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Abstract

Background: The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host.
ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for
bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure
of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized.

Methodology/Principal Findings: Here we determined the crystal structure of SsTroA from a highly pathogenic
streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma
mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn2+ and Mn2+. Both metals bind to SsTroA with
nanomolar affinity and stabilize the protein against thermal unfolding. Zn2+ and Mn2+ induce distinct conformational
changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic
resonance (NMR) spectra. NMR data also revealed that Zn2+/Mn2+ bind to SsTroA in either the same site or an adjacent
region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein.

Conclusions/Significance: Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides
a reasonable explanation as to how SsTroA operates in metal transport.
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Introduction

Streptococcus suis serotype 2 (S. suis 2) is a gram-positive coccus

that causes diseases in pigs and humans, and is therefore a

zoonotic pathogen [1,2]. Since the first human case of S. suis 2

infection was described in Denmark in 1968, over 400 human S.

suis infection cases have been recorded thus far, covering nearly 30

countries [2,3]. In 1998 and 2005, S. suis 2 human infections, with

the new disease form of streptococcal toxic shock syndrome

(STSS), had been reported in China, following the outbreaks in

swine stocks initially, which caused a total of 240 human infections

and claimed 52 lives [4]. Our group, in collaboration with other

groups, has sequenced the entire genomes of the representatives of

these two virulent S. suis 2 isolates (05ZYH33 and 98HAH12) in

2007 [5] and laid the foundation for the study of the STSS-causing

S. suis 2 at the molecular level to reveal its pathogenicity [1,6,7].

Almost one third of proteins in nature depend on a particular

metal for their diverse functions [8] and divalent metal cations are

essential for bacteria [9]. For instance, manganese plays a primary

antioxidant role in bacteria [10] and affects bacterial pathogenesis

[11]. Zinc is one of the most abundant metals in bacteria and is an

essential co-factor of many metabolic enzymes and transcription

factors [12]. The Mn2+ ion is characterized as hard metal and

tends to prefer hard ligands, while zinc prefers soft ligands [13]. To

obtain appropriate cellular concentrations of transition metal ions,

bacteria have evolved elaborate machineries (such as ABC-

transporters and ion channels) to transport these ions across biolo-

gical membranes.

ABC transporters and metal ions are significant for bacteria

growth and virulence in Streptococcus [14]. However, only recently

have insights emerged into the metal metabolism of S. suis. The

adcR gene (which encodes the regulator of the Adc operon) was

isolated by divalent cation deprivation [15]. Furthermore, the

extracted cell surface proteins of S. suis from mutants defective in

genes regulating metal ion uptake are able to confer significant

protection against S. suis 2 infection in mice [16]. Previously, we

identified a global zinc-response regulator of the Zur family (zinc

uptake regulator) from S. suis 2 [17], unveiling its relationship

with zinc homeostasis in this organism. Whole-genome sequence

analysis led to the proposition that S. suis expresses two putative
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transition metal transport systems, encoded by the Adc operon

[15] and Tro operon (Table S1), consistent with the situation in

many other bacterial pathogens that harbor several metal

transporters.

TroA was isolated from outer membrane preparations of

Treponema pallidum (TpTroA) [18]. This protein belongs to a well-

studied family, formerly designated as cluster 9 substrate binding

protein (SBP) [19], but recently reclassified into the A-1 family of

prokaryotic SBPs [20]. The SsTro operon contains five genes, an

ATP-binding cassette metal transport system (troABCD) (encoding

four proteins) and a transcriptional regulator (troR) (Fig. 1A). The

crystal structures of some A-1 family SBPs have been determined

over the past decade. These structures include Mn-specific SBPs

(e.g.,TpTroA [21]–[22], Streptococcus pneumoniae PsaA [23], and

Synechocystis 6803 MntC [24]), Zn-specific SBPs (e.g., S. pneumoniae

AdcAII [25], Synechocystis 6803 ZnuA [26,27], and S. pyogenes Lbp

[28]) and Fe-specific SBPs (Streptococcus pyogenes MtsA [29]). They

share a common structure of two (a/b)4 domains linked by a long

helix, with the metal bound at the interface between the domains.

Hazlett et al. [30] and Desrosiers et al. [31] revealed that TpTroA

has high binding affinity for both Zn2+ and Mn2+, but Zn2+ is

considered to be the primary substrate of TpTroA [32].

Although the A-1 family SBPs has been extensively character-

ized they have been the subject of considerable controversy with

respect to their metal binding properties. When bound to metal,

by CD spectra TpTroA does not undergo structural changes,

however, T. pallidum ZnuA undergoes conformational changes

when Zn2+ is loaded [31]. Synechocystis 6803 ZnuA displays con-

comitantly large conformational changes in two of its three

chelating histidines due to the release of Zn because it possesses

two Zn binding sites [27]. However, the second binding site is

absent in other transporters (e.g., TpTroA), and therefore its exact

biological function remains unclear [33]. To obtain further insight

into the function of SsTroA, we determined the X-ray crystal

structure of the Zn2+-bound form of the SsTroA at a resolution

of 2.6 Å, and further characterized the recombinant SsTroA.

Binding of divalent metal cations to SsTroA, induces a substantial

conformational reorganization to a more ordered state. Our

structural and functional data reported here lay out the scenario of

SsTroA participating in S. suis divalent metal homeostasis.

Results

In silico analyses, cloning, purification and biochemical
characterization of SsTroA

In silico analysis revealed that SsTroA is a putative lipoprotein

(Fig. 1B). The amino-terminal signal sequence of such lipoproteins

is distinguishable by the presence of a lipobox motif at the signal

sequence cleavage site. The conserved lipobox motif is usually

characterized as L23-[A/S/T]22-[G/A]21-C+1 and lipid modifi-

cation is achieved through a covalent linkage of a diacylglyceride

to the conserved cysteine residue. Indeed, the cysteine residue is

absolutely conserved in all bacterial lipoproteins [34,35]. SsTroA

contains a typical type II signal peptide for Sec-dependent

transport. Its presumptive lipobox sequence is LGAC, containing

the indispensible cysteine in position 30, indicating that SsTroA is

not released into the environment but rather inserted into the

plasma membrane via a diacylglyceryl anchor. Alignment of

sequences also revealed that the metal binding site of SsTroA is

very similar to Mn-specific SBPs (Fig. 1B). These data suggested

that the SsTroA should physiologically bind Mn2+.

We cloned the mature SsTroA domain (residues 36–317), and

the protein was purified using GST-affinity column and a

subsequent gel-filtration chromatography (Fig. S1A). Samples

collected from elution fractions were separated by 12% SDS-

PAGE (Fig. S1A) and the results show that SsTroA has a

molecular mass of ,34 kDa, in consistence with the theoretical

monomer molar mass of 32 kDa. An analytical FPLC SuperdexH
200 profile revealed that SsTroA exists as a mixture of monomer

and dimer in solution, though mainly as a monomer (Fig. S2A). To

determine the native mass of SsTroA (unaffected by protein

shape), quantitative hydrodynamic analyses were performed

by analytical ultracentrifugation. Analysis of the sedimentation

velocity profiles using the SEDFIT program yielded the weight

average molar mass of the major peak is 31.8 kDa (Figure S2B),

which accounts for 90% of the total protein (i.e., nearly identical to

the theoretical molar mass of 32 kDa). Another peak at 62.6 kDa

(6.8% of the total) is believed to correspond to dimers. The other

,3.2% of the protein has a significantly-higher sedimentation

coefficient, but the amount of this subpopulation did not change

significantly as a function of protein concentration. Thus, our data

suggest that under the solution conditions used, a small portion of

SsTroA is involved in the formation of stable complexes. This

is consistent with the evidence that periplasmic SBPs exist in a

monomer/dimer equilibrium, with monomers having higher

affinity for the substrate [36,37].

