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Culture and expansion of equine mesenchymal stromal cells (MSCs) are routinely

performed using fetal bovine serum (FBS) as a source of growth factors, nutrients, and

extracellular matrix proteins. However, the desire to minimize introduction of xenogeneic

bovine proteins or pathogens and to standardize cellular products intended for clinical

application has driven evaluation of alternatives to FBS. Replacement of FBS in culture

for several days before administration has been proposed to reduce antigenicity and

potentially prolong survival after injection. However, the functional consequences of MSC

culture in different serum types have not been fully evaluated. The objective of this

study was to compare the immunomodulatory and antibacterial properties of MSCs

cultured in three serum sources: FBS or autologous or allogeneic equine serum. We

hypothesized that continuous culture in FBS would generate MSCs with improved

functionality compared to equine serum and that there would not be important differences

between MSCs cultured in autologous vs. allogeneic equine serum. To address these

questions, MSCs from three healthy donor horses were expanded in medium with FBS

and then switched to culture in FBS or autologous or allogeneic equine serum for 72 h.

The impact of this 72-h culture period in different sera on cell viability, cell doubling time,

cell morphology, bactericidal capability, chondrogenic differentiation, and production of

cytokines and antimicrobial peptides was assessed. Altering serum source did not affect

cell viability or morphology. However, cells cultured in FBS had shorter cell doubling times

and secreted more interleukin 4 (IL-4), IL-5, IL-17, RANTES, granulocyte–macrophage

colony-stimulating factor, fibroblast growth factor 2, eotaxin, and antimicrobial peptide

cathelicidin/LL-37 than cells cultured in either source of equine serum. Cells cultured

in FBS also exhibited greater spontaneous bactericidal activity. Notably, significant

differences in any of these parameters were not observed when autologous vs. allogeneic

equine serum was used for cell culture. Chondrogenic differentiation was not different

between different serum sources. These results indicate that MSC culture in FBS will

generate more functional cells based on a number of parameters and that the theoretical

risks of FBS use in MSC culture should be weighed against the loss of MSC function

likely to be incurred from culture in equine serum.

Keywords: equine, mesenchymal stem cell, serum, fetal bovine serum, mesenchymal stromal cell

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2021.634064
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2021.634064&domain=pdf&date_stamp=2021-04-30
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lynn.pezzanite@colostate.edu
https://doi.org/10.3389/fvets.2021.634064
https://www.frontiersin.org/articles/10.3389/fvets.2021.634064/full


Pezzanite et al. Media Serum Source MSC Culture

INTRODUCTION

Mesenchymal stromal cells (MSCs) derived from bone marrow,
adipose, or blood tissues exert potent immunomodulatory
and antibacterial activities, which renders them attractive
as biological therapies for diverse conditions, including
musculoskeletal injuries, wound healing, and bacterial infections
(1–12). In vitro cell expansion of MSCs is required to obtain
enough cells for clinical use, and a number of previous studies
have evaluated the impact of tissue culture medium and serum
source on relevant MSC properties (13). Culture and expansion
of equineMSCs are routinely performed using fetal bovine serum
(FBS) as a source of growth factors, nutrients, and extracellular
matrix proteins. However, the use of FBS to expand equine
MSCs has been linked to potential hypersensitivity reactions
and the risk of introduction of viral or prion pathogens (14–17).
The International Society for Cellular Therapy and several
regulatory agencies have responded with position statements
recommending the avoidance of FBS in MSC culture for clinical
applications when possible and have called for a consensus on
serum replacements in cell culture media (16–20).

Alternatives to FBS supplementation include autologous or
allogeneic serum, purified recombinant or synthetic proteins,
platelet lysate, and defined serum-free medium (16, 21–24).
With regard to defined serum-free medium, multiple different
commercial formulations are available, but all suffer from
high cost, which renders their use for clinical studies cost-
prohibitive in some situations. Therefore, species-matched serum
(autologous or allogeneic) with conventional cell culture medium
has been proposed as an alternative to FBS. The impact of serum
source on MSC properties has been most fully explored with
human MSCs, with conflicting results in terms of proliferation
and differentiation, but few studies have described serum-free
culture of MSCs from large animal veterinary species (13,
25–44). When comparing culture of human MSCs in FBS,
human serum, or platelet lysate, Aldahmash et al. and Perez-
Ilzarbe et al. found no difference in morphology or capacity for

differentiation and proliferation growth rates, whereas Kuznetsov

et al. reported FBS media culture resulted in greater proliferation
and enhanced bone formation following in vivo transplantation
(38, 39, 43). Schubert et al. compared serum-free culture
of human and equine MSCs, demonstrating that culture of
equine, but not human MSCs, in serum-free conditions resulted
in altered morphology and variable proliferation and surface
immunophenotype, which seemed to depend on the media
lot (13). These findings emphasize that media formulations
are specific for cell types and culture procedures and that
development of media conditions should be optimized for
MSCs from the animal species of interest. However, to date,
the relative effects of FBS vs. equine autologous or allogeneic
serum on the functional properties of equine MSCs have not
been evaluated.

