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Abstract

The one-pot condensation of glyoxal, two equivalents of cyclohexylamine, and paraformaldehyde in the presence of aqueous HBF4
provided a straightforward access to 1,3-dicyclohexylimidazolium tetrafluoroborate (ICy-HBF,). 1,3-Dibenzylimidazolium tetra-
fluoroborate (IBn-HBF,) was obtained along the same lines. To synthesize 1,3-diarylmidazolium salts, it was necessary to isolate
the intermediate N,N'-diarylethylenediimines prior to their cyclization. Although this additional step required more time and
reagents, it led to a much more efficient overall process. It also proved very convenient to carry out the synthesis of imidazolinium
salts in parallel to their imidazolium counterparts via the reduction of the diimines into diammonium salts. The critical assembly of
the C2 precarbenic unit was best achieved with paraformaldehyde and chlorotrimethylsilane in the case of imidazolium derivatives,
whereas the use of triethyl orthoformate under microwave irradiation was most appropriate for the fast and efficient synthesis of
imidazolinium salts. This strategy was applied to the synthesis of six common N-heterocyclic carbene precursors, namely, 1,3-di-
mesitylimidazolium chloride (IMes-HCI), 1,3-dimesitylimidazolium tetrafluoroborate (IMes-HBF,), 1,3-dimesitylimidazolinium
chloride (SIMes-HC1), 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (IDip-HCI or IPr-HCI), 1,3-bis(2,6-
diisopropylphenyl)imidazolinium chloride (SIDip-HCI or SIPr-HCI), and 1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imida-
zolium chloride (IDip*-HCl or IPr*-HCI).

Introduction

Since Arduengo and co-workers successfully isolated and char-  years, they have evolved from laboratory curiosities to ubiqui-
acterized the first imidazol-2-ylidene derivative in 1991 [1,2], tous ancillary ligands, not only for all the transition metals
stable N-heterocyclic carbenes (NHCs) have become a staple of ~ whether in high or low oxidation state [8-10], but also for

modern synthetic chemistry [3-7]. Over the past twenty five lanthanides and actinides [11,12], as well as for main group
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elements [12,13]. Countless applications in homogeneous cata-
lysis have already taken advantage of the remarkable stereoelec-
tronic properties and structural diversity of these organometallic
species [14-17]. To give just a single example, NHC ligands
played a crucial role in the development of highly efficient
ruthenium initiators for olefin metathesis and related reactions
[18-21]. Lately, these divalent carbon species have also
emerged as powerful nucleophilic organocatalysts for polymer
chemistry [22,23] and organic synthesis [24-26]. In particular,
they were successfully employed for the umpolung of carbonyl
compounds, sometimes in an asymmetric fashion [27-29].

Currently, the NHCs most frequently encountered are based on
the imidazol-2-ylidene and imidazolin-2-ylidene scaffolds,
which are easily accessible via the deprotonation of imida-
zolium or imidazolinium salts with a strong base (Scheme 1,
path A) [26,30]. The reaction is often carried out in situ to avoid
the isolation of air- and moisture-sensitive free carbenes. Thus,
the mixture of an imidazol(in)ium salt and a base serves de
facto as a carbene source for most catalytic and synthetic
purposes. Alternative methods to generate NHCs without the
intervention of a base, which might lead to unwanted side-reac-
tions, include the facile cleavage of NHC-CO, zwitterions
(Scheme 1, path B) [31-35], the thermolysis of labile imidazoli-
dine adducts (Scheme 1, path C) [36-38], or the recourse to
Ag()-NHC complexes as NHC delivery agents (Scheme 1,
path D) [39,40]. In many cases, however, these NHC surro-
gates are obtained from azolium intermediates. Hence, imida-
zolium and imidazolinium salts are the most common NHC
precursors and their synthesis from acyclic starting materials is
of utmost practical importance [41].
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Scheme 1: Various synthetic paths leading to the formation of NHCs.
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One of the most atom-economical and straightforward path to
elaborate symmetrical imidazolium salts involves the combina-
tion of glyoxal, which provides the C*~C> heterocyclic back-
bone of the NHC, two equivalents of a primary alkylamine or
aniline, to introduce the N1 and N3 modular units, and a suit-
able C; building block for joining the precarbenic C? center
(Scheme 2). An additional reduction of the intermediate
diimines into diamines is required prior to the assembly of the
corresponding imidazolinium derivatives. The first embodi-
ment of this general strategy dates back to 1991 when Arduengo
patented the one-pot condensation of glyoxal, two equivalents
of an amine, and paraformaldehyde in the presence of
hydrochloric acid to afford 1,3-disubstituted imidazolium
chlorides [42]. Although this procedure was rather efficient
when applied to simple alkylamines, its extension to the syn-
thesis of 1,3-diarylimidazolium salts usually failed due to the
formation of dark, tarry ionomer byproducts that could only be
painstakingly separated from the desired compounds, thereby
leading to low yields of tainted products [43]. This practical
complication was very unfortunate because bulky aromatic
substituents, such as mesityl (2,4,6-trimethylphenyl) or 2,6-
diisopropylphenyl groups, often provide the right balance of
electronic donation and steric protection to many NHC-based
catalytic systems. Accordingly, it spurred sustained research
efforts to improve and optimize experimental conditions leading
to imidazol(in)ium salts in both academic [43-45] and indus-
trial laboratories [46]. Because of the incremental nature of
these endeavors, a large number of valuable synthetic pro-
cedures have been scattered in the literature, often relegated to
supporting information, and comparison of their respective
merits has become more and more challenging.
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Scheme 2: Retrosynthetic path for the preparation of symmetrical
imidazolium and imidazolinium salts from simple acyclic precursors.

