy, in the evolution of a group. This constitutes a

great opportunity to explore the occurrence of ancient WGDs

and their evolutionary implications (Glick and Mayrose 2014).

Since its launch, the chromEvol approach (Mayrose et al.

2010) has been applied to the study of chromosome number

evolution in about a dozen cases, either using simulated or

empirical data sets (Mayrose et al. 2011: 63 clades of vascular

plants; Ness et al. 2011: Pontederiaceae; Cusimano et al.

2012: Araceae; Ocampo and Columbus 2012: Portulaca,

Portulaceae; Cristiano et al. 2013: Atta and Acromyrmex, leaf-

cutter ants of tribe Attini; Harpke et al. 2012: Crocus,

Iridaceae; Metzgar et al. 2013: Cryptogramma, Pteridaceae;

Soza et al. 2013: Thalictrum, Ranunculaceae; Chacón et al.

2014: Colchicaceae; Pellicer et al. 2014: Melanthiaceae; Sousa

et al. 2014: Araceae). In addition, Escudero et al. (2014) mod-

eled the tempo and mode of chromosome number evolution

and its possible correlation with cladogenesis in 15 angiosperm

clades. In these studies, no particular bias toward any of the

chromosomal events that the model considers was observed.

In this study, we used this probabilistic method to infer

chromosomal change events (dysploidy and polyploidy) in

the evolution of the sunflower family (Asteraceae). This

family comprises the largest number of described species of

flowering plants with 24,000–30,000 species distributed in

1,600–1,700 genera (Funk et al. 2009). Its members occur

in all continents except Antarctica and occupy a great variety

of habitats (Funk et al. 2005). Considering this very large

number of species and the comparatively young age of the

family (Barreda et al. 2012), it is not surprising that Asteraceae

possess one of the highest rates of diversification among

flowering plants, being also indicative of the high ecological

and evolutionary success of its members (Funk et al. 2009).

Due to its size and importance, Asteraceae taxa have long

been characterized cytogenetically and are likely the family

of flowering plants with the highest number of chromosome

counts (128,855 records as compiled in the Index to

Chromosome numbers in Asteraceae [last assessed July 17,

2014]). So far, a very large range of chromosome numbers has

been described in Asteraceae: n = 2 to n = ca. 216 chromo-

somes, with n = 9 the most frequently observed haploid

number (Semple and Watanabe 2009). Many authors sug-

gested x = 9 as the base number of this family (Stebbins

1950; Solbrig 1977; Cronquist 1981; Bremer 1994; Semple

and Watanabe 2009; Bala and Gupta 2013), but x = 8 has also

been proposed (Vallès et al. 2005). In a previous study, Barker

et al. (2008) examined gene duplication and retention in

Asteraceae and found that at least three ancient WGDs

have occurred in this family. One WGD was placed near the

origin of the family just prior to the rapid radiation of its tribes,

whereas the other two were located near the base of the

tribes Mutisieae and Heliantheae (Barker et al. 2008).

In this study, we reconstructed the ancestral chromosome

number of Asteraceae and the occurrence of chromosomal

change events by applying the probabilistic model of Glick

and Mayrose (2014) to the largest phylogenetic framework

of the Asteraceae (Funk et al. 2009). This approach allowed

us to incorporate a very high number of taxa (588 taxa), in an

attempt to improve precision in the detection and localiza-

tion of chromosomal change events in the evolution of

Asteraceae. Overall, 655 chromosomal change events were

inferred, which could facilitate the identification of target

groups for more in-depth studies on gene duplication and

chromosomal evolution.

Materials and Methods

Phylogenetic Hypothesis

We used the phylogenetic supertree of the Asteraceae pro-

vided by Funk et al. (2009) with 757 taxa. This supertree
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mainly represents phylogenetic relationships among genera;

still, some problematic species were also considered. The

supertree covers approximately 46% of the ca. 1,650

genera of the Asteraceae family. In order to obtain a phylo-

genetic supertree with branch length information, a time-cal-

ibrated supertree was obtained following the procedure of

Torices (2010). The supertree (Funk et al. 2009) was first trans-

lated into a Newick tree file format. Then, using the BLADJ

function of Phylocom v.4.0.1b software (Webb et al. 2008),

nodes with known age, including the root of the tree, were

fixed according to the information on clade age estimates

available in the literature (supplementary table S2,

Supplementary Material online). Most of the age estimates

were selected based on molecular dating through fossil cali-

bration although other dating methods were also considered

in particular cases (e.g., geological dating; see supplementary

table S2, Supplementary Material online). As clade age esti-

mates are usually given as time intervals, and as the BLADJ

function only accepts one age per node, the average value of

the minimum and the maximum time estimates was calcu-

lated and used as calibration age (supplementary table S2,

Supplementary Material online). In some cases, the age

clade data were not consistent among sources. In these situ-

ations, the age estimate more consistent with previous esti-

mations was selected.