Therefore, the aims of this study were to compare relevant
functional properties of equine MSCs cultured in medium
with either FBS, equine autologous serum, or equine allogeneic
serum. The functional properties evaluated included cell viability,
proliferation rate, morphology, concentration of cytokines and

antimicrobial peptides in MSC-conditioned medium (MSC-
CM), bactericidal activity, and chondrogenic differentiation
potential. We hypothesized that cells would have greater
functionality when cultured in FBS containing medium and
that there would be no significant differences in functionality
when culture in autologous and allogeneic equine serum
was compared.

METHODS

Horses
Schematic overview of study design and methods used is
provided in Figure 1. Six healthy 2–3-year-old Quarter Horse
research horses (three geldings, three mares) were tissue donors
in this study. All horses were part of the university-owned herd
at Colorado State University, and studies were approved by the
Institutional Animal Care and Use Committee (protocol 1101).
All horses were determined healthy by physical examination
and blood work (complete blood count, diagnostic panel). Three
horses were used as donors of bone marrow aspirate and
autologous serum, and three different horses were used as donors
of allogeneic serum.

Tissue Collection and Cell Culture
To collect bone marrow aspirate, the sternum of three donor
horses (Quarter horses, two geldings, and one mare; aged 2.5,
2.5, and 3 years) was clipped and aseptically prepared in routine
fashion. Bone marrow aspirate (5mL) was obtained using 11-
gauge Jamshidi into a syringe containing 1mL heparin (10,000
IU). Bone marrow aspirate was plated on 75-cm2 plates in
complete supplemented growth medium [Dulbecco modified
eagle medium (DMEM), 10% FBS, penicillin (100 U/mL),
streptomycin (100µg/mL), 1 mol/L HEPES]. The MSCs were
expanded in culture and then frozen at 5 × 106/mL in freeze
media (90% FBS, 10% dimethyl sulfoxide) in liquid nitrogen
vapor phase until further use. All MSCs used for in vitro
studies were evaluated for surface phenotype and found to be
CD44+CD90+ and CD34−CD45−, using equine cross-reactive
antibodies as previously described (45) and in accordance with
the International Society for Cellular Therapy minimal criteria
for defining MSCs (46).

To obtain equine serum for use in cell culture, whole blood
was collected from all six donor horses (three autologous and
three allogeneic to MSCs cultured) into red-top blood tubes
lacking anticoagulant. Blood tubes were spun at 1,800 relative
centrifugal force for 10min, and serum was removed, heat-
inactivated (heated 30min at 56◦C with mixing), sterile filtered,
aliquoted in 1-mL aliquots, and frozen at −80◦C for later use.
Serum from the same three donors as was used for bone marrow
aspirate donated “autologous serum” in all experiments. Pooled
serum from three additional donors (Quarter horses, one gelding,
and two mares; aged 2, 3, and 3 years) was used as “allogeneic
serum” in all experiments.

Viability, Proliferation, and Morphology
Cells were thawed quickly in a 37◦C water bath, recovered, and
expanded for at least 48 h under standard incubation conditions
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FIGURE 1 | Schematic overview of study design and methods used. Allo, allogeneic; Auto, autologous; FBS, fetal bovine serum.

(37◦C with 5% CO2) in complete growth media with 10%
FBS supplementation. Cells were then transitioned to growth
media containing either FBS or autologous or allogeneic equine
serum, as subsequently described. Cells were used between
passage 1 and 3 for all experiments described. Plates and flasks
containing MSCs were stored in the incubator (37◦C with 5%
CO2) following serum treatment for all experiments.

To assess cell viability following culture in media containing
various serum sources, MSCs from three individual horse donors
were plated at 50,000 cells/well on 24-well plates in growth
media containing either 10% FBS or autologous or allogeneic
equine serum. Cell viability was assessed using trypan blue dye
exclusion staining to determine percentage of live cells following
24, 48, and 72 h in culture using an automated cell counter
(Nexcelom; Bioscience Cellometer Auto T4). Experiments were
performed in duplicate for all three donors, with each donor
assessed in triplicate.