In this report, we aimed at collecting a series of efficient syn-
thetic protocols for the preparation of eight common N-hetero-
cyclic carbene precursors differing by the nature of their central

core (imidazolium or imidazolinium), the choice of the asso-
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ciated counterion (chloride or tetrafluoroborate), or the steric
bulk of their nitrogen substituents (ranging from small, flexible
cyclohexyl rings to hefty 2,6-bis(diphenylmethyl)-4-methyl-
phenyl groups, Figure 1). For each target compound, we strove
to put together the most straightforward, detailed experimental
procedure that was checked to afford high yield and purity, and
a full characterization by 'H and 13C NMR spectroscopies.

Results and Discussion
Synthesis of 1,3-dicylohexylimidazolium

tetrafluoroborate

The one-pot synthesis of 1,3-dicyclohexylimidazolium chloride
(ICy-HC1) was first disclosed in the open literature by
Herrmann and co-workers in 1996 [47]. The reaction proceeded
smoothly and the product did not show any tendency to form an
ionic liquid, unlike its lower weight unsymmetrical analogues.
It turned out, however, to be highly hygroscopic, which
hindered its purification and subsequent reactions with mois-
ture-sensitive bases or organometallic compounds. Other coun-
terions were found to alleviate this tendency. In particular, the
replacement of HCl with aqueous HBF, in the original proce-
dure allowed us [48] and others [49] to isolate ICy'HBF, as a
well-behaved, non-hygroscopic solid that could be easily puri-
fied by recrystallization from isopropanol. Typical yields were
in the 70-80% range (Scheme 3).
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Scheme 3: Synthesis of 1,3-dicyclohexylimidazolium tetrafluoroborate
(ICy-HBFy).
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Synthesis of 1,3-dibenzylimidazolium tetra-

fluoroborate

At first sight, benzyl chloride or benzyl bromide seem to be
ideal candidates to prepare 1,3-dibenzylimidazolium salts via a
double alkylation of imidazole. Indeed, these primary alkyl
halides are highly reactive toward nucleophiles and do not
undergo elimination reactions. Accordingly, numerous pro-
cedures were reported for the two-step synthesis of 1,3-
dibenzylimidazolium halides via the formation of 1-benzyl-
imidazole [50-53]. In our hands, however, the quaternization of
this intermediate with benzyl chloride or bromide was often
sluggish, which led to incomplete conversions and residues of
unpleasant, lachrymatory reagents. We were very pleased to
find out that the one-pot procedure described above for 1,3-
dicyclohexylimidazolium tetrafluoroborate could be seamlessly
translated to the preparation of 1,3-dibenzylimidazolium tetra-
fluoroborate (IBn-HBF,4) from glyoxal, benzylamine,
paraformaldehyde, and tetrafluoroboric acid (Scheme 4). To the
best of our knowledge, this superior route had not been

explored so far.
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Scheme 4: Synthesis of 1,3-dibenzylimidazolium tetrafluoroborate
(IBn-HBF4).

