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Abstract: Robust electrode materials without the addition of binders allow increasing efficiency of
electrical storage devices. We demonstrate the fabrication of binder-free electrodes from modified
single-walled carbon nanotubes (SWCNTs) for electrochemical double-layer capacitors (EDLCs).
Modification of SWCNTs included a sonication in 1,2-dichlorobenzene and/or fluorination with
gaseous BrF3 at room temperature. The sonication caused the shortening of SWCNTs and the splitting
of their bundles. As a result, the film prepared from such SWCNTs had a higher density and attached
a larger amount of fluorine as compared to the film from non-sonicated SWCNTs. In EDLCs with 1M
H2SO4 electrolyte, the fluorinated films were gradually defluorinated, which lead to an increase of
the specific capacitance by 2.5–4 times in comparison with the initial values. Although the highest
gravimetric capacitance (29 F g−1 at 100 mV s−1) was observed for the binder-free film from non-
modified SWCNT, the fluorinated film from the sonicated SWCNTs had an enhanced volumetric
capacitance (44 F cm−3 at 100 mV s−1). Initial SWCNT films and defluorinated films showed stable
work in EDLCs during several thousand cycles.

Keywords: single-walled carbon nanotubes; 1,2-dichlorobenzene; fluorination; binder-free film; 1M
H2SO4 electrolyte; electrochemical capacitors

1. Introduction

The depletion of fossil fuels causes fluctuations in their price and leads to problems
with pollution of air and soil. Therefore, recently there has been a growing interest in the de-
velopment of highly efficient energy storage devices, including solar cells [1,2], rechargeable
batteries [3], and electrochemical double-layer capacitors (EDLCs) [4,5]. EDLCs provide
high power density, a long-term cycle life, and are environmentally friendly [6]. On the
contrary, batteries possess high energy density, but they have low power density [7,8].

The widespread candidates for electrode materials for the EDLC industry are porous
carbon in different forms, such as carbon aerogels, soot, activated carbon, and carbon
cloth [7,9]. Porous types of carbon materials are widely used in EDLCs, because they have
a high specific surface area and developed microporous structure, but they are unfavorable
for electrolyte wetting and rapid ionic transport [10]. Moreover, for the fabrication of
electrodes from porous carbon materials, a polymer binder is required to hold the carbon
particles together. When the mass of the electrochemically inactive binder is taken into
account, the specific capacitance of the electrode decreases [11].

Carbon nanotubes (CNTs) have a cylindrical structure and possess a high specific
surface area, stability, and electrical conductivity, which are factors suggesting that the
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CNTs are promising materials for polarizable electrodes [9,12]. They are classified as
single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) [13]. In the pure form,
CNTs provide moderate values of capacitance (20–60 F g−1) [14]. The CNTs have a long
and flexible body and hence they are attractive for the fabrication of mechanically stable
binder-free films [14,15].

To improve the potential application of carbon materials as electrodes in energy storage
devices, covalent functionalization (O, halogens, and amines) [9] and heteroatom (N, S, P,
and B) doping are widely used [16,17]. The strong electronegativity and the capability of
fluorine (F) to form covalent bonds with carbon atoms induce surface polarity that creates
more sites for electrolyte ion adsorption, promote ion transportation, and enhance surface
wettability [18,19]. For example, Lee et al. demonstrated that the presence of fluorine
in the structure of SWCNTs led to their efficient dispersion in water, while the specific
capacitance of heat-treated F-SWCNTs increased due to the appearance of micropores [20].
Fluorination of MWCNTs brought similar effects in the increased specific capacitance of
the F-MWCNT-based electrode [21]. In addition, there are a few works devoted to the
fluorination of CNT buckypapers or nanopapers obtained by filtering CNTs dispersed in
a solvent [22–24]. In spite of the synthesis, characterization, and different applications of
F-CNTs being widely studied, the use of F-CNTs in EDLCs has received little attention.

Here, we present a study of the effect of fluorination of SWCNT films on their electro-
chemical behavior when used as binder-free electrodes in 1M H2SO4 electrolyte. Commer-
cial TUBALLTM nanotubes produced in huge quantities were used. We compare the ability
of as-synthesized bundled SWCNTs and individualized SWCNTs to form a compact film
and to be fluorinated in mild conditions.