To assess cell proliferation following culture in media
containing different serum sources, MSCs from three individual
horse donors were plated at 100,000 cells/well on 6-well plates
in growth media containing either 10% FBS or autologous or
allogeneic equine serum. Cells were trypsinized and counted
at 24, 48, and 72 h following plating using an automated cell

counter (Nexcelom; Bioscience Cellometer Auto T4). Population
doubling time was calculated for each of three cell lines cultured
in different serum sources over 72 h, as previously reported
(47). Experiments were repeated in duplicate for all three donor
horses, each in triplicate.

Morphology of MSCs plated in different serum sources (10%
serum, either FBS or autologous or allogeneic equine serum) at
100,000 cells/well on 6-well plates was documented and assessed
over 72 h. Images were obtained of cells in culture using imaging
software (Olympus; CellSens, Tokyo, Japan).

Cytokine Secretion
Equine MSCs from three donor horses were cultured in
growth media with either 10% FBS or autologous or allogeneic
equine serum for 72 h and then plated at 100,000 cells/well
for 24 h on 24-well plates in media containing their respective
serum sources. Supernatants were collected at 24 h and
fluorescent bead–based multiplex assay (Milliplex MAP Equine
Cytokine/ChemokineMagnetic BeadsMultiplex Assay,Millipore
Sigma, Burlington, MA) was used to quantify the concentrations
of 23 analytes [eotaxin/CCL11, fibroblast growth factor 2
(FGF-2)]. Fractalkine/CS3CL1, granulocyte colony-stimulating
factor (G-CSF), granulocyte–macrophage CSF (GM-CSF),
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growth-regulated oncogene (GRO), interferon (IFN), interleukin
1α (IL-1α), IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8/CXCL8, IL-10,
IL-12, IL-13, IL-17a, IL-18, IP-10, monocyte chemoattractant
protein 1 (MCP-1), RANTES/CCL5, and tumor necrosis factor
(TNF-α) in conditioned media.

Antimicrobial Peptide (Cathelicidin/LL37)
Expression
Equine MSCs from three donor horses were maintained in flasks
in growth media containing either 10% FBS or autologous or
allogeneic equine serum for 72 h. Cells were then trypsinized,
counted, and either stimulated or not with toll-like receptor
ligand 3 polyinosinic:polycytidylic acid (pIC) at 10µg/mL in
DMEM media at 2 × 106 cells/mL as previously reported
(48) and then plated at 100,000 cells/well on 24-well plates
for 24 h in media containing their respective serum sources
at either 10 or 1%. Conditioned media was collected and
assessed for quantitative antimicrobial peptide cathelicidin/LL-
37 by competitive enzyme-linked immunosorbent assay (ELISA),
previously validated for expression in human samples and cross-
reactive to equine (Human LL37/Cathelicidin Sandwich ELISA
kit, Lifespan Biosciences, Seattle, WA), to determine relative
levels in conditioned media following activation or resting in
different serum concentrations from different sources.

Bacterial Killing Activity
Equine MSCs form three donor horses were maintained in flasks
in growth media containing either 10% FBS or autologous or
allogeneic equine serum for 72 h. Cells were then trypsinized,
counted, and plated at 100,000 cells/well on 24-well plates for 24 h
in media containing their respective serum sources (10%). MSC-
CM was collected at that time and frozen at −80◦C for use in
bacterial killing assays.

The human multidrug-resistant strain of Staphylococcus
aureus (USA300) was kindly provided byH. Schweizer (Colorado
State University). The bacterial culture and sensitivity of this
isolate are supplied in Supplementary Document 1. Bacteria
were expanded in Luria–Bertani (LB) broth (BD Falcon) and
frozen in 20% glycerol until further use. Overnight bacterial
cultures were grown in MSC growth media (10% FBS) without
antibiotics prior to use in assays. On the day of the bacterial
killing assay experiment, bacterial subcultures were grown to log
phase in MSC media [OD600 of 0.6, corresponding to 7.5 log10
colony-forming units (CFU/mL)] and then used immediately.

To determine if serum source in cell culture impacted the
ability of MSC-CM to directly kill bacteria, MSC-CM from the
three horse donors cultured in different serum sources (10%) was
inoculated with actively dividing log phase Methicillin-resistant
Staphylococcus aureus (MRSA). The antibiotic-free MSC-CM
or antibiotic-free MSC growth media (positive control) was
plated at 200 µL/well on a 96-well plate, and 500 bacteria in
log phase (OD 0.6) were added per well. Coculture plates were
incubated shaking at 100 revolutions/min at 37◦C for 16 h.
Negative control wells containing antibiotic-free DMEMwithout
bacterial inoculation were also included. Following incubation
with bacteria, media were transferred to 1.5-mL conical tubes,
vortexed to evenly distribute bacteria, diluted 10-fold, plated on

LB agar plates (100µL/quadrant), and incubated at 37◦C for 18 h.
CFUs were counted manually. Experiments were performed in
duplicate for three horses, each in triplicate.