Synthesis of 1,3-dimesitylimidazolium salts

Although little experimental details were supplied, the prepa-
ration of 1,3-dimesitylimidazolium chloride (IMes-HCI) was
first disclosed by Arduengo et al. in 1992 using a one-pot proce-
dure [54]. Several research groups noticed that this strategy

often led to dark brown molasses out of which a solid product
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Figure 1: Structures of the imidazolium and imidazolinium salts discussed in this study and their acronyms.
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could only be painstakingly extracted after extensive washing,
resulting in low yields of rather impure materials [43,55,56]. To
circumvent this problem, Arduengo and co-workers devised a
two-step protocol involving the isolation of N, N'-dimesityleth-
ylenediimine followed by cyclization with chloromethyl ethyl
ether, which slowly reacted to afford both the C2 imidazolium
center and the chloride counterion [43]. While this procedure
remained low-yielding and time-consuming, it significantly
eased the isolation of the final product, which cleanly precipi-
tated from the reaction mixture. Most importantly, this work
demonstrated the importance of isolating the intermediate
Schiff base prior to its cyclization, a feature that proved crucial
to successfully achieve the synthesis of 1,3-diarylimidazolium
salts by late introduction of the precarbenic atom moiety. It
should be pointed out that Nolan et al. also reached this conclu-
sion when they first optimized the synthesis of 1,3-bis(2,6-
diisopropylphenyl)imidazolium chloride in 1999 (vide infra)
[57].

Over the years, several variations were reported on the two-step
route leading to 1,3-dimesitylimidazolium chloride [41]. Only
minor changes concerned the initial condensation between
glyoxal and two equivalents of mesitylamine (Scheme 5). The
reaction proceeds readily in aqueous/alcoholic mixtures at room
temperature and the product begins to separate as a bright
yellow solid after a few minutes. Of note, second and even third
crops of precipitate are usually obtained upon work-up during
the synthesis of diimines. They may be added to the first crop in
order to further increase the yield, but their purity needs to be
checked beforehand. Formic acid is sometimes added as a cata-
lyst but does not seem to be mandatory, maybe because glyoxal
is often contaminated with glyoxylic and oxalic acids, espe-
cially upon prolonged storage under aerobic conditions. More
significant alterations were brought to the cyclization step. In
addition to the use of chloromethyl ethyl ether pioneered by
Arduengo et al. [43], mixtures of paraformaldehyde and HCI in
anhydrous solvents were investigated by Bantreil and Nolan
[45], while Hintermann identified chlorotrimethylsilane as a
convenient source of chloride counterions [44]. Furthermore,
this last reagent does not lead to the formation of water, which
can hydrolyze the starting diimine and has a deleterious influ-
ence on the reaction course. Thus, we adopted the experimental
procedure carefully optimized by Hintermann to obtain
IMes-HCI in ca. 85% yield (Scheme 5).

We were also interested in the preparation of IMes'HBF4
because imidazolium tetrafluoroborates are usually less hygro-
scopic and easier to crystallize than chlorides [45]. Moreover,
when imidazolium salts are used to generate NHCs in situ, for
instance to accomplish organocatalytic transformations, the

exact nature of the counterion may influence the solubility and
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Scheme 5: Synthesis of 1,3-dimesitylimidazolium salts (IMes-HCI and
IMes-HBF,).

the deprotonation rate of the carbene precursor [58]. A report
from 2010 had shown that treating N, N'-dimesitylethylenedi-
imine with paraformaldehyde and a 48% aqueous solution of
tetrafluoroboric acid in warm toluene afforded 1,3-dimesityl-
imidazolium tetrafluoroborate without any apparent complica-
tion [59]. We have further optimized this procedure on the
occasion of a mechanistic study of the Staudinger reaction
catalyzed by NHC-ketene zwitterions (Scheme 5) [60].