To determine if SsTroA is expressed in S. suis 2, total cellular

proteins from S. suis 2 cells, purified SsTroA, and negative control

protein (Ss1661 protein from S. suis 2) were separated by SDS-

PAGE, transferred to a nitrocellulose membrane (GE Healthcare),

and probed with anti-SsTroA serum. A 34-kDa protein band was

detected in the S. suis 2 cell lysate (Fig. S1B), indicated that SsTroA

is expressed in the bacteria.

Metal binding stoichiometries and binding affinities
To investigate the presence of divalent metal ions in the purified

SsTroA and assess the ability of SsTroA to bind metal ions, the

recombinant protein was subjected to a test of inductively coupled

plasma mass spectrometry (ICP-MS) analysis. The metal contents

of SsTroA as isolated or after reconstitution were shown in Table 1.

The stoichiometry was found to be 0.9660.2 Zn2+/SsTroA

monomer and 0.8960.2 Mn2+/SsTroA monomer, which suggests

that recombinant SsTroA protein binds Zn2+ and Mn2+ roughly in

a 1:1 ratio. The ICP-MS data provided support for one metal

binding site per SsTroA monomer, as observed in TpTroA and

Neisseria gonorrhoeae MntC [31,33]. This led us to evaluate the metal

interactions with the SsTroA protein in more details.

We applied isothermal titration calorimetry (ITC) to monitor

the energetics of Zn2+ and Mn2+ binding to the apo-SsTroA. ITC

measures the heat directly released or absorbed upon an in-

teraction triggered by mixing two components, and is capable of

calculating both the extent of the ligand binding affinity and the

free energy values (DG) and enthalpy(DH) changes, from which

entropy (DS) is determined [38]. The isotherms for loading with

Zn2+ and Mn2+ appeared in normal sigmoidal titration curves, in

agreement with our ICP-MS data. Again the binding stoichiom-

etry (n) was determined to be ,1 in both cases (Fig. 2), confirming

that a specific 1:1 complex is formed in each case. The association

constants (Ka) for each metal ion binding to SsTroA were around

107 M21 (Fig. 2). SsTroA affinities for Zn2+ and Mn2+ were

calculated from duplicate measurements with KDs ( = 1/Ka) of

43469 nM and 254613 nM, respectively, indicating the forma-

tion of tight complexes. It should be noted that SsTroA binds

Mn2+ with a higher affinity than that of Zn2+. These values are of a

similar magnitude to those described for binding of Zn2+ and

Mn2+ to N. gonorrhoeae MntC [33]. In each metal ion titration with

both metal ions, we observed negative enthalpy and entropy

values, demonstrating that binding of each ion to SsTroA is an
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exothermic event. The thermodynamic profiles for metal binding

by SsTroA are not identical to those previously reported for

TpTroA [31]. Intrinsic metal binding to proteins is usually

entropically driven (DH.0) due to the very high dehydration

energies of divalent cations. However, the binding enthalpy can

become exothermic (DH,0) if metal binding is coupled to a

protein conformational change [39,40]. Our ITC data are

consistent with a significant conformational change observed in

Figure 1. Genetic organization of the S. suis Tro operon and alignment of SsTroA homologues. (A) Gene descriptions of the S. suis Tro
operon. (B) Structure-based multiple sequence alignment of SsTroA homologues. The most-conserved residues in all homologues are shaded blue.
The four metal-coordinating residues are highlighted in green. The LXXC lipoprotein motif (type II signal peptides for Sec-dependent transport) [34] is
highlighted in red. The two conserved residues predicted to form the salt bridge are marked in yellow. Secondary structure elements for SsTroA are
shown above the sequence. TpTroA, TroA from Treponema pallidum; SpPsaA, PsaA from Streptococcus pneumonia; SyMntC, MntC from Synechocytis
6803.
doi:10.1371/journal.pone.0019510.g001
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our nuclear magnetic resonance (NMR) and CD spectra.

Thermodynamic parameters for the binding of Zn2+/Mn2+ to

SsTroA are summarized in Table S2.

Room temperature Electron Paramagnetic Resonance
(EPR) monitoring of Mn2+-SsTroA complex

EPR spectroscopy is a useful tool that allows one to probe

differences in the metal centers of proteins in solution that may not

be apparent in the crystal structures [41]. To further investigate

the SsTroA metal center, sample of 100 mM apo-SsTroA was

loaded with 100 mM MnCl2. The X-band EPR spectra of

Mn2+-SsTroA at room temperature displays a typical six-line

pattern (Fig. 3A). High-spin Mn2+ centers typically exhibit EPR

resonances with characteristic six-line splitting patterns due to

hyperfine interactions between the unpaired electrons and the

I = 5/2 55Mn nucleus, indicating the binding of the Mn2+ to the

protein [42]. Upon entrance of the Mn2+ into the binding site, the

Mn2+ bound protein reduces the coordination of weakfield water,

increasing spin-orbit interactions and zero-field energies relative to

that of Mn(H2O)6
2+. As observed, both titration traces had similar

spectra but with varying intensities of the signal. These data clearly

illustrate that high-affinity Mn2+ binding by SsTroA makes

SsTroA sensitive to scavenging low levels of free Mn ions in the

surrounding environment.

Decreased fluorescence intensity of 1-anilino
naphthalene-8-sulfonic acid (ANS) with SsTroA upon
metal loading

To examine whether ligand binding induces a variation of

exposed hydrophobic protein regions, we applied fluorescence

spectroscopy to monitor the binding of the hydrophobic probe

ANS to SsTroA. ANS is extensively used to detecting the

Table 1. Metal contents of SsTroA after initial isolation or
after reconstitution.

Metal ions Metal in SsTroAa

After initial isolation

Zn2+ 0.860.02 (n = 3)

Mn2+ 0.0660.03 (n = 3)

After reconstitution

Zn2+ 0.9660.2 (n = 3)

Mn2+ 0.8960.2 (n = 3)

aMean 6 the standard error of the mean.
doi:10.1371/journal.pone.0019510.t001

Figure 2. ITC analysis of the SsTroA interaction with Zn and Mn. Left: apo-SsTroA (90 mM) with addition of Zn2+ (500 mM); Right: apo-SsTroA
(30 mM) with Mn2+ (200 mM). In each case, the upper panel shows raw energy changes during the titration, while the lower panel presents the
integrated peak areas. The fitting of the data yielded the thermodynamic parameters listed in Table S2.
doi:10.1371/journal.pone.0019510.g002
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equilibrium and kinetic folding intermediates of proteins, espe-

cially for a partially folded protein [43]. Interaction of the probe

with a hydrophobic site yields an enhancement of fluorescence

intensity, usually accompanied by a blue shift of the maximum.

SsTroA significantly enhances the emission intensity of ANS

and promotes a blue shift (Fig. 3B). Meanwhile, the fluorescence

intensity of ANS clearly decreases in the metal bound form

compared to the apo-SsTroA. As indicated by the diminished

fluorescence, ANS displays stronger binding to Mn2+-SsTroA than

Zn2+ -SsTroA. The spectra clearly provide evidence that the

addition of metal ions induces a large change in the nonpolarity of

the ANS-binding site, and the Mn2+ causes a greater change than

Zn2+ does. These data suggested that the decreased plots observed

in the spectra (Fig. 3B) can be attributed to a more compact and

ordered structure for SsTroA in the presence of metal.