Chondrogenic Differentiation
Equine MSCs were assessed for chondrogenic differentiation
potential following culture for 72 h in either 10% FBS
or autologous or allogeneic equine serum by Alcian blue
staining (ThermoFisher Scientific StemPro R© Chondrogenesis
Differentiation Kit, Waltham, MA). Briefly, following culture
in respective serum sources for 72 h, cells were trypsinized
and washed in phosphate-buffered saline, and the cell
pellets resuspended in chondrogenesis medium [StemPro R©

osteocyte/chondrocyte differentiation basal medium and
StemPro R© chondrogenesis supplement (9:1), penicillin (100
U/mL) and streptomycin (100µg/mL)] to generate a cell solution
of 1.6 × 106 cells/100 µL and then seeded in 5-µL droplets on
6-well plates. Cells were maintained on plates for 2 h in 37◦C
incubator at 5% CO2, and then chondrogenesis media was added
to the plates to cover the pellets. Media was changed every 3
days, and pellets maintained in culture in the 37◦C incubator at
5% CO2 for a total of 28 days and then evaluated for Alcian blue
staining visually by microscopy (Olympus SC30 microscope,
Tokyo, Japan).

Statistical Analysis
Raw data were plotted and visually assessed for normality prior to
statistical analysis. Data from the cell proliferation assay were log
transformed to improve raw distribution and model fit, whereas
other data were judged to be normally distributed. Data were
modeled individually using a linear mixed model [function lmer
from the lme4 (49) and lmerTest (50) packages] with donor as a
random effect to account for differences in donor cell lines. For
the bacterial killing assay, proliferation was modeled as doubling
time, and for the multiple cytokine secretion assays, media type
was modeled as the sole fixed effect. For the antimicrobial peptide
expression assay, type of media, pIC activation status, and media
concentration were modeled with a 3-way interaction between
factors in order to allow for a difference in slope of the fitted
line at different media percentages and activation states. The
difference in cathelicidin/LL-37 expression was then determined
at each of the four combinations of pIC activation (yes/no) and
media percentage (1 or 10%).

For both the cell viability assay and proliferation determined
by automated cell count, the model was fitted with the fixed
effect of media type, time as a continuous factor, and a type–
time interaction. The cell proliferation data were log transformed
to improve model fit as previously noted. Differences between
media types were then evaluated at each time point using
estimated marginal means.

Model assumptions of homoscedasticity and normality
of error distribution were verified by analysis of QQ plots
and fitted vs. residual values, and model fit was judged to
be appropriate. Differences between groups were evaluated
using differences in estimated marginal means [function
emmeans from the emmeans (51) package], with p-values
adjusted using Tukey adjustment for multiple comparisons
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or Dunnett test where appropriate. All statistical analyses
were performed using R for Mac (R version 4.0.0 “Arbor
Day” and 3.6.0 “Planting of a Tree”) (52). Graphical
analyses and graph generation were performed using
Prism software v8.4.1 (GraphPad Software Inc., La Jolla,
CA). For all analyses, statistical significance was assessed
as p < 0.05.

RESULTS

Cell Viability, Proliferation, and Morphology
Viability of MSCs in culture was not affected by serum
source (10%) after 24, 48, or 72 h in culture (Figure 2A).

However, proliferation of equine MSCs cultured in FBS was
faster compared to those cultured in autologous or allogeneic
equine serum at both 48 and 72 h (p < 0.001) and faster
than those cultured in allogeneic (but not autologous) serum
at 24 h (p = 0.002) (Figure 2B). Population doubling time
(mean ± SD, across three MSC cell lines) was determined
to be 21.21 ± 4.7 h in FBS, 28 ± 6.9 h in autologous
equine serum, and 29.86 ± 7.9 in allogeneic equine serum.
Population doubling times for each of the three MSC cell lines
are reported in Figure 3. When analyzed via automated cell
count, there were a significantly greater number of cells in
culture at 48 and 72 h in FBS media compared to autologous
and allogeneic equine serum (p < 0.001 for all). There was

FIGURE 2 | Effect of serum source on cell viability, proliferation, and morphology of equine MSCs in culture. (A) Viability of equine MSCs plated at 50,000 cells/well on

a 24-well plate in either 10% FBS or autologous or allogeneic equine serum was assessed via trypan blue dye exclusion over 72 h in culture, demonstrating no

difference in viability between culture conditions. (B) Proliferation of MSCs plated on 6-well plates at 100,000 cells/well was assessed by quantitative cell count at

baseline and over 72 h in culture, demonstrating that cells cultured in 10% FBS proliferated at a faster rate compared to those in either autologous and allogeneic

equine serum. (C) Morphology of MSCs plated in different serum sources on 6-well plates at 100,000 cells/well was assessed visually via microscopy over 72 h. All