2. Materials and Methods
2.1. Purification of SWNTs

SWCNTs produced by the OCSiAl company (Novosibirsk, Russia) were purified
by a procedure described elsewhere [25]. The ends of the nanotubes were opened by
thermal treatment at 500 ◦C in the air atmosphere. The residual catalyst was removed by
sonication of opened SWCNTs in the concentrated HCl for 5 h using a bath. The sample
was washed with distilled water until the neutral pH and dried at 100 ◦C for 2 h in a
furnace. The obtained SWCNT powder was dispersed in an aqueous solution of sodium
dodecyl sulfate (5 mg mL−1) at continuous stirring and the suspension was passed through
a silicone capillary placed between permanent magnets for more complete removal of
metal nanoparticles. After that, the SWCNTs were washed with distilled water and dried
at 100 ◦C for 2 h in a furnace.

2.2. Preparation and Fluorination of Films

To split the bundles, the purified SWCNTs (5 mg) were sonicated using a tip at a
power of 100 W in 25 mL of 1,2-dichlorobenzene for 30 min. The suspension was filtrated
through a cellulose nitrate (CN) membrane and the precipitate was dried in air.

A sample (40 mg) of the purified SWCNTs (SW) or the split SWCNTs (SW_DC) was
sonicated using a tip in 40 mL of chloroform. The resultant suspensions were vacuum
filtered through a CN membrane and the obtained films were dried in air. To remove the
residual solvents, the films were annealed in argon at 900 ◦C for 1 h.

The SW and SW_DC films were fluorinated using a mixture of BrF3 (20 wt.%) and Br2
at room temperature. The mixture was poured into Teflon reactor, the SWCNT film was
put into a perforated Teflon beaker, the beaker was set on the support in the reactor, which
was closed hermetically. After 7 days of the reaction, the samples were purged with N2 for
1 day to eliminate residual amounts of unreacted Br2 and BrF3. The fluorinated CNTs are
denoted as F_SW and F_SW_DC.
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2.3. Characterization Methods

Structures of SWCNTs and films were studied by SEM on a JEOL JSM-6700 F (JEOL
Ltd., Tokyo, Japan) microscope and TEM on a JEOL-2010 microscope (JEOL Ltd., Tokyo,
Japan). Raman analysis was performed using a LabRAM HR Evolution HORIBA spectrom-
eter (Horiba, Kyoto, Japan) with a 514 nm argon laser.

X-ray photoelectron spectroscopy (XPS) experiments were carried out for initial fluori-
nated SWCNTs at an excitation of 830 eV of the Russian–German beamline at the Berliner
Elektronenspeicherring für Synchrotronstrahlung (BESSY II) station. The binding energies
were aligned to the position of the Au 4f7/2 line at 84 eV. XPS spectra of the films after
electrochemical tests were recorded on a SpecsLab PHOIBOS 150 spectrometer (Specs
GmbH, Berlin, Germany) using a monochromatized Al Ka-radiation (1486 eV). The binding
energy scale was calibrated to the energy of 284.5 eV for the sp2–carbon component. The
analysis of XPS spectra was performed with CASA XPS software, Version 2.3.15 (Casa
Software Ltd., Teignmouth, UK) using Gaussian-Lorentzian and Doniach-Sunjic functions
after subtraction of the background signal by Shirley’s method.

Nitrogen adsorption/desorption experiments were carried out at liquid nitrogen
temperature using a Sorbi MS analyzer (CJSC “META”, Novosibirsk, Russia). The specific
surface area (SSA) was calculated by the Brunauer–Emmett–Teller (BET) method based on
the data of adsorption isotherms.

2.4. Electrochemical Measurements

The binder-free films (0.5× 0.5 cm2) were tested in three-electrode flat cells, assembled
using a standard technique [26]. An Ag/AgCl electrode was used as the reference electrode
and Pt plates were used as the counter electrode and the current collector for the working
electrode. Cyclic voltammetry (CV) curves were recorded in 1M H2SO4 electrolyte at a
scan rate from 2 to 1000 mV s−1 on a SP-300 potentiostat/galvanostat (Bio-Logic Science
Instrument, Seyssinet-Pariset, France).