Chromosome Number Collection

The number of chromosomes of the genera and species that

belong to Asteraceae and of the outgroup families

Calyceraceae and Goodeniaceae were collected from the

Index to Chromosome numbers in Asteraceae (http://www.

lib.kobe-u.ac.jp/infolib/meta_pub/G0000003asteraceae_e; last

assessed 17 July 2014) and from the Chromosome

Counts Database (CCDB; http://ccdb.tau.ac.il/; last as-

sessed 22 February 2016; Rice et al. 2015). We first

searched the databases for taxa included in the supertree,

including the outgroup families. Considering the informa-

tion available in the databases, we collected chromosome

numbers for 588 taxa, resulting in a final total coverage of

chromosome number data for 77.7% of the taxa included

in the supertree.

Chromosome numbers were coded using the following

approach: first, all reported chromosome numbers of each

genus were annotated; B chromosome data, odd numbers,

and cases where chromosome counts were given as intervals

of numbers were not considered and were excluded from the

analysis. Second, the available chromosome information at

the diploid level was converted into haploid chromosome

numbers. After this conversion, 319 monomorphic

(54.25%) and 269 polymorphic (45.75%) genera were

obtained.

The evolution of haploid chromosome numbers was ana-

lyzed using two approaches, either considering chromosome

number polymorphism (hereafter polymorphic data) or not

(hereafter single data). In the latter case, one chromosome

number had to be selected from the polymorphic data set.

For that, the most frequent chromosome number was chosen.

The frequency of each chromosome number was calculated

considering all the species within a genus. Each species was

counted only one time, for each chromosome number. Thus,

all species of each genus had the same weight, and the fre-

quency reveals the number of different species with each

chromosome number and not the number of available

counts. When more than one chromosome number had the

same frequency, the smallest chromosome number was se-

lected. This latter strategy was considered because, according

to Mayrose et al. (2010), the smallest haploid chromosome

numbers are typically assumed to represent the non-dupli-

cated state, i.e., the basic chromosome number.

Evolutionary Models of Haploid Chromosome Number
Change

The evolution of haploid chromosome numbers of Asteraceae

was inferred using chromEvol software v.2.0 (Glick and

Mayrose 2014; http://www.tau.ac.il/~itaymay/cp/chromEvol/

index.html). This software is based on a probabilistic model

of chromosome number evolution that assumes that changes

in chromosome number over time result from a combination

of polyploidy (demiduplication and duplication events) and

dysploidy (ascending or descending, by chromosome fission

or fusion events, respectively) along branches of a phylogeny

(Mayrose et al. 2010). By comparing the fit of the different

models to biological data, it is possible to test the probability of

those events, enabling us to understand the pathways of chro-

mosome number evolution (Mayrose et al. 2010) and to esti-

mate the ancestral chromosome numbers at the internal

nodes of the tree (Glick and Mayrose 2014). The software

offers 10 models based on different combinations of nine

parameters: chromosome loss rate (�) that considers that the

number of chromosomes might decrease by one, with rate �;

chromosome gain rate (l) that assumes that the number of

chromosomes might increase by one, with rate l; chromo-

some duplication rate (�) that considers that the number of

chromosomes might double, with rate �; chromosome

demiduplication rate (�) that assumes the union of reduced

and unreduced gametes leading to, for example, triplication

events, with rate �; linear chromosome loss rate (�1) that con-

siders that the chromosome loss rate depends on the current

number of chromosomes; linear chromosome gain rate (l1)

that considers that the chromosome gain rate depends on the

current number of chromosomes; base chromosome number

(�) that is the monoploid chromosome number; base chromo-

some number rate for transitions (�); and the possibility to

define whether the base-number is optimized by the program

or not. According to Glick and Mayrose (2014), in complex

data sets such as the one used in this study, it is recommended
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to keep the base chromosome number fixed to the value

given by �. Therefore, for those models that included a base

chromosome number rate, considering the information avail-

able in the literature (Stebbins 1950; Solbrig 1977; Cronquist

1981; Bremer 1994; Semple and Watanabe 2009; Bala and

Gupta 2013), the hypothetical base number of Asteraceae

was fixed to x = 9. Four of these models consider only constant

rates (Mc1, Mc2, Mc3, and Mc0), whereas the other four

include two linear rate parameters (Ml1, Ml2, Ml3, and Ml0;

supplementary table S1, Supplementary Material online). Both

sets have a null model (Mc0 and Ml0) that assumes no poly-

ploidization events. Finally, two models (Mb1 and Mb2) con-

sider that the evolution of chromosome number can also be

influenced by the base number and by its transition rates (sup-

plementary table S1, Supplementary Material online).

To estimate the model and respective parameters of chro-

mosome evolution in Asteraceae, two approaches were fol-

lowed: first, all models were fitted to the data without

performing simulations to infer the best-fitted model (i.e.,

the one with the lowest Akaike Information Criteria (AIC)

value; Burnham and Anderson 2004); second, averaged pa-

rameters were estimated by weighing each rate parameter by

the AIC weights of each model (Bolker 2007); then, each pa-

rameter’s value was compared with those obtained with the

best model. All models were fitted twice considering either

single or polymorphic data, and the null hypothesis (no poly-

ploidy) was tested using an AIC test.

In the software, the minimum chromosome number was

set to 2, whereas the maximum number was set to 5 units

higher than the highest chromosome number found in the

empirical data. The branch lengths were scaled according with

the software author’s instructions. To compute the expected

number of changes along each branch, as well as the ancestral

haploid chromosome numbers at internal nodes, the best-

fitted model for both data sets was rerun using 5,000

simulations.