Conformational changes and enhancement of thermal
stability

As protein aggregation occurs after demetallization, we

suspected that apo-SsTroA is unstable compared to the native

SsTroA at room temperature, i.e., we assumed that SsTroA

displays metal-dependent conformational stability of SsTroA. To

obtain further information on the metal sensitivity of the SsTroA

and details on possible structural changes occurring upon its

interaction with metal ions, we applied CD spectroscopy to

monitor these processes. Proteins were prepared by incubation

with Zn2+ and Mn2+ as previously described [31]. In the far-UV

regions (Fig. 4A), the CD spectra are generally characterized by

distinct minima at 208 and 223 nm respectively, which are the

features of proteins that contain a-helix conformational elements,

consistent with the crystal structure data. The metal bound

SsTroA samples both displayed spectra similar to apo-SsTroA,

only with minor differences, though both has deeper 208 nm and

223 nm minima relative to apo-SsTroA. The intensity of the

223-nm band of SsTroA is in the order: apo-SsTroA.Zn2+-

SsTroA.Mn2+-SsTroA, suggesting a decrease of the content of

secondary structure in the apo form compared to the metal-bound

forms. While previous work demonstrates that TpTroA does not

manifest changes discernible by CD upon metal binding, in

contrast, T. pallidum ZnuA does undergo conformational changes

when Zn2+ is loaded [31]. These data indicated that TpTroA and

SsTroA present differential binding behaviors upon metal binding.

Thermal denaturation transitions were assessed by monitoring

the temperature dependent change in ellipticity at 223 nm to

determine apparent thermal denaturation midpoints in the pre-

sence or absence of metal ions. As expected, thermal denatu-

ration proceeded, as expected, with a sharp decrease in ellipticity

at 223 nm at the melting temperature and a complete loss of

secondary structure (Fig. 4B). The data are fit very well to a two-

state model between the folded and unfolded states. Nonetheless,

the unfolding profiles are obviously different, the heat denatur-

ation analysis revealed that the apoprotein begins to dramatically

lose CD signal at 60–65uC, whereas the Zn-bound or Mn-bound

protein starts to significantly lose CD signal at a temperature as

high as 65–70uC. The apoprotein exhibits a half-denaturation (Tm)

of 71.560.1uC, and addition of Zn2+ and Mn2+ significantly

stabilizes SsTroA as judged by a substantial enhancement in the

Tm value (DTm = 4.660.2uC and 560.1uC, respectively), which

agrees with the presence of Zn2+ or Mn2+ as seen in CD

spectroscopic changes (Fig. 4A). These results combined with

CD spectrum data imply that the ternary protein-metal complex

appears to form a compact domain organization, i.e., the metal-

ligand interactions in the SsTroA protein indeed play an im-

portant role in imparting extra stability to the metal binding site of

the protein. Further, as we proposed that Mn2+ has a more signi-

ficant effect on the conformation and thermal stability of SsTroA

than Zn2+.

Global features and geometry of metal binding
To gain structural insight into SsTroA function, we determined

the crystal structure of Zn-bound SsTroA. The X-ray crystal

structure was solved by molecular replacement using TpTroA as

the search model (PDB code: 1K0F) [22]. The final structure was

refined to a resolution of 2.6 Å and consists of 278 amino acids

(residues 40–317). Phasing and refinement statistics are reported in

Table S3. The overall structure of SsTroA is typical of SBPs in the

Figure 3. X-band EPR spectra and ANS fluorescence analysis of SsTroA. (A) EPR spectra of Mn2+ (100 mM) in the absence (red line) and
presence (purple line) of SsTroA (100 mM) at room temperature in solution. The total Mn2+ concentration was the same in both samples. The signal
intensity decrease corresponds to the zero-field splitting arising from the disturbances in the octahedral ligand field of the bound metal. The
instrument conditions are as follows: microwave power, 20 mW; microwave frequency, 9.53 GHz; modulation frequency, 100 KHz; modulation
amplitude, 1 G; and modulation amplitude, 1.0 mT. (B) Fluorescence changes in the intensity emission for SsTroA indicate a metal dependent
decrease in hydrophobic residue exposure. Emission spectra of ANS in the presence of different SsTroA states: apo-SsTroA (purple), Zn2+-SsTroA
(green) and Mn2+-SsTroA (red). A significant enhancement in fluorescence is probed on binding of ANS to apo-SsTroA. This fluorescence is slightly
diminished in the presence of metal ions, which indicates the ordering of the metal binding domain of the SsTroA structure when metal is bound.
doi:10.1371/journal.pone.0019510.g003
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A-1 family [19]. The peptide chain crosses between the N-terminal

and C-terminal domains only once linking the two (b/a)4 domains

via a 33-residue kinked rigid a-helical backbone that runs the full

length of the molecule (Fig. 5A) and the metal binding site is

buried in the interdomain interface. The N-terminal domain

(residues 40–164) is a b/a sandwich-like domain, consisting of a

four-stranded b-sheet with 2-1-3-4 linking topology, and with an

a-helix connecting each strand. The C-terminal domain (residues

196–317) is also a b/a sandwich composed of a four stranded

parallel b-sheet with 2-1-3-4 linking topology, with both sheets

sandwiched between layers of a-helices. The two independent

domains interact with each other across a large interface that

creates the binding pocket for the metal ligand.

In our structure, we clearly observed the metal binding pocket

provided by the buried surface between the N-terminal and C-

terminal domains (Fig. 5B). Independent experimental evidence

has demonstrated that the ion bound in the metal binding pocket

of recombinant SsTroA is Zn2+ (see metal content analysis). Zinc

is pentacoordinated by His 76 (bond length, 2.14 Å), His 139

(2.11 Å), His 205 (2.18 Å) and Asp 289 (2.20 Å, 2.38 Å). His 76

and His 139 are provided by the N-terminal domain, while His

205 and Asp 289 are contributed by the C-terminal domain. The

Figure 4. CD spectra of SsTroA. (A) Metal ions induced conformational changes monitored by far-UV CD spectra. Far-UV CD spectra were
acquired for apo-SsTroA (purple) and SsTroA in the presence of 100 mM Zn2+ (green), or 100 mM Mn2+ (red). (B) Thermal unfolding followed by far-UV
CD spectra at 223 nm. Data for apo-SsTroA (purple) and SsTroA in the presence of 100 mM Zn2+ (green) or 100 mM Mn2+ (red).
doi:10.1371/journal.pone.0019510.g004
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Zn coordination in our structure is best described as distorted

square pyramidal [21]. The Ne2 nitrogen atoms of His 76 and His

139, with the Oe1 an Oe2 atoms of Asp 289 generated the square

planar. While the Ne2 atom of His 205 is the summit of the

square pyramid. The binding site is buried ,7 Å below the

molecule surface and the four coordinating residues are also

completely buried. This coordination geometry and the amino

acid types are very similar among the Mn-binding SBP family

[21,23,24].

Despite the determination of several SBP structures, the stru-

ctural difference between Zn-specific and Mn-specific proteins

remain unclear [44]. There exists difference with SBPs, specific

either for zinc or manganese. In the Zn-specific ZnuAs, the metal

is coordinated by 3 histidines plus a water or glutamate [44,45]. In

the case of Zn-specific AdcAII, the residues involved in Zn binding

are three histidines and one glutamate [25]. This is similar to the

observation in Zn-specific Lbp, the zinc ion is coordinated by the

side chains of three histidines and one glutamate in a slightly

distorted tetrahedral geometry [28]. In the Mn-specific SBPs (PsaA

and MntC), the metal is coordinated via two hisitidine residues,

the third histidine is replaced by a glutamate, and the fourth

position is occupied by an aspartate [23,24]. The coordination

geometry of Zn is usually tetrahedral or distorted tetrahedral

(coordination number = 4) in the protein, although the coordi-

nation number can increase to five to stabilize high-energy

intermediates and their flanking transition states. In contrast, the

Mn2+ ion tends to prefer hard ligands such as the carboxylate

oxygens of aspartate or glutamate, and the carboxamide oxygens

Figure 5. Crystallographic structure of SsTroA and structural comparisons of SsTroA with structurally known Mn-specific SBPs. (A)
Cartoon diagram of the SsTroA, the N-terminal domain is shown as red, the C-terminal domain is green, and the linking helix is colored purple. The
residues forming the metal binding site are presented in sticks-balls format, two conserved Glu residues predicted to form the salt bridge are
displayed in cyan, and the zinc ion is displayed as a lightpink sphere. The a-helices are designated a1–a9, and the b strands are b1–b8. (B) The
coordination bonds formed between the Zn2+ and His 76, His 139, His 205 and Asp 289. The distances between Zn2+ and these residues are
calculated. (C) Bottom view of the structural comparison. (D) Side view of the comparison. Comparisons shown here are SsTroA (purple), TpTroA
(marine), and S. pneumoniae PsaA (limegreen). The unique loops are designated as Loop 1 and Loop 2. Structures are displayed in ribbon
representation.
doi:10.1371/journal.pone.0019510.g005
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of asparagine or glutamine. The nitrogen atoms of histidine

imidazole groups are occasionally observed as metal ligands in

Mn2+ metalloenzymes despite their borderline hardness, the metal

coordination geometry is usually square pyramidal or trigonal

bipyramidal (coordination number = 5) [13]. Accordingly, our

structure indicated that Mn2+ is likely to be the natural ligand.