MSCs demonstrated characteristic fibroblastic morphology, although cells cultured in FBS proliferated faster by visual assessment. Bars are mean and standard

deviation of three biological replicates. *Statistical significance assessed at p < 0.05. ns, non-significant statistical analysis.
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FIGURE 3 | Determination of population doubling time (hours). MSCs from each of three donors (n = 3) were plated at 100,000 cells/well on 6-well plates and

cultured in different serum sources for 72 h. Population doubling time was determined for each cell line individually and overall, as described in Methods, and

presented graphically (A) and numerically (B). *Statistical significance assessed at p < 0.05. ns, non-significant statistical analysis.

also a greater number of cells cultured in FBS vs. allogeneic
serum containing media at 24 h (p = 0.002). Examination of
equine MSC cultured in different serum sources did not reveal

observable differences in cell morphology over 72-h culture,
although proliferation as determined by visual assessment was
more rapid in cells cultured in FBS. Representative images
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FIGURE 4 | Effect of serum source in cell culture on MSC cytokine secretion. Equine MSCs from three donor horses were cultured in media using different serum

sources (10%; FBS or autologous or allogeneic equine serum) for 72 h and then plated for 24 h on 24-well plates at 100,000 cells/well in their respective serum

sources. Supernatants were collected after 24 h for evaluation of cytokines on a 23-cytokine fluorescent bead–based multiplex assay. Cells cultured in FBS produced

higher levels of seven cytokines (IL-4, IL-5, IL-17A, GM-CSF, eotaxin, RANTES, and FGF-2) compared to autologous or allogeneic serum. Levels of five cytokines

were below the detection limit of the multiplex assay (IL-2, IL-12, IL-18, IFN-γ, and MCP-1). For the remaining 11 biomarkers assessed (IL-1a, IL-1B, IL-6, IL-8, IL-10,

IL-13, IP-10, TNF-α, GRO, G-CSF, and fractalkine), there were no statistical differences between serum treatment groups in levels of cytokines secreted. Bars are

mean and standard deviation of three biological replicates. *Statistical significance assessed at p < 0.05.

documenting cell morphology after 72 h in culture are shown in
Figure 2C.

Cytokine Secretion
MSC-CM from cells cultured in FBS (10%) contained higher
levels of seven cytokines (IL-4, IL-5, IL-17A, GM-CSF, eotaxin,
RANTES, and FGF-2) compared to autologous or allogeneic
serum (Figure 4, Tables 1, 2). Levels of five cytokines were below
the detection limit of the multiplex assay (IL-2, IL-12, IL-18, IFN-
γ, and MCP-1). There were no statistical differences between
serum treatment groups for the remaining 11 biomarkers
assessed (IL-1α, IL-1β, IL-6, IL-8, IL-10, IL-13, IP-10, TNF-α,

GRO, G-CSF, and fractalkine). Cytokine levels in control media
were below the detection limit of the multiplex assay.

Cathelicidin/LL37 Secretion
Antimicrobial peptide (cathelicidin/LL-37) expression was
higher in MSC-CM from pIC-activated cells cultured in 1% FBS
compared to those cultured in autologous or allogeneic equine
serum (FBS vs. autologous, p = 0.01; FBS vs. allogeneic, p =

0.04). No differences in cathelicidin/LL-37 secretion were found
between serum treatment groups for cells cultured in either 10 or
1% non–pIC-activated or 10% pIC-activated culture conditions
(Figure 5).
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TABLE 1 | Measurable cytokine levels (MFI mean ± SD) in MSC-conditioned media containing either 10% FBS or autologous or allogeneic equine serum.

IL-1α IL-1β IL-4 IL-5 IL-6 IL-8 IL-10 IL-13 IL-17A

FBS 11.3 +/– 1.5 24 +/– 2 13.3 +/– 0.6 17 +/– 1 20.3 +/– 2.5 63.6 +/– 54.5 19 +/– 0 27.3 +/– 21.4 62.6 +/– 2.9

Auto equine 9.8 +/– 0.8 23 +/– 0 12 +/– 0 10.3 +/– 0.6 22.3 +/– 4.5 63 +/– 21.3 20 +/– 1 17.3 +/– 2.3 25 +/– 0.6

Allo equine 10 +/– 0 23.3 +/– 0.6 12 +/– 0 11 +/– 0 24.7 +/– 1.5 59.7 +/– 6.8 20 +/– 1 16 +/– 1 22 +/– 0