Ancestral Chromosome Number of Asteraceae

To test which haploid chromosome number is most likely to be

present at the root of Asteraceae, the chromosome numbers

inferred by the best-fitted model (see above) were fixed at the

root and the likelihood of the resulting models was compared.

The following haploid chromosome numbers were tested: 2

as the ancestral chromosome number obtained under maxi-

mum likelihood (ML), and 9 and 10, as the chromosome num-

bers with the highest PP under the Bayesian analysis. Only the

polymorphic coding scheme was used as it includes all chro-

mosome numbers, being the most complete data set under

analysis and the one with the highest amount of genetic var-

iation observed at this level. To summarize, we reran the best

model using the polymorphic data and fixed the root with

each one of the hypothetical chromosome numbers. The

model with the lowest AIC was then considered the most

likely ancestral state.

Polyploidization Events

The duplication and demiduplication events inferred in the

best-fitted model were mapped onto the phylogenetic tree.

Each type of genomic event was mapped according to these

expectation categories:� 0.5 and<0.8, � 0.8 and< 0.95,

and� 0.95. As chromEvol only enables identification of

those branches in which a polyploidization event occurred,

but not the exact period of time along the branch, polyploi-

dization events were simply depicted in the middle of the re-

spective branches.

Results

Models of Chromosome Evolution in Asteraceae

Regardless of the coding scheme, the best model was always

Mc2 (table 1). This model considers three parameters (supple-

mentary table S1, Supplementary Material online), i.e., chro-

mosome gain rate, chromosome loss rate, and chromosome

duplication rate, assuming that duplication and demiduplica-

tion rates are equal. This result supports the conclusion that

genome duplications (including whole- and demiduplications),

and dysploidy (including both ascending and descending)

were very important events in the evolution of Asteraceae.

In addition, the Mc0 model that considers no polyploidization

events on the evolution of haploid chromosome number was

always the model with the worst score (table 1); this result

further supports the importance of genome duplications in

the evolution of Asteraceae.

In each coding scheme, the rates of chromosome loss

(�), gain (l), and duplication (�) were equal when the best

model or all models were averaged (using the weighting

procedure). Slightly larger differences were observed be-

tween coding schemes, especially for the rates of chromo-

some loss. For the demiduplications rate, the obtained

value was always lower for the averaging models than

for the best model, independent of the coding scheme

(table 2). The linear rate parameters (i.e., linear chromo-

some loss, �1, and linear chromosome gain, l1, rates) and

the base chromosome number rate for transitions (�)

always presented very low values (table 2).

The Expected Number of Changes along Each Branch

Regardless of the coding scheme, the most commonly in-

ferred events (with an expectation>0.5) were chromosome

losses, followed by chromosome gains (table 2). The number

of events was always higher for the single data than for the

polymorphic data, independent of the type of chromosomal

change event (table 2).
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More than two hundred chromosome duplications (in-

cluding demiduplications) were inferred by the best model

(table 2). The number of chromosome duplications was

higher than the number of chromosome demiduplications

independently of the coding scheme (table 2). In all cases,

the observed differences were very small (table 2).

The Ancestral Haploid Chromosome Number in
Asteraceae

The two methods used to infer the ancestral chromosome

number of Asteraceae provided very different results. For

both single and polymorphic data sets, the ML method in-

ferred n = 2 as the most probable ancestral chromosome

number for Asteraceae. In the case of Bayesian analysis of

the single data, n = 9 was inferred as the ancestral chromo-

some number with the highest posterior probability (PP) (table

3, fig. 1 and supplementary fig. S1, Supplementary Material

online) and n = 10 as the second best haploid ancestral chro-

mosome number (table 3). For Bayesian analysis of the

polymorphic data, n = 9 was the only inferred number (table

3). Finally, when the most recent common ancestor of

Asteraceae was fixed with each one of these haploid numbers

(n = 2, 9, or 10), the lowest AIC and likelihood values were

always obtained when the root was fixed with n = 9 (table 4).

For most of the main lineages of Asteraceae, the estimated

ancestral haploid numbers were mainly n = 9 and n = 10 with

some exceptions, ranging from n = 7 to n = 27 (table 3, fig. 1,

and Supplementary Data Figure S1). A detailed analysis of the

results obtained for each tribe reveals that in 71.74% of the

cases the use of polymorphic data resulted in higher posterior

probabilities than single data in 27.27% of the tribes with a PP

higher than 0.90. Also, in 39.13% of the tribes, the Bayesian

inference and the ML method reconstructed the same ances-

tral number (table 3).