Long-term tests were performed using symmetric two-electrode cells. The gravimetric

and volumetric capacitance was calculated from the area of CV curves as: CG =
∫

I>0 IdU
4U∆νs ·mel

and CV =
∫

I>0 IdU
4U∆νs ·Vel

, respectively, where I is the current (A), dU is the differentially small
increment of potential (V), ∆U is the voltage window (V), νs is the scan rate (V s−1), mel
is the mass of SWCNT film (g), and Vel . is the volume of the film (cm3). The gravimet-
ric capacitance from galvanostatic charge/discharge (GCD) curves was determined as:
CG =

2Eint/D
∆U2 , where Eint/D is discharge energy, calculated as Eint/D = I

∫ t(Umin)
t(Umax)

U(t)dt.
To study the samples after long-term cycling, the films were washed with a large

amount of distilled water and dried in air.

3. Results
3.1. Structural Aspects

TEM images of SWCNTs before (sample SW) and after the sonication in
1,2-dichlorobenzene (sample SW_DC) are compared in Figure 1a,b. The former sam-
ple consists of entangled SWCNT bundles with an average diameter of ca. 100–200 nm
(Figure 1a). The bundles are split and the SWCNTs are shortened substantially in the
sample SW_DC (Figure 1b). Filtration of the suspension of short and almost individualized
nanotubes results in the formation of a compact and denser film as compared to that pro-
duced from the suspension of the SW sample (Figure 1c,d). SEM images of a cross-section
of the films reveal that the film SW is 1.9 times thicker than the film SW_DC (Figure 1e,f).
The estimated density for the SW and SW_DC films is 0.47 and 0.88 g cm−3, respectively.
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prepared from sample SW (c,e) and sample SW_DC (d,f). 
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exhibit radial breathing modes (RBM) and tangential G band around 1580 cm–1 [27]. The 
appearance of the disorder-induced D band at 1343 cm−1 in the Raman spectrum of the 
SWCNT sample indicates carbon impurities and structural defects in the nanotube walls 
[28]. Since the TEM study of the SW sample found no impurities (Figure 1a), the ratio of 
the intensities of D and G bands (ID/IG) could be used to estimate SWCNT defects. The 
tangential G band of the SWCNTs splits into G– and G+ components located at 1574 and 
1592 cm−1 and assigned to atomic displacement along the circumferential direction and 
the tube axis, respectively [29]. The G− component is highly dependent on the laser exci-
tation energy and the geometry (diameter and chiral angle) of the SWCNT [30]. Therefore, 
we used the peak intensity of the G+ component to obtain the ID/IG ratio. A very low value 
of the ratio for the SW film (Figure 2) indicates a high structural order of the studied 
SWCNTs. The ID/IG ratio remains unchanged after the sonication of SWCNTs in a 1,2-di-
chlorobenzene, meaning that no new defects have arisen in the nanotube walls. However, 
the Raman spectra of SW and SW_DC films are different in the RBM mode region. The 
significant variability in relative intensities in this region is due to the inter-tube contact 
area, which increases with the SWCNT aggregation [29]. Hence, based on the TEM and 
Raman spectroscopy data, we conclude the main role of the 1,2-dichlorobenzene treat-
ment is the splitting of bundles and cutting of the nanotubes without noticeable function-
alization and disordering of their walls.  

The intensity of the D band becomes comparable with the G band intensity in Raman 
spectra of F-SW and F-SW_DC films. This event and the merging of G+ and G− components 

Figure 1. TEM images of purified SWCNTs before (sample SW, (a)) and after (sample SW_DC, (b))
the sonication in 1,2-dichlorobenzene and SEM images of top-view (c,d) and side-view (e,f) of the
films prepared from sample SW (c,e) and sample SW_DC (d,f).