However, despite great efforts, we failed to obtain any crystals of

SsTroA containing Mn2+.

Conformational dynamics within SBPs
Sequence comparison of SsTroA with TpTroA, S. pneumonia

PsaA and Synechocytis MntC revealed amino acid sequence

identities of 37%, 26% and 24%, respectively (Fig. 5). Searches

with the program Dali [46] demonstrated that the closest related

structures are TpTroA (PDB code 1TOA [21], rmsd 1.2 Å for 277

Ca), Synechocytis MntC [24] (PDB code 1XVL, rmsd 1.8 Å for 265

Ca), and S. pneumoniae PsaA[23] (PDB code 1PSZ ,2.0 Å for 265

Ca). Although the A-1 SBPs have a similar topological structure,

subtle differences in the metal-coordinating residues are observed.

For instance, His 205 in SsTroA is replaced by Glu 205 at the

homologous position in PsaA and Glu 220 in MntC (Fig. 1B).

Intriguingly, in the structure of SsTroA, we observed two dis-

tinctive flexible loops mainly composed of charged residues, and

these two flexible loops were designated as Loop 1 (Asn 126-Pro

38) and Loop 2 (Tyr 279-Glu 285) (Fig. 5C and D). Loop 1 is

locateed between the b2-1 and b2-2 (refer to the TpTroA [21]

topology nomenclature). The TpTroA and S. pneumoniae PsaA

structures display a short loop compared to Loop 1 of SsTroA.

Among the ZnuA proteins examined, this loop is longer (histidine-

rich) and it is proposed that this region is possibly involved in

the capture of the Zn around the metal binding site or plays an

important role in the process of docking with permeases [26].

Nevertheless, the significance of this loop remains unclear because

there are limited experimental results to confirm these hypotheses.

Regardless, it is speculated that the mobility of this loop may

possess a biological function in SsTroA [26].

It should be noted that Loop 2 is unique to SsTroA because it

is absent from known SBP homologues. Moreover, the loop is

surface-exposed and contains several charged residues, suggesting

that it would be available to mediate higher order interactions

with a ligand or protein, However, determining the significance

of Loop 2 requires further structural and functional data to

explain.

NMR reveals that Zn2+ and Mn2+ are bound to nearby
sites (or the same site)

To probe the extent of protein conformational changes in apo-

SsTroA induced by Zn2+/Mn2+ binding, we recorded NMR

spectroscopy at 25uC. Full 1H-15N spectra of SsTroA were

acquired in the absence of metal and loaded with Zn2+ or Mn2+. A

superposition of the results is presented in Figure 6. All of the

cross-peaks represent backbone and side chain amide group. The

spectral region encompassed is commonly referred to as the

‘‘fingerprint’’ for the protein conformation, and it is a known

probe of minor conformational changes. As shown in Figure 6, the

apoprotein (purple) maintains a similar tertiary structure com-

pared with the metal bound proteins, suggesting that the apo-

SsTroA is not randomly unfolded, but seems to fluctuate among

several stable states on the intermediate time scale. Such a result is

consistent with the observation of T. pallidum, as suggested by Lee

et al [22].

The addition of Zn to apo-SsTroA results in substantial changes

in the NMR spectrum. The spectrum of Zn2+-SsTroA (green) is

shown in Figure 6A, displaying a large number of peaks shifts.

These dramatic spectral changes indicate that the binding of Zn2+

induces conformational changes, demonstrating the high affinity of

the apoprotein toward Zn, consistent with the ITC results

described above. Also noteworthy is that many of the peaks in

each protein form have similar chemical shifts, implying that the

protein regions adopt similar tertiary structures. Specifically, we

observed a downfield-shifted peak near 13.5 ppm in the ordered

region and significant movement of multiple resonances (high-

lighted in circles, Fig. 6), suggesting that the involvement of the

amide proton close to the Zn binding site.

In the presence of Mn2+, the complex solution leads to selective

proton line broadening (data not shown). Two dimensional

Heteronuclear Single Quantum Coherence (HSQC) NMR

spectra of Mn2+-SsTroA are shown in Figure 6B. The number

of peaks was less than the expected number of amide groups,

presumably due to the paramagnetic broadening effects (Mn2+

is a paramagnetic agent). The cross peaks, still visible after

incubating with Mn2+, belong to protons distal from the Mn2+

binding site. By contrast, the broadening and disappearance of

the cross-peak strongly indicates the involvement of the amide

proton close to the Mn2+ coordination sphere. It should be noted

that almost all of the peaks in the presence of Zn2+ and Mn2+

have similar chemical shifts (Fig. 6C), indicating that the protein

regions adopt identical structures when bound to Zn or Mn. This

suggests that Zn2+ and Mn2+ could bind to the SsTroA in similar

positions, perhaps even the same site. A similar result is observed

in N. gonorrhoeae MntC protein, where the Zn and Mn ions

compete for the same site [33].

Discussion

ABC transport systems that contain an A-1 family SBP have

emerged as key transporters that are required for virulence in

several bacterial pathogens [33]. To better understand the

significant role of the Tro operon for metal transition in S. suis,

we screened the S. suis 2 genome [5] for orthologs of known metal-

dependent enzymes and metal transporters as described previously

[30] (Table S1). We identified 23 Zn-dependent proteins and three

Mn-dependent proteins. Mn plays a key role in the growth of S.

suis [47,48], whereas S. suis does not encode orthologs of either

Mn2+-specific MntH transporter or the P-type ATPase, MntA.

Moreover, another putative transition metal system in S. suis, the

Adc operon was found to exhibit homology to the S. pneumonia Adc

operon, the latter is an ABC-type Zn permease [49]. These data

imply that SsTroA maybe plays an adaptive role in vivo, likely

modulated by SsTroR expression in response to specific envi-

ronmental conditions.

The metal binding properties of TpTroA have been studied in

detail [30,31]. One puzzling observation that was unclear until

now is whether or not Zn and Mn bind to the same site in

TpTroA. Nuclear spin relaxation properties of resonances from

protons close to the ion-binding sites can be selectively perturbed

in the presence of paramagnetic ions [50]. The unpaired electrons

of Mn2+ can interact with protons close to Mn2+ and the effect of

the strong paramagnetic interaction of the Mn cation leads to

specific changes in the corresponding NMR signals, which helps to

locate the Mn2+ binding site [51]. Our NMR data demonstrated

that Zn2+-SsTroA and Mn2+-SsTroA have very similar tertiary

structures. Introduction of Mn induced the disappearance of some

cross-peaks and the loss of intensity of others. Moreover, the

binding of metal ions induces chemical shift changes for some of

the cross-peaks (highlighted in circles, Fig. 6). However, the Zn2+-

SsTroA and Mn2+-SsTroA spectra are nearly identical (except for

the cross-peaks that disappear from spectrum), indicating that
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Zn2+ and Mn2+ share the adjacent binding region or even the

same site in SsTroA.