Polyploidy and the Evolution of the Family

Based on the best-fitted model, we found a significant

number (n = 22, or 28.95% of the total) of polyploidy

Table 1

Goodness of Fit of the 10 Different Models of Chromosome Number Evolution Applied to Both Polymorphic and Single Coding Schemes

Coding scheme Polymorphic data Single data

AICa wi AIC wi

Modelsb Mc0 4365.36 (10) 0.00 4521,52 (10) 0.00

Mc1 3212.72 (7) 0.00 3344.48 (7) 0.00

Mc2 3010.22 (1) 0.70 3175.18 (1) 0.67

Mc3 3012.02 (2) 0.28 3176.98 (2) 0.27

Ml0 3886.44 (9) 0.00 3925.98 (9) 0.00

Ml1 3180.42 (6) 0.00 3294.32 (5) 0.00

Ml2 3018.10 (3) 0.01 3180.84 (3) 0.04

Ml3 3019.84 (4) 0.01 3183.28 (4) 0.01

Mb1 3488.58 (8) 0.00 3496.40 (8) 0.00

Mb2 3169.84 (5) 0.00 3300.90 (6) 0.00

NOTE.—wi = AIC relative weights.
aIn bold, the lowest AIC value for each data set indicates the best model.
bIn brackets, the numbers indicate the descending order of the best model

Table 2

Rate Parameter Values and Frequency of the Four Possible Event Types with the Expectation� 0.5 in the Best Model and by Averaging All Models,

for Each Data Coding Scheme

Rate parametersa Events inferred with expectation � 0.5

Coding

scheme

Best

model

ML AIC d k q l d1 k1 m Losses Gains Dupl. Demi-dupl.

Polym. Mc2 -1502.11 3010.2 0.038 0.020 0.017 0.017 - - - 273.47 141.97 121.69 117.38

Averaging 0.038 0.020 0.017 0.005 8.651e�6 1.553e�5 2.193e�39

Single Mc2 -1584.59 3175.2 0.054 0.027 0.021 0.021 - - - 366.71 188.19 145.32 141.87

Averaging 0.054 0.027 0.021 5.965e�3 7.126e�6 5.722e�5 1.392�31

NOTE.—The maximum likelihood (ML) and AIC value of the best model in each case is also given.
aAccording to the branch length modifications made (this work) and following chromEvol author’s suggestion, the values of rate parameters were multiplied by 0.0053

and 0.0047 for single and polymorphic data, respectively.
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Table 3

Chromosome Number of the Most Recent Common Ancestor of the Asteraceae Family and of the Main Tribes, under the Best Model of

Chromosome Evolution for Each Coding Scheme (Polymorphic and Single Data) and Considering Both Methods of chromEvol for Inferring Ancestral

States (Bayesian Phylogenetic Inference, Bayes)

Family/Tribe Bayes best n (PP); Bayes 2nd best n (PP); ML Hypothesized base numbers