Raman spectra of SW and SW_DC films before and after fluorination recorded in the
range of 70 to 2000 cm−1 are shown in Figure 2. The spectra of initial SW and SW-DC
films exhibit radial breathing modes (RBM) and tangential G band around 1580 cm–1 [27].
The appearance of the disorder-induced D band at 1343 cm−1 in the Raman spectrum of
the SWCNT sample indicates carbon impurities and structural defects in the nanotube
walls [28]. Since the TEM study of the SW sample found no impurities (Figure 1a), the ratio
of the intensities of D and G bands (ID/IG) could be used to estimate SWCNT defects. The
tangential G band of the SWCNTs splits into G− and G+ components located at 1574 and
1592 cm−1 and assigned to atomic displacement along the circumferential direction and the
tube axis, respectively [29]. The G− component is highly dependent on the laser excitation
energy and the geometry (diameter and chiral angle) of the SWCNT [30]. Therefore, we
used the peak intensity of the G+ component to obtain the ID/IG ratio. A very low value
of the ratio for the SW film (Figure 2) indicates a high structural order of the studied
SWCNTs. The ID/IG ratio remains unchanged after the sonication of SWCNTs in a 1,2-
dichlorobenzene, meaning that no new defects have arisen in the nanotube walls. However,
the Raman spectra of SW and SW_DC films are different in the RBM mode region. The
significant variability in relative intensities in this region is due to the inter-tube contact
area, which increases with the SWCNT aggregation [29]. Hence, based on the TEM and
Raman spectroscopy data, we conclude the main role of the 1,2-dichlorobenzene treatment
is the splitting of bundles and cutting of the nanotubes without noticeable functionalization
and disordering of their walls.
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XPS study reveals the difference between F-SW and F-SW_DC films in the degree of 
fluorination. According to the XPS survey spectra (not shown), the fluorinated films con-
tain carbon and fluorine as the main elements and a small amount of bromine and oxygen. 
The fluorine content in F-SW and F-SW_DC is about 14 and 23 at%, respectively.  
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fluorine on the SWCNT surface is uneven. An intense C sp2 component, observed in the 
spectra of F-SW and F-SW_DC samples (Figure 3a), provides evidence of preservation of 
the conjugated π-electron areas. Therefore, the nanotube surface is a composition of sp2-
carbon areas and CFx domains (Figure 3b). The average fluorine content x in the CFx do-
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CF). This value is 0.4 in F-SW_DC and 0.48 in F-SW. Previously, it has been shown that the 

Figure 2. Raman spectra of initial SW and SW_DC films and those after fluorination.

The intensity of the D band becomes comparable with the G band intensity in Raman
spectra of F-SW and F-SW_DC films. This event and the merging of G+ and G− components
into one G peak are due to the random creation of covalent C–F bonds that distort the
translational nanotube symmetry. Strong suppression of RBMs in the spectrum of F-
SW_DC may indicate a high fluorination degree of this sample. The spectrum of F-SW
film exhibits an intense band at 236 cm−1 assigned to Br2 molecules intercalated between
nanotubes [31] The absence of this band in the spectrum of F-SW_DC film is due to the
splitting of the bundles.

XPS study reveals the difference between F-SW and F-SW_DC films in the degree
of fluorination. According to the XPS survey spectra (not shown), the fluorinated films
contain carbon and fluorine as the main elements and a small amount of bromine and
oxygen. The fluorine content in F-SW and F-SW_DC is about 14 and 23 at%, respectively.

XPS C 1s spectra of SW, F-SW, and F-SW_DC films are compared in Figure 3a. The
spectrum of purified SWCNTs is presented by an asymmetric line at 284.3 eV corresponding
to the sp2-hybridized carbon and a broad high-energy line assigned to π-π* satellites [32].
XPS C 1s spectra of the fluorinated films contain five components associated with different
chemical states of carbon. Both spectra have the C sp2 component and this indicates that
fluorine-free areas remain on the nanotube surface. The fraction of such areas is larger
in the F-SW sample. There, the SWCNTs are gathered into big bundles. The surface
of the bundle is fluorinated first and this limits penetration of the fluorinating agent
to the interior nanotubes. The splitting of the bundles in SW_DC makes most of the
nanotubes available for the fluorination and as a result, the sample is more uniformly
fluorinated. As compared to non-fluorinated SWCNTs, the C sp2 component is upshifted
by 0.1 eV for F-SW and by 0.2 eV for F-SW_DC. This upshift is due to the transfer of
electron density from carbon to the fluorine atom. The C 1s spectra of F-SW and F-SW_DC
films also show two intense components at 285.7 and 288.4 eV attributed to the carbon
neighboring with CF-group (C*-CF) and the carbon covalently bonded with fluorine (C-F),
respectively [33,34]. The components at 290.5 and 292.5 eV correspond to the edge CF2 and
CF3 groups, respectively [35]. The fraction of CF2 groups is larger in the F-SW-DC sample
due to the shortening of the nanotubes as a result of their sonication in 1,2-dichlorobenzene.
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Based on the analysis of the XPS C 1s spectra, we conclude that the distribution of
fluorine on the SWCNT surface is uneven. An intense C sp2 component, observed in the
spectra of F-SW and F-SW_DC samples (Figure 3a), provides evidence of preservation of the
conjugated π-electron areas. Therefore, the nanotube surface is a composition of sp2-carbon
areas and CFx domains (Figure 3b). The average fluorine content x in the CFx domains
is determined using the areas of the C 1s spectrum components as x = IC-F/(IC-F + IC*-CF).
This value is 0.4 in F-SW_DC and 0.48 in F-SW. Previously, it has been shown that the
preferred pattern in the layers of fluorinated graphite of the CF0.5 composition is the
alternate chains from CF groups and bare carbon atoms [36]. Since the C*-CF/C-F ratio is
larger in the spectrum of the F-SW_DC sample, we conclude the CF chains are shorter in the
CFx domains for these nanotubes. In addition, some fluorine atoms are isolated, i.e., they
have no CF neighbors. The fraction of such fluorine atoms is larger in the F-SW sample,
where the XPS F 1s spectrum clearly shows the low-energy component CFis (Figure 3c).
However, most of the fluorine atoms form covalent bonds with the SWCNT surface that is
evident from a dominant line at 686.7 eV [19,37] in the spectra of both fluorinated samples.
A high-energy component at 688.1 eV is attributed to fluorine from edge CFx groups [38].
The intensity of this component is higher in the spectrum of F-SW_DC in accordance with
the C 1s spectral data (Figure 3a).