Metal binding to the SsTroA has been proposed as a major

event leading to conformational changes. From our combined

NMR and ANS fluorescence data, we speculated that the metal-

binding pocket of apo-SsTroA and other locally disordered folding

adopts a loosely folded structure in solution. This behavior

explains why metal-bound states induced the decreased ANS

fluorescence intensity and changes in the NMR spectra of the

metal-loaded forms. These loosely ordered structures may enhance

an inducible response to the changing environmental conditions or

may play a pivotal role in recognizing different divalent metal ions.

In some cases, binding of a target molecule or ligand drives

disordered folding to a more ordered state [52]. It should be noted

that the crystallographic studies on TpTroA [21,22] have referred

to a comparatively minor folding movement upon the metal

binding, and structural analysis of Escherichia coli ZnuA suggests

that binding and release of Zn drive small yet significant

conformational changes [45]. One explanation may be that the

nature of protein in solution is shown to be more dynamic than

suggested by crystal structures.

SsTroA presents high topological identity with lipoprotein PsaA

in S. pneumoniae, the latter is a surface-exposed multi-functional

protein detected on all known serotypes of S. pneumoniae. It is

noteworthy that PsaA is immunogenic and being actively

evaluated as a candidate vaccine component [53]. Thus far

however, no data about SsTroA involvement in adhesion and/or

invasion of human host tissues is yet available. There is increasing

evidence that surface-related proteins are involved in bacterial

pathogenesis, as exemplified by adhesion, invasion, and bacterial

defense mechanisms [54]. Surface-displayed SBPs likely present an

apparent dual function, metal ions transport and interaction with

host cells [25]. Assessment of the potential immunogenicity of

SsTroA is currently under way in our laboratory.

Currently, it is premature to speculate on metal import

mechanism of the SsTroABCD transporter, but it is nevertheless

very tempting to hypothesize a scenario (Fig. 7). BtuF is a

periplasmic binding protein (PBP) for the vitamin B12 transporter

BtuCD. BtuF and TroA are classified in the same class of SBPs,

which both exhibit very little domain movement upon ligand

binding [20]. The complex structure of BtuCD-BtuF revealed that

the conserved glutamate residues Glu 74 and Glu 202 from BtuF

form salt bridges with Arg56 residues from two BtuC subunits

[55], which are also found in other ABC importers [56].

Moreover, these salt bridges are critical for molecular interaction

in vivo [56]. Intriguingly, we found that SsTroA also has two

conserved glutamate residues Glu 107 and Glu 230 that are

positioned on the surface of the N-terminal and C-terminal

domains (Fig. 5A). Based on the findings described above, we

predicted that SsTroA docks to the periplasmic face of SsTroCD,

and charged amino acid residues probably are likely involved in

salt bridge formation and contribute to the interface.

Taken together, the structural and functional data we have

presented here clearly demonstrate that SsTroA binds both Zn2+

and Mn2+ with high affinity. In addition, the binding of metal ions

increased the protein stability and induced conformational

changes. Specifically, further analysis revealed that Zn2+ and

Mn2+ bind to the SsTroA in either the same site or very nearby.

The result of this work provides novel insight into the S. suis 2

divalent metal uptake process and establishes a framework for

understanding the divalent metal homeostasis in S. suis. Addition-

ally, we propose a functional model for the transport of metal ions

Figure 6. NMR spectra of SsTroA complexed with Zn2+ or Mn2+. (A) Superimposition of two-dimensional 1H15N-HSQC spectra comparing
0.5 mM apo-SsTroA (purple) with 0.5 mM Zn2+-SsTroA (green). (B) Overlay of 2D HSQC spectra comparing 0.5 mM apo-SsTroA (purple) with 0.5 mM
Mn2+-SsTroA (red). (C) Comparison of 0.5 mM Zn2+-SsTroA (green) with 0.5 mM Mn2+-SsTroA (red). All spectra were acquired at 25uC in 20 mM
sodium acetate (pH 6.5), and spectra were recorded at a 600-MHz 1H frequency. A number of the cross-peaks exhibiting significant shifts are
highlighted in circles, indicating local conformational changes in the metal binding pocket.
doi:10.1371/journal.pone.0019510.g006

Figure 7. Hypothetical model of SsTroA participation in the metal ion homeostasis of S. suis. SsTroA is a substrate binding protein, which
is anchored into the membrane via a lipid-anchor. It feeds the ligand into the translocation pathway formed by the SsTroC and SsTroD. The
nucleotide binding domains (SsTroB) hydrolyze ATP to drive the transport of the ligand through the membrane.
doi:10.1371/journal.pone.0019510.g007
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by SsTroBCD based upon similar substrate transporters. Howev-

er, further structural and functional experiments are necessary to

provide evidence to support our proposed model. Studies to

address these issues are underway, and will lay a solid foundation

for future studies of the metal ion transport mechanism.

Materials and Methods

Overexpression and purification of SsTroA
The mature SsTroA domain (residues 36–317) was PCR-

amplified from genomic DNA extracted from S. suis 05ZYH33.

Primers, plasmids and bacterial strains used for gene cloning are

all summarized in Table S4. The PCR product was cloned into the

BamHI/XhoI restriction sites of the pGEX-6P-1 expression vector

(Amersham) to generate the pGEX-SsTroA plasmid. This

construct was then transformed into E. coli BL21 (DE3). E. coli

cells were grown at 37uC to mid-log-phase in LB broth

supplemented with 100 mg/ml ampicillin, and then SsTroA

expression was induced with 1 mM isopropyl-b-D-thiogalactopyr-

anoside (IPTG) for 4 hours at 37uC. Cultures were harvested by

centrifugation, and the cells were homogenized in PBS (140 mM

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4,

pH 7.4) prior to sonication. The cell lysate was then centrifuged

for 20 minutes at 35 000 g, the clarified supernatant was loaded

onto a glutathione Sepharose 4B column (GE Healthcare) for

2 hours, and bound proteins were cleaved from the resin by

incubating with PreScission Protease in accordance with the

manufacturer’s instruction for batch purification. The resulting

supernatant was directly loaded onto a Superdex 200 column (GE

Healthcare) equilibrated with 20 mM Tris-HCl (pH 8.0) and

50 mM NaCl. The purified protein was verified by SDS-PAGE

and high purity fractions containing SsTroA were concentrated

using Amicon Ultra 15 centrifugal filters (Millipore) with a 10-kDa

molecular mass cut-off. Protein concentrations were determined

by the BCA assay (Pierce) according to the manufacturer’s

protocol using bovine serum albumin as the standard. To produce

uniformly 15N-labeled SsTroA samples for NMR studies, E. coli

BL21 (DE3) were grown in M9 minimal medium containing 0.1%
15NH4Cl (Cambridge Isotope Laboratories) as the sole source of

nitrogen. The other steps of protein expression and purification

were the same as described above.

Analytical Ultracentrifugation
A Beckman Optima XL-I analytical ultracentrifuge (Beckman

Coulter Inc.) equipped with both absorbance and interference

optical detection systems was used in the analytical ultracen-

trifugation experiment. Protein at an initial concentration of

1 mg/ml dissolved in 20 mM Tris-HCl (pH 8.0) and 50 mM

NaCl was loaded into six-sector cells. Samples were centrifuged at

50,000 rpm to equilibrium at 20uC. Data were collected in con-

tinuous mode at a wavelength of 235 nm using a time interval

of 300 s. The results were analyzed by the SEDFIT program

(http://www.analyticalultracentrifugation.com) as described by

Schuck [57].

Preparation of apo-SsTroA
To generate the apo-SsTroA protein, SsTroA protein was

treated as described previously with minor modification [31].