Polymorphic data Single data

Asteraceae 9 (1.00); 2 9 (0.99); 10 (0.004); 2 9a, 8b

Barnadesieae 9 (0.91); 8 (0.08); 9 9 (0.74); 8 (0.24); 8 8, 9, 12, 27c,***

Stifftieae 18 (0.37); 27 (0.24); 27 18 (0.36); 27 (0.18); 27 9*

Onoserideae 9 (0.47); 18 (0.23); 18 9 (0.78); 10 (0.11); 9 No data

Mutisieae 13 (0.38); 12 (0.37); 12 12 (0.33); 11 (0.24); 12 9d,*

Nassauvieae 9 (0.44); 13 (0.26); 12 9 (0.45); 10 (0.29); 9 No data

Hyalideae 27 (0.77); 18 (0.11); 27 27 (0.66); 18 (0.13); 27 -

Wunderlichieae 27 (0.35); 18 (0.20); 18 27 (0.28); 18 (0.19); 18 No data

Gochnatieae 9 (0.49); 14 (0.16); 12 9 (0.43); 14 (0.14); 12 4; 9; 23e,***

Hecastocleideae 9 (1.00); 2 9 (1.00); 2 8f,***

Dicomeae 9 (0.93); 10 (0.06); 10 9 (0.95); 10 (0.03); 6 10; 11*

Oldenburgieae 18 (0.57); 9 (0.37); 18 9 (0.87); 10 (0.07); 9 9*

Tarchonantheae 18 (0.77); 9 (0.20); 18 9 (0.93); 8 (0.03); 9 9*

Cardueae 9 (0.85); 10 (0.10); 10 9 (0.88); 8 (0.08); 6 10*; 7–16g1 ***, 17g2

Pertyeae 13 (0.39); 9 (0.27); 6 13 (0.36); 9 (0.26); 12 13h,***

Gymnarrheneae 9 (1.00); 2 9 (1.00); 2 10*

Cichorieae 9 (0.95); 8 (0.05); 6 9 (0.85); 8 (0.12); 6 9i,*/***

Heterolepis 9 (0.99); 8 (0.01); 6 9 (0.98); 8 (0.02); 6 6j,***

Eremothamneae 9 (0.32); 8 (0.16); 6 9 (0.24); 8 (0.16); 6 -

Arctotideae_Arct 9 (0.94); 10 (0.03); 6 9 (0.88); 10 (0.06); 6 9*

Arctotideae_Gort 8 (0.52); 9 (0.40); 5 8 (0.47); 9 (0.43); 5 9*

Plathycarpheae 9 (0.75); 10 (0.22); 5 9 (0.67); 10 (0.27); 5 -

Liabeae 9 (1.00); 9 9 (0.99); 10 (0.01); 9 7; 9*; 12; 14; 16; 18k,***

Distephanus 10 (0.62); 9 (0.38); 10 10 (0.70); 9 (0.29); 10 No data

Moquinieae 10 (0.36); 9 (0.29); 10 10 (0.33); 9 (0.25); 10 -

Vernonieae 10 (0.96); 9 (0.04); 10 10 (0.96); 9 (0.04); 10 10*

Corymbieae 9 (0.70); 10 (0.29); 15 9 (0.62); 10 (0.36); 15 8l,***

Senecioneae 10 (0.91); 9 (0.09); 10 10 (0.91); 9 (0.09); 10 5; 10m,*

Calenduleae 9 (0.77); 10 (0.21); 16 9 (0.71); 10 (0.26); 17 8; 9; 10*

Gnaphalieae 8 (0.48); 9 (0.25); 8 8 (0.52); 9 (0.42); 8 6; 7; 10*; 11; 12; 13; 14n,*/***

Anthemideae 9 (0.97); 10 (0.03); 9 9 (0.93); 10 (0.06); 10 9�; 10*/***

Astereae 9 (0.99); 10 (0.01); 9 9 (0.97); 10 (0.03); 9 9p,*/***

Inuleae 9 (0.70); 10 (0.29); 10 9 (0.61); 10 (0.37); 10 5, 8, 9, 10q1,*, 7–11q2/***

Athroismeae 10 (0.80); 9 (0.16); 11 10 (0.73); 9 (0.17); 11 7; 10r,*/***

Feddeeae 9 (0.90); 10 (0.10); 13 9 (0.79); 10 (0.20); 12 No data

Helenieae 9 (0.93); 10 (0.04); 13 9 (0.80); 10 (0.14); 11 18**

Coreopsideae 9 (0.79); 10 (0.08); 12 9 (0.72); 10 (0.26); 10 12; 16*

Neurolaeneae 9 (0.80); 10 (0.13); 11 9 (0.79); 10 (0.17); 10 11*

Tageteae 9 (0.81); 12 (0.10); 12 9 (0.93); 10 (0.05); 9 18**

Chaenactideae 9 (0.45); 8 (0.43); 9 7 (0.39); 8 (0.38); 8 9*

Bahieae 10 (0.68); 11 (0.12); 11 10 (0.49); 11 (0.17); 10 17**

Polymnieae 9 (0.92); 10 (0.07); 10 9 (0.85); 10 (0.14); 10 15s

Heliantheae 18 (0.74); 9 (0.14); 18 18 (0.65); 9 (0.17); 18 8, 9, 17–19, 18t

Millerieae 9 (0.55); 8 (0.35); 9 9 (0.46); 8 (0.42); 9 9; 10; 11; 12; 14u

Perityleae 18 (0.83); 9 (0.16); 18 18 (0.78); 9 (0.19); 18 18v,**

Eupatorieae 9 (0.80); 10 (0.19); 9 9 (0.71); 10 (0.24); 9 10; 17; 18w

Madieae 9 (0.97); 8 (0.02); 9 9 (0.88); 8 (0.07); 9 19**

NOTE.—The base numbers already reported in the literature for Asteraceae and its main tribes are also given. The dash (-) present on the base number of some tribes
indicates the absence of data, according to Funk et al. (2009).

aThe two most probable ancestral chromosome numbers obtained through the Bayesian phylogenetic inference (Bayes), with the probability (PP) of occurrence given in
parentheses, as well as, the result of the maximum likelihood (ML) are provided. Arct. =Arctotidinae subtribe; Gort.= Gorteriinae subtribe.

aSolbrig (1977), Cronquist (1981), Bremer (1994), and Bala and Gupta (2013).
bVallès et al. (2005).
cStuessy et al. (2009), chapter 13; x= 27 (Watanabe et al. 2007).
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events with an expectation� 0.95 (fig. 1). We found 22

(28.95%) and 32 (42.10%) additional polyploidy events

when considering the lower expectations of� 0.80

and� 0.50, respectively. Also, these events were not ran-

domly distributed across the tree: some lineages, including

the Senecioneae (17), Madieae (11), and Coreopsideae (6)

presented a higher frequency of duplication events than

others (fig. 1 and supplementary fig. S2, Supplementary

Material online).

Polyploidization events were inferred mainly toward the

tips of the tree (fig. 1). Only two genome duplication events

were inferred deeper in the phylogeny: one in the base of the

Hyalideae and Wunderlichieae tribes (expectation of 0.81) and

another in the base of the Oldenburgieae and

Tarchonantheae tribes (expectation of 0.58). This is in accor-

dance with the chromosome number transition observed be-

tween the ancestor (n = 9) and the common ancestor of these

tribes (n = 27 and n = 18, respectively) (fig. 1 and supplemen-

tary fig. S2, Supplementary Material online).

The best-fitted model did not support any duplication event

at the origin of the family or at the diversification of the main

lineages of Asteraceae (fig. 1). The absence of polyploidization

events at the base of the tree is in agreement with the main-

tenance of the ancestral chromosome number of n = 9 inferred

for the main tribes (fig. 1 and supplementary fig. S1,

Supplementary Material online).