3.2. Electrochemical Behavior of SWCNT-Based Electrodes

The operational voltage of carbon capacitors with aqueous electrolytes is usually
below 1 V [39] and this value is limited by the electrochemical stability of water (thermo-
dynamically 1.23 V) [40] and also controlled by the electrode material and the electrolyte
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pH [41]. The tests of our materials showed that the optimal window in 1M H2SO4 elec-
trolyte is between 0 and 0.9 V. At these potentials, irreversible processes in the cells are
insignificant. Electrochemical performances of SWCNT films are evaluated using CV
measurements in two-electrode cells.

The data on long-term cycling are presented in Figure 4. The CV curves recorded for
the non-fluorinated SW and SW_DC electrodes at a scan rate of 100 mV s−1 show a nearly
rectangular shape characteristic for EDLCs (inserts in Figure 4a,b). The CV loops slightly
increase with long-term cycling owing to the impregnation of electrodes with 1M H2SO4
electrolyte [42]. This process is more substantial for the SW film and it is accompanied
by the specific capacitance growth by 20% during the long-term cycling (Figure 4a). In
contrast, the capacitance of the cell with the SW_DC electrodes is constant (Figure 4b). The
main differences between SW and SW_DC are the density of the films and the size of the
nanotube bundles. Although the SW_DC film is denser, this does not hinder the diffusion
of electrolyte ions into the depth of the film. The surface of well-split nanotubes in this
sample is easily accessible for the ions. However, this not the case for the SW film, where
the SWCNTs form big-size bundles. It takes time for electrolyte ions to penetrate to the
SWCNTs in the center of the bundle.
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2nd, 252nd, 1002th, 1502th, and 4998th cycles.

CV curves of the fluorinated films exhibit a slope at the first cycles (insets in Figure 4c,d),
which is especially marked for the F-SW_DC film. The shape of the curves changes with
the cycling, gradually approaching a rectangular shape. Since such shape characterizes a
double-layer capacitive behavior of pure carbon materials [43], we conclude electrochemical
defluorination of F-SW and F-SW_DC films. An increase in the capacitance retention of
the cells (Figure 4c,d) indicates the lower specific capacitance of the starting fluorinated
SWCNTs. The specific capacitance increases by about 2.5 times for F-SW and 4 times for
F-SW_DC after 2000 cycles and keeps unchanged during further cycling. The results on the
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long-term cycling of the studied samples generally show the good stability of binder-free
SWCNT films.