Briefly, the purified protein was dialyzed against 20 mM sodium

acetate buffer (pH 6.5) and 20 mM EDTA for 3 days. The protein

was then dialyzed against EDTA-free buffers for 3 days. All

dialysis steps were performed at 4uC with stirring, and the buffer

was replaced every 12 hours. Removal of metal was confirmed by

ICP-MS (Inductively coupled plasma mass spectrometry). Clear

plastic tips and containers were employed to prevent metal cross-

contamination. All plasticwares were treated for .2 hours with

0.2 M EDTA to remove the contaminating metals, and all buffer

solutions were passed through chelating Sepharose resin and

stored in plastic beakers.

Immunoblotting
The purified recombinant SsTroA proteins were screened for

reactivity with antisera by western blotting. Antisera directed

against recombinant SsTroA was produced in rabbits according to

the standard protocol [58]. Total bacterial protein and purified

protein were then resolved by 12% SDS-PAGE and transferred

onto a nitrocellulose membrane (GE Healthcare) for the western

blot-based detection of protein SsTroA as previously described

[17]. Animal experiments were conducted in compliance with the

regulations of the Beijing Administration Office of Laboratory

Animal.

Crystallization and X-Ray Data Collection
Purified protein was concentrated to 10 mg/ml in 20 mM

Tris-HCl (pH 8.0) and 50 mM NaCl. Crystals with quality

diffraction were obtained using the hanging drop vapor diffusion

after 2 weeks at 4uC by mixing 2 ml of the protein with 2 ml of

the reservoir solution containing 2.1 M ammonium sulfate and

6% v/v iso-propanol. Prior to data collection, crystals were tran-

sferred to the mother liquor containing 30% (v/v) glycerol as

cryoprotectant and flash frozen in liquid nitrogen. X-ray Data

were collected using a Rigaku MicroMax007 rotating-anode X-

ray generator equipped with an R-AXIS IV image-plate detector.

Data were processed and scaled using MOSFLM [59] and

SCALA [60].

Structure Determination and Refinement
The structure of Zn-bound SsTroA was determined using

the molecular replacement method as implemented in Molrep

[61] using TpTroA as the search model (PDB entry 1K0F). The

structure was rebuilt and refined using COOT [62] and

REFMAC5 program [63] . The crystals belong to the P43 space

group (a = b = 102.4Å, c = 107.3 Å, a= b= c= 90u). The final

refined structure without water molecules was used as an initial

model for the complex structure. REFMAC5 [63] was again used

in conjunction with COOT [62] to refine and build the complex

crystal structure. The data collection and final refinement statis-

tics are given in Table S3. Final models were validated using

PROCHECK [64], and structure figures were generated by

PyMOL, unless otherwise noted. Zn-SsTroA was deposited in the

Protein Data Bank (PDBID: 3MFQ).

Metal Reconstitution and Metal Content Assays
Reconstitutions with Zn2+ and Mn2+ were performed as

described previously [31] with minor modifications. Briefly, 10

monomer equivalents of Zn2+ or Mn2+ were added to apo-

SsTroA protein at 4uC for 12 hours. The samples, were then

subjected to three rounds of concentration with Amicon Ultra 15

centrifugal filters (Millipore) followed by dilution to remove

unbound metal. The metal content of recombinant SsTroA

samples exchanged into metal-free 20 mM Tris-HCl (pH 8.0)

and 50 mM NaCl, reconstituted SsTroA samples, and buffer

controls were determined. Metal ion analysis was determined by

ICP-MS, at the Analysis Center of Tsinghua University (Beijing,

China). Metal content was analyzed on an XSeries II (Thermo-

Fisher) apparatus. Each sample was quantified three times and

averaged.
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Zn2+/Mn2+ Titration into apo-SsTroA by ITC
Binding of Zn2+ and Mn2+ to apo-SsTroA was determined by

Isothermal Titration Calorimetry (ITC) at 25uC using a NANO

ITC 2G MicroCalorimeter (TA Instruments). The metal and

protein solutions were prepared in 20 mM sodium acetate buffer,

pH 6.5. Prior to experiments, the reference cell was filled with

deionized water, and both metal solutions and protein solu-

tions were clarified for 10 minutes at 16,000 g and degassed for

20 minutes to eliminate air bubbles, using the ThermoVac

accessory of the microcalorimeter. Upon experimental setup, the

protein solution present in the sample cell was stirred at 200 rpm.

After a stable baseline was achieved the titration was initiated with

25 consecutive 10 ml injections of 500 mM Zn2+ into the sample

cell (volume = 1.5 ml) containing 90 mM apo-SsTroA,and then

200 mM Mn2+ was injected into 30 mM apo-SsTroA. The back-

ground heat of dilution is collected by titration with buffer alone,

and the integrated data were subtracted from data obtained with

apo-SsTroA present. Integrated heat data obtained for Zn2+ and

Mn2+ titrations were analyzed using the NanoAnalyze software

(TA Instruments) fitting them to an independent binding model.

The free energy (DG) and entropy (DS) of the binding reaction can

be determined with Equations 1 and 2, respectively:

DG~{RT lnK ð1Þ

DS~
(DH{DG)

T
ð2Þ

Far-UV CD Measurements and Thermal Stability
Far-UV CD spectra were recorded at a protein concentration of

10 mM in 20 mM sodium acetate (pH 6.5) buffer on a Jasco 810

spectropolarimeter (Jasco Inc.). CD spectra were measured for apo-

SsTroA alone and in the presence of 100 mM Zn2+ or Mn2+ at

room temperature using a 0.1 cm quartz cell, 1 nm band width,

50 nm min21 scan speed, and 1 nm step. Each curve represents the

average of three accumulations and a blank containing the same

buffer and detergent, buffer spectra were always subtracted, and

ellipticity results were expressed in millidegree. Calculations of the

fractional percentage of secondary structures were performed using

the computer programs Spectra-Manager (Jasco) and K2d2 [65].

The thermal reactions were monitored on the Jasco 810

spectropolarimeter (Jasco Inc.) connected to a digitally controlled

water bath (Julabo). The data were monitored for apo-SsTroA alone

and loaded with Zn2+ or Mn2+ at 223 nm with a constant heating

rate of 0.5uC/min,at temperatures between 25uC and 90uC. The

results analysis yielded the transition temperature (Tm) as described

previously [66], and the data were fit using SigmaPlot software.

Electron Paramagnetic Resonance (EPR) Measurements
X-band EPR measurement was performed on an ER 200D

SRC spectrometer (Bruker Instruments) equipped with a rectan-

gular microwave cavity, operating at a microwave frequency of

9.53 GHz at 25uC. Three scans were collected at a microwave

power of 20 mW. The center field of the EPR scans was set to

3,500 G with a sweep width of 1,000 G. EPR samples were

prepared by titrating Mn2+ into a solution of apo-SsTroA. Stock

solutions of MnCl2 were diluted in protein buffer with doubly

distilled water. To monitor Mn2+ binding, one syringe was loaded

with a Mn2+-saturated SsTroA solution (100 mM SsTroA and

100 mM MnCl2) in protein buffer and the other was loaded with

100 mM ZnSO4 freshly prepared in the same buffer. After each

addition the sample was incubated for 10 minutes at 4uC prior to

recording the EPR spectrum.

Nuclear Magnetic Resonance (NMR) Spectroscopy
All NMR experiments were performed at 25uC on a Bruker

DMX 600MHz spectrometer with a triple resonance cryo-probe.

Uniformly 15N-labeled SsTroA was prepared as described above.

Sample of apo-SsTroA were prepared at 0.4 mM protein

concentration in 20 mM sodium acetate buffer (pH 6.5). Samples

of metal bound SsTroA were prepared by the addition of 100 mM

zinc acetate or manganese chloride stock to a final concentration

of 1 mM metal ions in 0.4 mM protein, and the samples were then

subjected to three rounds of concentration with an Amicon Ultra

15 centrifugal filters (Millipore) followed by dilution to remove

unbound metal. Samples for NMR measurements contained

0.4 mM 15N labeled SsTroA, 95% H2O/5% 2H2O in 20 mM

sodium acetate buffer (pH 6.5). All NMR spectra were processed

and analyzed using Felix software (Accelrys Inc.).