Discussion

According to the model that best explained our data (Mc2

model), the evolution of haploid chromosome numbers in

Asteraceae was a very dynamic process. This model inferred

that the most probable ancestral chromosome number of

Asteraceae is n = 9. Also, more than one hundred WGD

events and a large number of descending dysploidy events

were inferred. Interestingly, the proposed paleopolyploidiza-

tion events at the origin of the family or at the time of diver-

gence of the main lineages of this family were not detected.

These events were hypothesized by Barker et al. (2008, 2016)

on the basis of single species Ks plots of gene duplications and

Multi-tAxon Paleopolyploidy Search (MAPS), respectively.

Below, we discuss our results and potential causes of discor-

dance with previous studies.

Models of Chromosome Evolution in Asteraceae

Our analyses of chromosome number evolution in Asteraceae

revealed that the haploid chromosome number shifted fre-

quently during the evolution of the family. The best-fitted

evolutionary model (Mc2 model) showed that dysploidy and

polyploidy were very frequent events (table 1). More precisely,

descending dysploidies, most likely through chromosome

fusion, were the most common genetic mechanism of chro-

mosome number change during the evolution of Asteraceae

(table 2). These results are similar to those obtained for the

Araceae (Cusimano et al. 2012), Melanthiaceae (Pellicer et al.

2014), and Colchicaceae (Chacón et al. 2014), where de-

scending dysploidy was also the most frequently inferred

event. In the particular case of some tribes of Asteraceae,

previous studies that utilized different approaches have also

shown that dysploidies (more precisely, descending dysploidy)

and genome duplications were two frequent and important

processes of chromosome number change (Ito et al. 2000;

Funk and Chan 2009; Semple and Watanabe 2009;

Susanna and Garcia-Jacas 2009; Ward et al. 2009;

dx =9 seems to be available for all or nearly all the base numbers listed.
ex= 4, x =9, x= 23 (reviewed by Sancho and Freire (2009), chapter15.
fBased on a single count of 2n =16 (Funk and Hind 2009), chapter 16.
g1Susanna and Garcia-Jacas (2009), chapter 20.
g2Watanabe et al. (2007).
hFreire (2009), chapter 21.
iRaven et al. (1960); Funk and Chan (2009), chapter 23.
jFunk and Karis (2009), chapter 31.
kDillon et al. (2009), chapter 27.

lBased on a single count of 2n =16 in Corymbium congestum (Nordenstam and Funk 2009), chapter 32.
mRaven et al. (1960) and Vallès et al. (2005).
nVallès et al. (2005), Watanabe (2009) cited in Watanabe et al. (2007), and Ward et al. (2009), chapter 36.
oVallès et al. (2005), Watanabe et al. (2007), and Oberprieler et al. (2009), chapter 38.
pRaven et al. (1960); Watanabe et al. (2007); Brouillet et al. (2009), chapter 37.
q1Raven et al. (1960) and Vallès et al. (2005).
q2Watanabe et al. (2007), Robinson et al. (1997) presented x =10, and Anderberg (2009a, 2009b) presented the base numbers of x =9 or x =10, chapter 39.
rAnderberg (2009a), chapter 40.
sEstes and Beck (2011).
tx =9 or its multiples (Raven et al. 1960) or also x= 18 (Watanabe et al. 2007); x =17–19 (Smith 1975) and x =8 (Stuessy 1977) cited in Robinson (1981).
uBlöch et al. (2009).
vRobinson (1981) and Baldwin et al. (2002).
wx= 10 (Robinson et al. 1997), x =17 (Watanabe et al. 1995), x= 18 (Watanabe et al. 1999) cited in Watanabe et al. (2007).
*Estimated by Funk et al. (2009).
**Estimated by Baldwin et al. (2002).
***Funk et al. (2009).
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Anderberg 2009b). In other tribes of the family, such as

Barnadesieae and Cichorieae, polyploidy alone seems to

have played the most important role (Robinson 1981; Vallès

et al. 2005; Baldwin 2009; Kilian et al. 2009; Oberprieler et al.

2009; Sancho and Freire 2009; Stuessy et al. 2009). A recent

study exploring karyotypic changes in 15 clades of angio-

sperms also highlighted the co-occurrence of dysploidy and

polyploidy (Escudero et al. 2014). Thus, our results, and those

of previous studies, emphasize the importance of these phe-

nomena in the evolution of chromosome numbers of flower-

ing plants.

The reduction of chromosome number polymorphisms

within a taxon to a single count could impact the number of

reconstructed events of chromosomal change. In our case, the

use ofdifferent chromosome number coding schemesaffected

the number of events that occurred along the branches of the

tree, but did not affect the selection of the best model of chro-

mosome evolution. Both coding schemes supported the same

model, with similar parameter values being obtained (table 2),

but the use of single data inferred almost 30% more chromo-

somal change events than polymorphic data. The impact of

different coding schemes needs further scrutiny in the future,

for example, by using simulations that may allow testing for

differences between the inferences and the real data.

Nevertheless, the use of data that includes several counts

and accounts for the frequency of these counts seems prefer-

able in order to reduce the assumptions associated with sum-

marizing several counts to one single representative count.