After long-term tests, the films were studied at various scan rates. When calculating
the gravimetric capacity of fluorinated films, we used the weight of the electrodes taken out
of the cells, washed with distilled water, and dried in air. Because of electrochemical deflu-
orination, films F-SW and F-SW_DC lost ~37% and ~38% of the initial weight, respectively.
Dependences on the gravimetric capacitance on scan rates show better performances for
F-SW and F-SW_DC as compared with the non-fluorinated parent samples (Figure 5a). The
F-SW_DC film has larger capacitance at scan rates up to 200 mV s−1 than the F-SW film.
The dense SW_DC film has the smallest values of specific capacitance. However, the films
composed of split SWCNTs significantly exceed the bundled samples SW and SW_DC in
volumetric capacitance (Figure 5b). The largest value is achieved for the F-SW_DC film.
Thus, the splitting of SWCNTs bundles with the following fluorination is a useful way to
obtain dense electrodes with an advanced volumetric capacitance.
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3.3. F-SWCNTs after Electrochemical Tests

Structural changes occurring with the fluorinated SWCNT films after long-term cy-
cling were examined by Raman spectroscopy (Figure 6a). As compared to the spectra of
initial fluorinated films (Figure 2), the spectra of the cycled films show a dramatic decrease
in the intensity of the D band and the width of the G band as well as repairing of RBMs.
These spectral changes confirm electrochemical defluorination of the nanotubes.

Figure 6b compares the CV curves measured at the first cycle and after the long-term
cycling of F-SW and F-SW_DC in three-electrode cells. The initial CV curves have a shuttle
shape that indicates a low current density and poor conductivity of the films [44] due to a
decreased amount of π-electrons after fluorination. Long-term cycling leads to the change
in the CV curves to more rectangular-like shapes. Two pairs of redox peaks are clearly
visible on the curves. The pair at 0.48/0.44 V in the CV curve of F-SW and 0.33/0.28 V in
the CV curve of F-SW_DC corresponds to oxygen-containing groups and carbonyl and
quinone oxygen groups are electrochemically active in an acidic electrolyte [45,46]. The
pair at 0.72–0.75/0.56–0.66 V could be assigned to fluorine contribution since the CV curves
of the starting fluorinated films have peaks at close values of the potential.

The XPS study of electrochemically treated F-SW film detected a decrease in the
fluorine content of less than 1 at% and an increase in the oxygen content of ~11 at% versus
~3 at% in the initial samples. The C 1s spectrum of the cycled F-SW electrode contains no
components from carbon bonded with fluorine (Figure 6c). The components at ~286.4 and
~288.5 eV correspond to the carbon bonded with oxygen in hydroxyl and carboxyl groups,
respectively [47]. A high component Cdis at ~285.0 eV is assigned to the sp2-carbon atoms
located near the oxygen functionalities as well as the disordered states [48,49] formed in
the SWCNT walls after removal of fluorine.
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The XPS F 1s spectrum of the cycled F-SW electrode detects a decrease of the amount
of covalent CF bonds as compared to the edged CF2 groups and the isolated CF groups
(Figure 6d). The O 1s spectrum exhibits two components located at ~531.9 and ~533.1 eV
(Figure 6e) from oxygen correspondently doubly and singly bound to carbon [50].

3.4. Electrochemical Performance of Aged Electrodes

Results presented in Figure 4 show that electrochemical behavior of the SWCNT-based
films changes with the cycling. An increase in the specific capacitance of non-fluorinated
SW and SW_DC samples is due to wetting of electrode with electrolyte. Strong changes
detected for the fluorinated films F-SW and F-SW_DC are related to a defluorination
process occurred in an electrochemical cell.

To study the stability of binder-free SWCNT-based electrodes, they were tested again
after aging in laboratory air for 1 month. After washing with distilled water, the films
were impregnated with a fresh electrolyte and used to assemble two-electrode cells. The
measurements were conducted in a galvanostatic regime. Figure 7a compares the GCD
curves recorded at a current density of 1 A g−1. All electrodes exhibit a symmetrical
triangular shape characteristic for a capacitive response when charges fast propagate
through the electrode. Specific capacitances calculated from the GCD curves are presented
in Figure 7b. At current densities up to 10 A g−1 the capacitance increases in the set of the
samples SW_DC < F-SW < SW < F-SW_DC. At larger current densities, the trend is the
same as that obtained from the CV curves measured at the scan rates less than 200 mV s−1

(Figure 5a).
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The best F-SW_DC electrode was used to evaluate the electrochemical efficiency of
binder-free SWCNT-based films. Energy and coulombic efficiencies are calculated from
potential–time dependences obtained at a current density of 5 A g−1 (Figure 7c). The energy
efficiency is estimated as the ratio of discharge area to charge area of a GCD curve and the
coulombic efficiency is equal to the ratio of discharge and charge intervals [51]. Coulombic
efficiency of ~96% and a good repeatability of the GCD curves for the last 17 cycles (inset
in Figure 7c) demonstrate high reversibility of F-SW_DC electrode after long-term cycling
tests. The energy efficiency of the electrode varies from 84 to 88% (Figure 7c). Reduced
energy efficiency can be due to irreversible processes such as the loss of redox-active groups,
decomposition of the electrolyte, and the block of the pores in the electrode material.