ANS Binding Fluorescence Assays
Fluorescence measurements were performed with a PerkinEl-

mer LS55 fluorescence spectrometer (PerkinElmer). Emission

spectra were collected at 25uC using an emission wavelength of

400–600 nm with an excitation wavelength of 380 nm [66]. Apo-

protein (5 mM) was mixed with 500 mM ANS in 20 mM sodium

acetate buffer (pH 6.5). Zn2+ and Mn2+ were added to the mix-

ture of 5 mM apo-SsTroA and 500 mM ANS to 10 mM final

concentration, and the mixtures were incubated at 25uC for

15 minutes prior to collecting the excitation spectrum.

Supporting Information

Figure S1 Biochemical characterization of recombinant
SsTroA protein. (A) 12% SDS-PAGE analysis of over-expressed

SsTroA protein. Lane 1, soluble protein; Lane 2, inclusion body;

Lane 3, whole cell; Lane 4, Non-induced bacteria; Lane 5, samples

treated by prescission protease; Lane 6, purified SsTroA; M,

Molecular weight markers as indicated. (B) Western blotting

analysis of SsTroA. Lane 1, purified recombinant SsTroA; Lane 2,

negative control (the unrelated protein sample, Ss1661 protein);

Lane 3, S. suis whole cell lysates.

(TIF)

Figure S2 The oligomeric state of the recombinant
SsTroA. (A) The size-exclusion gel-filtration chromatography

profiles of SsTroA and SDS-PAGE (left inset). Two peaks from the

gel-filtration show the same SsTroA protein on the SDS-PAGE.

(B) Sedimentation velocity analysis of SsTroA. The profile shows

the calculated molar mass distribution of SsTroA.

(TIF)

Table S1 Genome-wide search for genes with zinc- and
manganese-involvement.
(DOC)

Table S2 Thermodynamics of binding of Zn2+/Mn2+ to
SsTroA measured by ITC at 256C.
(DOC)

Table S3 Statistics of X-ray diffraction data and
refinement details.
(DOC)

Table S4 Primers, plasmids and bacterial strains for
molecular cloning.
(DOC)

Multi-Substrate Binding via the Adjacent Region

PLoS ONE | www.plosone.org 12 May 2011 | Volume 6 | Issue 5 | e19510



Acknowledgments

We are grateful to Dr. Zheng Fan for her help with ITC, Dr. Yingang Feng

for technical assistance with NMR, Yi Shi for help with effective using of

PyMOL and CCP4 programs. We also thank Dr. Youjun Feng for helpful

discussions, Dr. Christopher Vavricka for his comments on the manuscript.

Author Contributions

Conceived and designed the experiments: BZ HH JZ JY GFG. Performed

the experiments: BZ. Analyzed the data: BZ JZ JY GFG. Wrote the paper:

BZ GFG. Solved the crystal structure of SsTroA: QZ JQ. Performed

protein purification, ITC and NMR experiments: JG. Analyzed CD data:

HH. Performed EPR experiments and analyzed corresponding results:

ML.

References

1. Feng Y, Zhang H, Ma Y, Gao GF (2010) Uncovering newly emerging variants
of Streptococcus suis, an important zoonotic agent. Trends Microbiol 18:

124–31.

2. Ma Y, Feng Y, Liu D, Gao GF (2009) Avian influenza virus, Streptococcus suis

serotype 2, severe acute respiratory syndrome-coronavirus and beyond:

molecular epidemiology, ecology and the situation in China. Philos
Trans R Soc Lond B Biol Sci 364: 2725–2737.

3. Perch B, Kristjansen P, Skadhauge K (1968) Group R streptococci pathogenic

for man. Two cases of meningitis and one fatal case of sepsis. Acta Pathol

Microbiol Scand 74: 69–76.

4. Tang J, Wang C, Feng Y, Yang W, Song H, et al. (2006) Streptococcal toxic
shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 3: e151.

5. Chen C, Tang J, Dong W, Wang C, Feng Y, et al. (2007) A glimpse of
streptococcal toxic shock syndrome from comparative genomics of S. suis 2

Chinese isolates. PLoS One 2: e315.

6. Li M, Wang C, Feng Y, Pan X, Cheng G, et al. (2008) SalK/SalR, a two-

component signal transduction system, is essential for full virulence of highly
invasive Streptococcus suis serotype 2. PLoS One 3: e2080.

7. Li M, Shen X, Yan J, Han H, Zheng B, et al. (2011) GI-type T4SS-mediated
horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus

suis serotype 2. Mol Microbiol 79: 1670–83.

8. Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that

metalloproteins get the correct metal? Nat Rev Microbiol 7: 25–35.

9. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory

proteins controlling zinc homeostasis. Science 292: 2488–2492.

10. McEwan AG (2009) New insights into the protective effect of manganese against
oxidative stress. Mol Microbiol 72: 812–814.

11. Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ (2002) Manganese:
elemental defence for a life with oxygen. Trends Microbiol 10: 496–501.

12. Hantke K (2001) Bacterial zinc transporters and regulators. Biometals 14:
239–249.

13. Christianson DW, Cox JD (1999) Catalysis by metal-activated hydroxide in zinc
and manganese metalloenzymes. Annu Rev Biochem 68: 33–57.

14. Janulczyk R, Ricci S, Bjorck L (2003) MtsABC is important for manganese and

iron transport, oxidative stress resistance, and virulence of Streptococcus

pyogenes. Infect Immun 71: 2656–2664.

15. Aranda J, Garrido ME, Cortes P, Llagostera M, Barbe J (2008) Analysis of the
protective capacity of three Streptococcus suis proteins induced under divalent-

cation-limited conditions. Infect Immun 76: 1590–1598.

16. Aranda J, Garrido ME, Fittipaldi N, Cortes P, Llagostera M, et al. (2009)

Protective capacities of cell surface-associated proteins of Streptococcus suis

mutants deficient in divalent cation-uptake regulators. Microbiology 155:
1580–1587.

17. Feng YJ, Li M, Zhang HM, Zheng BW, Han HM, et al. (2008) Functional

Definition and Global Regulation of Zur, a Zinc Uptake Regulator in a

Streptococcus suis Serotype 2 Strain Causing Streptococcal Toxic Shock
Syndrome. Journal of Bacteriology 190: 7567–7578.

18. Blanco DR, Champion CI, Exner MM, Erdjument-Bromage H, Hancock RE,

et al. (1995) Porin activity and sequence analysis of a 31-kilodalton Treponema

pallidum subsp. pallidum rare outer membrane protein (Tromp1). J Bacteriol
177: 3556–3562.

19. Claverys JP (2001) A new family of high-affinity ABC manganese and zinc
permeases. Res Microbiol 152: 231–243.

20. Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B (2010) A

structural classification of substrate-binding proteins. FEBS Lett 584:

2606–2617.

21. Lee YH, Deka RK, Norgard MV, Radolf JD, Hasemann CA (1999) Treponema
pallidum TroA is a periplasmic zinc-binding protein with a helical backbone.

Nat Struct Biol 6: 628–633.

22. Lee YH, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, et al. (2002) The

crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-
binding protein, reveals a closed conformation. J Bacteriol 184: 2300–2304.

23. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, et al. (1998) The
crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding

site and a novel structure for a putative ABC-type binding protein. Structure 6:

1553–1561.

24. Rukhman V, Anati R, Melamed-Frank M, Adir N (2005) The MntC crystal
structure suggests that import of Mn2+ in cyanobacteria is redox controlled.

J Mol Biol 348: 961–969.

25. Loisel E, Jacquamet L, Serre L, Bauvois C, Ferrer JL, et al. (2008) AdcAII, a new

pneumococcal Zn-binding protein homologous with ABC transporters:
biochemical and structural analysis. J Mol Biol 381: 594–606.

26. Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2003)
Structural determinants of metal specificity in the zinc transport protein ZnuA

from synechocystis 6803. J Mol Biol 333: 1061–1069.

27. Wei B, Randich AM, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2007)

Possible regulatory role for the histidine-rich loop in the zinc transport protein,

ZnuA. Biochemistry 46: 8734–8743.

28. Linke C, Caradoc-Davies TT, Young PG, Proft T, Baker EN (2009) The
laminin-binding protein Lbp from Streptococcus pyogenes is a zinc receptor.

J Bacteriol 191: 5814–5823.

29. Sun X, Baker HM, Ge R, Sun H, He QY, et al. (2009) Crystal structure and

metal binding properties of the lipoprotein MtsA, responsible for iron transport

in Streptococcus pyogenes. Biochemistry 48: 6184–6190.

30. Hazlett KR, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, et al. (2003) The
Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-

dependent transcriptional repressor, and a semi-autonomously expressed

phosphoglycerate mutase. J Biol Chem 278: 20687–20694.

31. Desrosiers DC, Sun YC, Zaidi AA, Eggers CH, Cox DL, et al. (2007) The

general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema
pallidum: analysis of metal specificities and expression profiles. Mol Microbiol

65: 137–152.

32. Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:

196–202.

33. Lim KH, Jones CE, vanden Hoven RN, Edwards JL, Falsetta ML, et al. (2008)

Metal binding specificity of the MntABC permease of Neisseria gonorrhoeae
and its influence on bacterial growth and interaction with cervical epithelial cells.

Infect Immun 76: 3569–3576.

34. Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC (2009) Lipoprotein

biogenesis in Gram-positive bacteria: knowing when to hold ’em, knowing when
to fold ’em. Trends Microbiol 17: 13–21.

35. Braun V, Wu HC (1994) Lipoproteins, structure, function, biosynthesis and
model for protein export. New Compr Biochem 27: 319–341.

36. Richarme G (1983) Associative properties of the Escherichia coli galactose-

binding protein and maltose-binding protein. Biochim Biophys Acta 748:

99–108.

37. van der Heide T, Poolman B (2002) ABC transporters: one, two or four

extracytoplasmic substrate-binding sites? EMBO Rep 3: 938–943.

38. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by
isothermal titration calorimetry. Curr Opin Struct Biol 11: 560–566.

39. Yamniuk AP, Vogel HJ (2004) Structurally homologous binding of plant
calmodulin isoforms to the calmodulin-binding domain of vacuolar calcium-

ATPase. J Biol Chem 279: 7698–7707.

40. Osawa M, Dace A, Tong KI, Valiveti A, Ikura M, et al. (2005) Mg2+ and Ca2+
differentially regulate DNA binding and dimerization of DREAM. J Biol Chem
280: 18008–18014.

41. Emerson JP, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L, Jr. (2008)
Swapping metals in Fe- and Mn-dependent dioxygenases: evidence for oxygen

activation without a change in metal redox state. Proc Natl Acad Sci U S A 105:

7347–7352.

42. Traore DA, El Ghazouani A, Jacquamet L, Borel F, Ferrer JL, et al. (2009)
Structural and functional characterization of 2-oxo-histidine in oxidized PerR

protein. Nat Chem Biol 5: 53–59.

43. Kamen DE, Woody RW (2001) A partially folded intermediate conformation is

induced in pectate lyase C by the addition of 8-anilino-1-naphthalenesulfonate
(ANS). Protein Sci 10: 2123–2130.

44. Li H, Jogl G (2007) Crystal structure of the zinc-binding transport protein ZnuA
from Escherichia coli reveals an unexpected variation in metal coordination.

J Mol Biol 368: 1358–1366.

45. Chandra BR, Yogavel M, Sharma A (2007) Structural analysis of ABC-family

periplasmic zinc binding protein provides new insights into mechanism of ligand
uptake and release. J Mol Biol 367: 970–982.

46. Holm L, Sander C (1993) Protein structure comparison by alignment of distance
matrices. J Mol Biol 233: 123–138.

47. Langford P, Williams AE, Kroll JS (1991) Superoxide dismutases of pathogenic
and non-pathogenic Streptococcus suis type 2 isolates. FEMS Microbiol Lett 61:

347–350.

48. Niven DF, Ekins A, al-Samaurai AA (1999) Effects of iron and manganese

availability on growth and production of superoxide dismutase by Streptococcus
suis. Can J Microbiol 45: 1027–1032.

49. Dintilhac A, Alloing G, Granadel C, Claverys JP (1997) Competence and
virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a

requirement for Zn and Mn resulting from inactivation of putative ABC metal
permeases. Mol Microbiol 25: 727–739.

Multi-Substrate Binding via the Adjacent Region

PLoS ONE | www.plosone.org 13 May 2011 | Volume 6 | Issue 5 | e19510



50. Gariepy J, Kay LE, Kuntz ID, Sykes BD, Hodges RS (1985) Nuclear magnetic

resonance determination of metal-proton distances in a synthetic calcium
binding site of rabbit skeletal troponin C. Biochemistry 24: 544–550.

51. Frederick AF, Kay LE, Prestegard JH (1988) Location of divalent ion sites in acyl

carrier protein using relaxation perturbed 2D NMR. FEBS Lett 238: 43–48.
52. Twigg PD, Parthasarathy G, Guerrero L, Logan TM, Caspar DL (2001)

Disordered to ordered folding in the regulation of diphtheria toxin repressor
activity. Proc Natl Acad Sci U S A 98: 11259–11264.

53. Rajam G, Anderton JM, Carlone GM, Sampson JS, Ades EW (2008)

Pneumococcal surface adhesin A (PsaA): a review. Crit Rev Microbiol 34:
131–142.

54. Feng Y, Pan X, Sun W, Wang C, Zhang H, et al. (2009) Streptococcus suis
enolase functions as a protective antigen displayed on the bacterial cell surface.

J Infect Dis 200: 1583–1592.
55. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, et al. (2007)

Asymmetry in the structure of the ABC transporter-binding protein complex

BtuCD-BtuF. Science 317: 1387–1390.
56. Sebulsky MT, Shilton BH, Speziali CD, Heinrichs DE (2003) The role of FhuD2

in iron(III)-hydroxamate transport in Staphylococcus aureus. Demonstration
that FhuD2 binds iron(III)-hydroxamates but with minimal conformational

change and implication of mutations on transport. J Biol Chem 278:

49890–49900.
57. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation

velocity ultracentrifugation and lamm equation modeling. Biophys J 78:
1606–1619.

58. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular Cloning: A Laboratory

Manual 3rd Edition. New York: Cold Spring Harbor Laboratory Press. 999 p.

59. Leslie A (1992) Recent changes to the MOSFLM package for processing film

and image plate data. Jiont CCP4 ESF-EAMCB Newsletter. Protein Crystallogr

26: 27–33.

60. Evans P (1997) Scala, CCP4/ESF-EACBM Newsletter. Protein Crystallogr 33:

22–24.

61. Vagin A, Teplyakov A (2000) An approach to multi-copy search in molecular

replacement. Acta Crystallogr D Biol Crystallogr 56: 1622–1624.

62. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics.

Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

63. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular

structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystal-

logr 53: 240–255.

64. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK:

a program to check the stereochemical quality of protein structures. J Appl Cryst

26: 283–291.

65. Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein

secondary structure from circular dichroism spectra. BMC Struct Biol 8: 25.

66. Yatsunyk LA, Easton JA, Kim LR, Sugarbaker SA, Bennett B, et al. (2008)

Structure and metal binding properties of ZnuA, a periplasmic zinc transporter

from Escherichia coli. J Biol Inorg Chem 13: 271–288.

Multi-Substrate Binding via the Adjacent Region

PLoS ONE | www.plosone.org 14 May 2011 | Volume 6 | Issue 5 | e19510