FIG. 1.—Chromosome number evolution of the Asteraceae, using the polymorphic data and according to the best-fitted model obtained. The main

tribes were collapsed. Stars represent the expected chromosome number duplication events, while the circles at the tips of each branch represent the

percentage (%) of the current chromosome numbers known for each tribe. Inside each circle (at interior nodes) the ancestral chromosome number with the

highest probability is given. The differences observed between our study and previous ones (Barker et al. 2008, 2016) are highlighted as red and orange

branches, respectively. Overall, our approach did not infer any paleoploidization events near the base of the family, nor any paleoploidization shared with the

sister family, Calyceraceae. Also, no paleoploidization event was detected near the base of the tribe Mutisieae. Colors and shading are explained in the inset.

For further and more precise information about the percentage of the current chromosome numbers for each tribe, please see the supplementary table S3,

Supplementary Material online.
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Ancestral Chromosome Numbers

Our model of chromosome number evolution allowed infer-

ence of the ancestral haploid numbers for the sunflower

family using an evolutionary model and a robust and statisti-

cally well-understood approach (Cusimano et al. 2012;

Cusimano and Renner 2014) (fig. 1; for further and more

precise information on all the ancestral numbers inferred,

see Supplementary Data Figure S1). Overall, our results are

in agreement with previous hypotheses of ancestral chromo-

some numbers for the Asteraceae and for many of its tribes

(table 3); i.e., n = 9 (under Bayesian inference) is the most

probable ancestral haploid chromosome number (Solbrig

1977; Cronquist 1981; Bremer 1994; Semple and Watanabe

2009; Bala and Gupta 2013). Unexpectedly, the ancestral

number for Asteraceae obtained under the ML approach

was n = 2, a very low and seemingly unrealistic number

(table 3). Considering the fact that across the tree other an-

cestral ML estimations were very consistent with those ob-

tained using the Bayesian approach, it is difficult to envisage

the causes for this large discrepancy in the ancestral number

of the family.

Still, several discrepancy between inferences (for ancestral

and base chromosome number) obtained in this study and

those of previous works were observed (e.g., in Mutisieae,

Hecastocleideae, and Corymbieae; table 3). Two main factors

might have contributed to these discrepancies: 1) the use of

different approaches, in particular the use of the haploid chro-

mosome number (used in this study) instead of the base chro-

mosome number (in other studies) and 2) incomplete taxon

sampling. Previous estimations were frequently based on al-

gebraic inferences, or the authors only considered the lowest

available haploid count as the ancestral condition instead of

using explicit models of chromosome evolution (Powell et al.

1974; Weitz 1989). Despite the fact that our analysis makes

use of the largest phylogenetic tree of the family to date, it

should be noted that it still represents an incomplete data set.

Therefore, future studies should be performed using more

complete phylogenetic trees (when made available) that will

enable better inferences of ancestral states and to clarification

of whether the discrepancies are related to the lack of com-

plete sampling or are due to other reasons.

Polyploidy and the Evolution of the Family

The present study also revealed the occurrence of several

WGDs along the evolution of several lineages of Asteraceae.

Our best model inferred some of the WGDs suggested in

previous analyses of ESTs (Barker et al. 2008), but not all of

them. For instance, in the present study, a WGD event with a

high expectation (� 0.8) was observed near the base of the

Heliantheae tribe (fig. 1; for further and more precise infor-

mation of all the duplication and demiduplication events in-

ferred, see supplementary fig. S2, Supplementary Material

online). This result partially supports previous evidences from

genomic and cytological analyses that revealed independent

genome duplications near the base of this lineage (Baldwin

et al. 2002; Barker et al. 2008, 2016). Nevertheless, according

to our results, a paleopolyploidization event seems to have

occurred at the base of the Heliantheae tribe sensu stricto

(s.s.), instead of having occurred at the base of the

Heliantheae alliance, that is, Heliantheae sensu lato (s.l.),

which includes several tribes, from Helenieae to Madieae, as

has been suggested.

Other paleopolyploidization events inferred by phyloge-

nomic analyses (Barker et al. 2008, 2016) were not observed

in our study (fig. 1 and supplementary fig. S2, Supplementary

Material online). In particular, a paleopolyploidization event

near the origin of the family, just prior to the rapid radiation

of its tribes, as recently suggested (Barker et al. 2008, 2016) to

be shared with Calyceraceae (the sister family of Asteraceae)

was not observed in our case. Also, a paleohexaploidization

event in the ancestry of the core of Asteraceae (except

Barnadesia) (Barker et al. 2016) and an independent WGD

near the base of the tribe Mutisieae (Barker et al. 2008)

were not inferred by the evolutionary models of chromosomal

number change.

The discrepancy between our study and previous work

(Barker et al. 2008) observed at the origin of Asteraceae

might be due to the use of different approaches. Barker

et al. (2008) performed a comparative study of thousands of

ESTs from 18 Asteraceae species and two outgroups (Solanum

lycopersicon and Arabidopsis thaliana). Although their study

provides a valuable perspective, the number of species used

can be considered a small sampling of this large plant family.