4. Discussion

The fabrication of robust electrode materials without the addition of binders allows
increasing efficiency of electrical storage devices [52,53]. CNTs are attractive for this
purpose because one-dimensional and flexible structures are easily intertwined to form a
mechanically stable film [52]. Such films can be produced directly in the synthesis [54] or
prepared by filtration of a suspension containing CNTs [55].

EDLCs store energy via the adsorption of electrolyte ions at the electrode material
surface [56]. Hence, a large surface area is a necessary condition for the high specific
capacitance of the device. Among the materials studied, SW possesses the largest specific
surface area, while it shows average gravimetric capacitance (Table 1). In this work, we use
commercial SWCNTs with the good atomic ordering of the walls, which are produced in
quantities sufficient for practical use. These SWCNTs are gathered in long, large-diameter
bundles that are difficult to disperse. However, the sonication of the SWCNTs in 1,2-
dichlorobenzene splits the bundles and shortens the nanotubes [57]. We show that the
filtration of aqueous suspensions containing equal weights of the initial SWCNTs and the
split SWCNTs yields films of significantly different thicknesses (Figure 1e,f). The density
of the film increases and the specific surface area decreases after the SWCNT splitting
(SW_DC sample). The reason is probably the strong adhesion of the shortened SWCNTs.
In comparison with the initial SW film, the SW_DC film has lower values of gravimetric
capacitance while it shows a larger volumetric capacitance (Table 1). Moreover, its CV
loop practically did not change during the EDLC operation for about 5000 cycles (inset
in Figure 4b), which indicates the high stability of the SW_DC film and its advantage for
practical use.
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Table 1. Characteristics of studied films: specific surface area (SSA), fluorine content (F), gravimetric
capacitance (CG) and volumetric capacitance (CV) obtained at 100 mV s−1, and drop in the gravimetric
capacitance with an increase of the scan rate from 2 to 1000 mV s−1.

Film SSA, m2 g−1 F, at% CG, F g−1 CV, F cm−3 CG Drop, %

SW 1135 – 29 18 41
SW_DC 840 – 21 34 43

F-SW 753 14 32 19 32
F-SW_DC 494 23 33 44 52

Fluorination is considered a way to improve the performance of carbon materials in
EDLCs [9]. The reason for this improvement is usually cited as fluorine-induced surface
polarization resulting in the adsorption of more electrolyte ions. Note, that there are very
few studies on the electrochemical behavior of the fluorinated carbon in aqueous elec-
trolytes and they concern MWCNTs [58], carbon microspheres [59], activated carbon [60],
and graphitic materials [61]. We are not aware of any work on the investigation of the
fluorinated SWCNTs in the EDLCs.

To fluorinate the SW and SW_DC films, we used a mixture of BrF3 and Br2 vapors
at room temperature. Earlier, we showed that this method does not destroy the tubular
structure while in the case of the assembled SWCNTs, mainly the surface of the bundles is
fluorinated [62]. This result was confirmed in the present study by XPS and N2 adsorption
measurements. The XPS examination found a larger fluorine content in the F-SW_DC film
enriched with the individualized nanotubes. The specific surface area of SW and SW_DC
films decreased after the fluorination by a factor of 1.5 and 1.7 (Table 1), respectively, and
this result indicates the higher population of the SWCNT surface with fluorine in the
latter case.