Treatment FGF-2 Eotaxin G-CSF GM-CSF Fractalkine IP-10 GRO TNF-α RANTES

FBS 18 +/– 1 12 +/– 1 8.7 +/– 2.1 19.7 +/– 0.6 10 +/– 0 17.3 +/– 2.9 79 +/−107.7 13.3 +/– 0.6 24.5 +/– 0.9

Auto equine 16 +/2 9.6 +/– 0.6 7.6 +/– 0.6 16.3 +/– 0.6 9 +/– 1 15.3 +/– 0.6 8.5 +/– 1.3 16.3 +/– 3.2 18.3 +/– 3.2

Allo equine 13 +/– 1.7 9.6 +/−0.6 7.6 +/– 0.6 16 +/– 0 8.3 +/– 0.6 18.7 +/– 0.6 10.3 +/– 4.2 15.7 +/– 0.6 12.3 +/– 0.6

Bacterial Killing Activity
Bacterial growth was inhibited by the MSC-CM cultured in all
serum sources compared to control (FBS, p = 0.001; autologous,
p= 0.01; allogeneic, p= 0.02) and to the greatest extent with FBS-
cultured cells. Bacterial growth was further inhibited by theMSC-
CM from FBS-cultured cells compared to those in autologous (p
= 0.02) and allogeneic equine serum (p= 0.04). No differences in
bacterial inhibition were seen between autologous or allogeneic
MSC-CM treatments (p= 0.94) (Figure 6).

Chondrogenic Differentiation and Gene
Expression
Chondrogenic differentiation was not inhibited by treatment
with media with different serum sources for 72 h prior to
differentiation as evidenced by Alcian blue expression at 28 days
(Figure 7).

DISCUSSION

MSCs are increasingly used in equine clinical practice,
particularly in the treatment of musculoskeletal disorders,
although more recent literature has demonstrated their potential
efficacy in other disease processes such as immune-mediated
disorders and infection (1–12). Cell culture in defined, serum-
free medium has been proposed as an alternative to FBS to
reduce antigenicity associated with the proteins themselves
and potentially increase longevity of MSCs following injection,
which may improve treatment effect (44). However, serum-
free medium as an alternative is cost-prohibitive in some
situations for routine clinical use. Little is known, however,
regarding the relative merits of each serum source with respect
to MSC function. In our study, we found that FBS culture
resulted in faster proliferation with shorter population doubling
times and significantly greater secretion of key cytokines and
antimicrobial peptides, which may be relevant to stromal cell
function following clinical application in inflammation or
infection. These findings should prompt equine practitioners
using MSCs in their clinical practice to weigh the relative
benefits of different serum sources in cell culture prior
to administration.

In this study, we reported that equine MSC viability was
not reduced following 72 h in culture with different serum

sources, although proliferation was significantly faster, resulting
in a greater number of cells in FBS vs. equine serum culture.
Chondrogenic differentiation was not suppressed by culture
in alternative serum sources to FBS, although full trilineage
differentiation was not explored. Previous studies have reported
differing results in terms of MSC morphology and capacity for
proliferation and differentiation following culture in different
media, which may be species dependent (13, 38, 43). For
instance, culture of equine MSCs in serum-free conditions was
demonstrated to result in expression of a more variable surface
phenotype in equine MSCs with lower percentages of CD90+

cells and small subpopulations of CD14+, CD34+, CD45+,
or MHCII+ cells (13). In contrast, human MSCs maintained
a more consistent morphology with CD29+, CD90+, and
CD105+ immunophenotyped following serum-free culture (13).
Furthermore, morphology of equine but not human MSCs was
altered with increased detachment of multilayers and cellular
aggregation noted (13). These studies, taken together, highlight
that variability in cell response to serum-free culture in terms of
viability, proliferation, differentiation, and morphology depends
on a number of factors and, importantly, should be optimized for
the species of interest.