Also, considering the outgroups used, the WGD attributed to

the origin of Asteraceae might have occurred before the origin

of this family, as the most common recent ancestor of both

outgroups is much deeper (dated at 93–100 Mya for S. lyco-

persicon, and at 117–121 Mya for A. thaliana), than the most

common recent ancestor of the three families we used

(Asteraceae, Calyceraceae, and Goodeniaceae). The duplica-

tion event reported by Barker et al. (2008) may have occurred

somewhere after the divergence of Asteraceae and

Table 4

AIC and ML Values Obtained with and without Fixing the Asteraceae

Root with a Certain Haploid Chromosome Number

AIC ML

Root not fixed 3010.22 -1502.11

Root fixed at 2 3036.40 -1515.20

Root fixed at 9 2990.68 -1492.34

Root fixed at 10 3000.14 -1497.07

NOTE.—For the root fixed analyses, the ancestral number given by ML method
and the two best ancestral numbers as inferred by the Bayesian analyses were
considered. All analyses were performed with the polymorphic data only, using
the best model (Mc2). The lowest AIC and ML values are shown in bold.
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Solanaceae, namely in the split between Campanulids and

Lamiids (Soltis et al. 2011), a considerable phylogenetic dis-

tance from the origin of Asteraceae.

More recent analyses performed by Barker et al. (2016)

using a new algorithm, MAPS, evidenced the occurrence of

a shared paleotetraploidization event at the base of

Calyceraceae, and that most Asteraceae (except Barnadesia)

are descendants of a paleohexaploid. In our case, no WGD

events were observed at the base of Calyceraceae or at the

base of the Barnadesieae tribe. Instead, we inferred a WGD

and a demiduplication event along the evolution of

Calyceraceae, and two WGD events within Barnadesieae

(fig. 1 and supplementary fig. S2, Supplementary Material

online). Thus, the evolutionary model of chromosome

number change used here inferred independent WGD

events in different lineages, whereas phylogenomic analyses

(Barker et al. 2008, 2016) seem to interpret these duplication

events as the result of a shared duplication event occurring in

the common ancestor of the analyzed taxa. In the near future,

with the increasing number of available transcriptomes, it

should be possible to have a clearer picture of these paleopo-

lyploidization events.

Finally, Barker et al. (2008) suggested the occurrence of

another WGD at the base of the tribe Mutisieae. In our

study, which includes 11 species/genera of the tribe, three

WGD events were observed: two events along the evolution

of Brachyclados and Chaptalia and another before the diver-

sification of Adenocaulon, together with two demiduplica-

tion events along the evolution of Trichocline and Leibnitzia.

Still, none of these events are related to the origin of the

tribe or with the origin of the sister tribe Nassauvieae (fig. 1

and supplementary fig. S2, Supplementary Material online),

as suggested by Barker et al. (2008). Nevertheless, Mutisieae

s.l. is considered a very complex group that still lacks full

resolution of its phylogenetic relationships (Funk et al.

2009). Further, chromosome count information is absent

for many of the genera in tribe Mutisieae s.l. Therefore, all

these results should be considered with caution and deserve

further detailed analyses once the present limitations are

overcome.

The majority of the WGDs reconstructed were observed

toward the tips of the tree (fig. 1 and supplementary fig.

S2, Supplementary Material online). The same pattern was

observed in Araceae (Cusimano et al. 2012) and

Melanthiaceae (Pellicer et al. 2014). This result, as well as

the lack of congruence with the results of Barker et al.

(2008, 2016), may be related to the fact that deep polyploi-

dization events may be harder to detect than recent ones

using the chromEvol algorithm due to genomic changes and

rearrangement following polyploidization. For example, in

Arabidopsis and in some close relatives, species are regarded

as genetically diploid based on chromosome number, but

based on genomic data, it has been shown that multiple

paleopolyploid duplications were likely followed by

evolutionarily younger WGD events, but are masked due to

massive genome repatterning and descending dysploidy

(Barker et al. 2009; Mandáková et al. 2010). Alternatively,

most ancient events may have led to lineages that did not

survive until present times. As genomic changes and rearran-

gements after duplication can only be detected via genomic

approaches, further studies combining evolutionary models of

chromosome number change and phylogenomic approaches

are fundamental to a full assessment of the reliability of these

results and to give further insights into genome evolution in

Asteraceae. We believe that the use of chromEvol gives valu-

able estimates of chromosomal evolution, providing exciting

hypotheses that can be examined in the future. However,

using chromosomal data alone can lead to incorrect inference

of genome duplication events, and thus it should regarded as

a first approximation that needs to be further confirmed with

genomic approaches. The combination of both approaches

could provide an effective tool in phylogenetic placement of

genomic events (see Crowl et al. 2016), as well as the study of

potential diploidization events after WGD.

In conclusion, this study supports the hypothesis that the

evolution of Asteraceae was marked by a considerable

number of chromosomal change events, including polyploidy.

However, genome duplications seem to have occurred after

the main diversification of the tribes. In addition, those line-

ages that have experienced WGDs before their diversification,

such as Hyalideae, Wunderlichieae, Oldenburgieae, or

Tarchonantheae, are much less species rich than other line-

ages where WGDs were not observed, such as in

Senecioneae, Astereae, Anthemideae, and Cichorieae.

Therefore, further studies are needed to fully understand

the importance of these genomic mechanisms in the evolution

of Asteraceae and of the angiosperms.

Supplementary Material

Supplementary tables S1–S3 and figures S1 and S2 are avail-

able at Genome Biology and Evolution online (http://www.

gbe.oxfordjournals.org/).
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