A part of the carbon in the SWCNT walls remains non-fluorinated and this provides
electrical conductivity of the samples necessary for the operation of the EDLC. The initial
CV curve of highly fluorinated SW-DC film has a small loop and a large slope (inset in
Figure 4d) because of the low conductivity of the electrode. The specific capacitance of
the fluorinated films grew during the first 1300–1500 cycles of the EDLC work and then it
stabilized (Figure 4c,d). The values of the capacitance reached 32–33 F g−1 at 100 mV s−1

for these films (Table 1).
A study of the films after long-term cycling reveals their defluorination accompanying

by the emergence of new oxygen-containing groups, mainly hydroxyl and carboxyl. The
carboxyl groups can be attached only to the nanotube edges. Hence, the electrochemical
reduction of the fluorinated SWCNTs produces atomic vacancies in the nanotube walls. The
breaking of the C=C bonds during the electrochemical treatment was previously observed
for MWCNTs in aqueous electrolytes [63]. In the case of the fluorinated SWCNTs, this
process may be easier due to a high tension of (F)C–C(F) bonds. We expect the outer
SWCNT surface to be fluorinated first. Fluorine atoms are preferably attached to the
(1,2) positions of carbon hexagons [64] forming the CF chains (Figure 3b). Because of
one-side fluorination, the C–C bonds are elongated and consequently, they can break when
a potential is applied. Oxygen-containing groups present in the electrolyte terminate the
formed dangling bonds.

The redox-active groups contribute to the capacitance at low scan rates, while at high
scan rates the capacitance is dependent on the number of the adsorption sites. The drop in
the capacitance with a scan rate was similar for non-functionalized SW and SW_DC samples
and it increased significantly for F-SW_DC (Table 1). An optimal balance between the
attached surface groups and the area available for the electrolyte leads to a high capacitance
retention with the increasing scan rate for the F-SW electrode. Moreover, fluorination
increased the volumetric capacitance of the SWCNT-based electrodes (Figure 5b, Table 1).
Superior improvement was achieved for the SW_DC sample, which was able to attach
more fluorine atoms. The electrochemical detachment of fluorine atoms creates many
vacancy defects in the walls of SWCNTs composing the F-SW_DC sample. Large vacancy
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defects can open access of the solvated electrolyte ions to the interior of the nanotubes
and we believe this is the main reason for the growth of the volumetric capacitance at
high scan rates of the applied potential. The detached fluorine atoms insignificantly alter
electrolyte, because, after its replacement by a fresh portion, the capacitance of the cells
remains approximately the same. In an acidic electrolyte, fluorine interacts with a proton
to form HF. Considering the fluorine loss and the volume of the electrolyte in the cell, the
concentration of HF in the solution is below 0.1 M.

The volumetric capacitance of the F-SW_DC electrode calculated at 100 mV s−1 was
44 F cm−3 (Table 1). This value exceeded the volumetric capacitance of activated carbon
electrodes (~40 F cm−3 [65]), CNTs mixed with carboxymethylcellulose (8–16 F cm−3 [65]),
and binder-free CNT-based electrodes prepared by the electrostatic spray deposition
(2.9 F cm−3 [66]) and spray deposition (~42 F cm−3 [67]). The largest reported values
of the volumetric capacity of CNT-based electrodes are about 44–74 F cm−3 and they were
obtained in 2M H2SO4 at 5 mV s−1 [68]. Our best electrode delivered 56 F cm−3 at this scan
rate (Figure 5b).

5. Conclusions

In the present paper, the effect of splitting and fluorination of SWCNTs on their
electrochemical behavior in 1M H2SO4 electrolyte was investigated. The sonication of
SWCNTs in 1,2-dichlorobenzene was used to split the bundles and to shorten the nanotubes.
Mechanically robust films for binder-free electrodes were prepared by vacuum filtration
of aqueous suspensions of the bundled SWCNTs (SW) and split SWCNTs (SW_DC). The
smaller specific surface area of the latter film was attributed to the stronger adhesion
between the shortened nanotubes. Fluorination of the films was carried out in identical
conditions using a gaseous mixture of BrF3 and Br2 at room temperature. According to
the XPS survey spectra, the F-SW and F-SW_DC films contained 14 and 23 at% of fluorine,
respectively. As a result of prolonged electrochemical exposure at potentials between 0 and
0.9 V, most of the fluorine atoms were removed from the SWCNT walls. Defluorination
was accompanied by the creation of atomic vacancies and attachment of oxygen-containing
groups. This modification caused enhancement of volumetric capacitance of split and
short SWCNTs as compared to other tested films. The film from the bundled SWCNTs
(SW) showed superior gravimetric capacitance. Initial SWCNT films and defluorinated
films showed a stable work of EDLCs during the several thousand cycles. We tested
commercial SWCNTs, produced by OCSiAl company on a large scale, so, our work can open
new perspectives for the fabrication of flexible and binder-free electrodes with advanced
electrochemical performance.
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