Concentrations of seven biomarkers (IL-4, IL-5, IL-17A, GM-
CSF, eotaxin, RANTES, FGF-2) were found to be increased
in supernatants collected from MSCs cultured with FBS vs.
autologous or allogeneic equine serum. Lack of statistical
significance in levels of several other cytokines (e.g., IL-8, IL-13,
GRO) may be explained in part due to small number of horse cell
lines (n= 3) and the large variability between cell lines evaluated.
Various studies have demonstrated therapeutic potential for IL-
4 in osteoarthritis (OA) (53–58). IL-4 receptors are expressed
on chondrocytes and synovial cells (54, 55), and IL-4 signaling
has been shown to alter mechanotransduction in chondrocytes
associated with turnover of matrix in OA (56). In addition, IL-
4 inhibits chondrocyte apoptosis and cartilage breakdown and
reduces synovial inflammation by antagonizing TNF-α-induced
production of prostaglandin E2 (PGE2) by synovial fibroblasts
in OA (59). Furthermore, genetic variation in IL-4R genes
increase susceptibility of individuals to OA (57). Finally, IL-4
induces production of IL-1 receptor antagonist, which may have
important implications when MSCs are injected in treatment of
OA where IL-1 is frequently elevated (60).
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Several of the other cytokines elevated in FBS-cultured
MSC-CM have also been implicated to have prognostic value
in the degree of severity and progression of OA. Significant
concentration differences in IL-5 in synovial fluid were noted
between subjects with little or no arthritis compared to those with
advanced arthritis based on the ICRS scale (61). When synovial
fluid samples from patients undergoing knee arthroscopy
were evaluated for biomarker levels, RANTES (regulated upon
activation, normal T cell expressed and secreted), in addition to
vascular endothelial growth factor and platelet-derived growth
factor, was one of the strongest predictors of postoperative
improvement at final follow-up regardless of the degree of
cartilage injury at time of surgery (62). RANTES has also been
reported as a mediator of acute and chronic inflammation, with
recruitment of macrophages, mast cells, and eosinophils, as well
as PGE2 generation demonstrated following RANTES injection
in skin of experimental rodent models (63). IL-17 promotes
recruitment of both neutrophils and monocytes by inducing
various chemokines (64), which has been suggested to mediate
inflammation in human rheumatoid arthritis (RA) (65).

Interestingly, FGF-2 has been suggested to have both
a chondroprotective role in cartilage metabolism and a
catabolic effect on articular cartilage homeostasis and may
play a role in cartilage regeneration and repair (66–68).
The conflicting roles of FGF-2 have been suggested to be
dependent on differences in the balance of FGF receptors
(FGFRs) within the tissue of interest, which may be species-
dependent (68, 69). For example, FGF-2 induces catabolic
and antianabolic effects in human articular cartilage (67,
68) but exerts an overall anabolic effect in murine cartilage
(66). At the time of this writing, the reasons for species
specificity remain unknown but may potentially be accounted
for by differences in receptor levels between species and
may be further clarified when species-specific FGFR profiles,
including equine, are published (69). Increased eotaxin levels
in the synovial fluid of individuals with OA have been
reported (70) and correlated with disease severity (71). Eotaxin
production by chondrocytes was further demonstrated to be
induced by stimulation of chondrocytes with IL-1B or TNF-
α (70). In contrast, however, high serum levels of eotaxin
are associated with less radiographic progression in early RA
patients, suggesting a counter-regulatory role (72). Finally, GM-
CSF, elevated in MSC-CM of FBS-cultured stromal cells, has
been described as a growth factor that induces proliferation
and differentiation of bone marrow myeloid progenitor cells
and therefore may exert an important effect to encourage
migration of myeloid cells in inflammation, stimulating renewal
of macrophages and granulocytes and survival of targeted
cells (73). Both protective and pathogenic roles for GM-
CSF in inflammatory and autoimmune diseases have been
described, demonstrating multiple roles for GM-CSF and
potential therapeutic strategies that may exploit its role in
inflammation (73).

Equine MSCs possess antimicrobial and immunomodulatory
properties, and their application in the treatment of bacterial
infections is gaining increasing attention (3, 4). MSCs are
normal participants in tissue repair processes, promoting healing
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FIGURE 5 | Effect of TLR agonist priming and serum concentration in culture on antimicrobial peptide secretion. Equine MSCs were plated on 75-cm2 plates for 72 h

in different serum sources (FBS or autologous or allogeneic equine serum) and then trypsinized and stimulated with pIC (10µg/mL, 2 h, 2 × 106 cells/mL) and plated

for 24 h in DMEM media supplemented with varying concentrations (10 or 1%) of different serum sources (FBS or autologous or allogeneic equine serum) on 24-well

plates at 100,000 cells/well. Conditioned medium was collected after 24 h in culture and assessed for quantitative cathelicidin/LL-37 antimicrobial peptide production

via ELISA. In 1% serum culture following pIC activation, LL37 production was significantly higher from MSCs in FBS cultured media compared to autologous or

allogeneic equine serum. Bars are mean and standard deviation of three biological replicates. ns, non-significant statistical analysis. *Statistical significance assessed

at p < 0.05.

through epithelialization, angiogenesis, granulation tissue
formation, collagen deposition, and release of inflammatory
mediators (74–84). Direct antibacterial effects mediated by
secretion of antimicrobial peptides such as cathelicidin/LL-37
(74, 75) and indirect effects through activation and recruitment
of immune effector cells as MSCs express genes for production
of immunomodulatory and chemoattractant cytokines
including IL-6, IL-8, and MCP-1 (74–76, 83, 85). In this
study, we demonstrated that cathelicidin/LL-37 production
and bactericidal ability to S. aureus in vitro was reduced in
MSC-CM from cells cultured in autologous or allogeneic equine

serum compared to FBS. These findings may have important
implications toward optimizing MSC antibacterial activity when
used to treat infections, and the relative antimicrobial capacity
of equine MSCs cultured in different serum sources warrants
further investigation in vivo.

Limitations of this study include the in vitro nature of
design, relatively low number of individual equine cell lines
assessed (n = 3), short period of time in culture with alternate
serum sources (72 h), and the fact the all MSCs were initially
cultured in the presence of FBS. Culture of MSCs in their
respective media from the beginning of the study could have
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FIGURE 6 | Effect of serum source in culture media on bactericidal activity of MSC-CM on multidrug-resistant S. aureus. Multidrug-resistant S. aureus was cultured

with MSC-CM cultured in media with different serum sources (10% FBS or autologous or allogeneic equine serum) for 16 h and plated on LB agar quadrant plates for

18 h. Bacterial growth shown on y-axis was measured by plating bacteria and counting viable colonies. Bacterial growth was reduced by all MSC-CM treatments

compared to control and were also further reduced in MSC-CM from FBS-cultured cells compared to autologous or allogeneic equine serum. Bars are mean and

standard deviation of three biological replicates. *Statistical significance assessed at p < 0.05.

yielded additional information. It is also acknowledged as a
limitation that conditions for MSCs cultured in autologous
or allogeneic equine sera were changed vs. those in FBS that
remained the same throughout the study. However, the study
was performed as such to replicate clinical scenarios where
equine practitioners replace the FBS as the serum source several
days prior to clinical application. In addition, further in vivo
evaluation and comparison of safety and efficacy of MSCs that
were cultured in different serum sources are warranted. Secretion
of additional various cytokines and growth factors that may play

a role in joint inflammation and degeneration where MSCs are
applied in the treatment of OA such as transforming growth
factor β, platelet-derived growth factor, or aggrecanases was
not quantified in this study. Additional immunophenotypic
evaluation for surface markers of MSCs and comparison of
surface marker expression prior to and following culture in
different serum sources could have been performed and may
have added additional value to the study design. In assessing
chondrogenic differentiation, the time period of 72 h in culture
is relatively short prior to 28 days of culture in chondrogenesis
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FIGURE 7 | Effect of serum source in culture on chondrogenesis differentiation of equine MSC. Equine MSCs were cultured in 75-cm2 flasks for 72 h in media

containing either 10% FBS or autologous or allogeneic equine serum and then trypsinized and replated in chondrogenesis differentiation media for 28 days. Media

was changed every 3 days. At that time, cells were examined for Alcian blue expression indicating chondrogenic differentiation via microscopy. Serum source [(A)

FBS, (B) autologous equine serum, or (C) allogeneic equine serum] for 72 h did not inhibit chondrogenic differentiation.

differentiation assays, and it is acknowledged that although
the chondrogenesis differentiation media was serum-free, a
potential effect of different sera sources could have been masked
by the length of time in culture following removal from the
alternate sera sources investigated. The study did not assess the
effect of serum donor age on composition of sera; as FBS has
demonstrated differences compared to adult bovine serum, the
inclusion of and comparison to fetal horse serum here could have
also strengthened study design. Finally, this study was limited in
comparing FBS to only autologous or allogeneic equine serum,
and further studies may also evaluate alternative xenogene-
free options to FBS in culture media including platelet lysate
and commercially available serum substitutes. Batch-to-batch
variability and transmission of species-specific viruses are also
a risk with allogeneic equine serum use in culture (as they are
with FBS). Therefore, recombinant products represent the only
sustainable alternative to FBS, although the price of commercially
available media may be prohibitive in some circumstances.

In conclusion, this study demonstrated that MSCs cultured
in medium with FBS were more functionally active than MSCs
cultured in equine serum. However, no difference was found in
MSCs cultured in autologous serum compared to cells cultured
in allogeneic equine serum. To ascertain whether these in vitro
effects translate to clinically significant differences in MSC
efficacy, randomized trials comparing the effectiveness of MSCs
cultured in FBS to MSCs cultured in equine serum need to be
conducted. Until such trials are completed, it is important to
consider serum effects not only on cell viability and proliferation,
but also on the intended MSC effector cell functions for the given
disease indication when opting for cell serum sources.
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