Synthesis of 1,3-dimesitylimidazolinium
chloride

The “saturated” analogue of the IMes carbene, 1,3-dimesityl-
imidazolin-2-ylidene (SIMes), was first isolated in 1995 by
Arduengo et al. [61] who later disclosed the experimental
details of the synthetic path leading to this stable NHC and its
immediate precursor, 1,3-dimesitylimidazolinium chloride
(SIMes-HCI) [43]. The latter salt was obtained in three steps
starting from widely available, acyclic reagents (Scheme 6).
First, the condensation of glyoxal with two equivalents of
mesitylamine afforded the corresponding diimine, as described
above for the synthesis of IMes-HCI and IMes-HBFy4 (cf.
Scheme 5). Next, the diimine was reduced into a diamine with
sodium borohydride in THF, followed by an acidic work-up
with aqueous hydrochloric acid to quench the excess of hydride
and to precipitate N,N'-dimesitylethylenediammonium
dichloride as a stable white solid. A third step afforded the final
heterocyclic product upon ring-closure with triethyl orthofor-
mate in the presence of a catalytic amount of formic acid. In
this reaction, the orthoester served both as a solvent and a
precarbenic C2 provider.

Following the seminal contribution of Arduengo and

co-workers, several other research groups proposed experi-
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Scheme 6: Synthesis of 1,3-dimesitylimidazolinium chloride
(SIMes-HCI).

mental procedures for the preparation of imidazolinium salts
from N,N'-disubstituted 1,2-ethanediamines or their ammonium
salts and triethyl orthoformate [62-65]. In most cases, prolonged
heating under reflux conditions was necessary to reach satisfac-
tory conversions, even when ethanol was distilled off the reac-
tion mixture to drive the equilibrium toward completion. In
2006, we found that microwave irradiation allowed to dramati-
cally reduce the reaction time from hours to minutes, while
affording very high yields of pure products [66]. We have
applied this procedure to the synthesis of a wide range of cyclic
amidinium salts differing by their ring size, N-substituents, and
counterions [67]. In 2010, we have further optimized the
microwave-assisted synthesis of SIMes-HCI to turn it into a
convenient, laboratory-scale preparation [68]. With the latest
implementation of our protocol, which uses an 80 mL glass
vessel in a monomodal microwave reactor, it took 5 minutes to
perform the cyclization on a 50 mmol batch and the product
was isolated in 70% yield after purification (Scheme 6).

Synthesis of 1,3-bis(2,6-diisopropylphenyl)-
imidazolium chloride

Huang and Nolan first reported the introduction of 2,6-diiso-
propylphenyl groups on an imidazolylidene backbone in 1999
while searching for bulky NHC ligands to coordinate onto
palladium catalysts for Kumada cross-coupling reactions [57].
The resulting carbene was nicknamed IPr and this designation
still persists in the literature, although IDip is a more fitting
acronym to avoid any confusion with 1,3-di(isopropyl)-
imidazol-2-ylidene. Thus, 1,3-bis(2,6-diisopropylphenyl)imida-
zolium chloride (IDip-HCl) was obtained following a two-step
procedure that first involved the condensation of glyoxal and
two equivalents of 2,6-diisopropylaniline into the corres-
ponding diazabutadiene. This intermediate was then cyclized

Beilstein J. Org. Chem. 2015, 11, 2318-2325.

into the final product using paraformaldehyde in toluene as the
precarbenic C2 donor reagent and anhydrous HCI in dioxane as
the source of the counterion. Soon thereafter, Arduengo and
co-workers described the synthesis of IDip-HCI using
chloromethyl ethyl ether as a single provider for the azolium
chloride building block [43]. From a practical point of view,
both procedures represented a significant breakthrough, because
the one-pot strategy was largely inefficient for imidazolium
salts bearing bulky aromatic substituents on their nitrogen

atoms.

Over the years, minor changes were brought to the original
protocols of Nolan and Arduengo in order to improve yields
that did not initially pass the 50% threshold [45,69,70]. Yet, the
most convenient preparation available to date for IDip-HCl was
proposed in 2007 by Hintermann [44]. It involved the reaction
of N,N'-bis(2,6-diisopropylphenyl)ethylenediimine with
paraformaldehyde and chlorotrimethylsilane in ethyl acetate
(Scheme 7). In our hands, this procedure proved reliable and
afforded typical yields of 85%. Its major drawback is the neces-
sity to work under high dilution conditions, which implies the
use of large amounts of solvent and hinders scale up.

H H iPrOH, Hzo //—\\
2 DipNH, + Dip-N" 'N—Dip
rt, 24 h
© © >80%
Dip—N N—Dip in—Na N—pi
70°Cto6°c PPy PP
+ (Ho,CO), + (CH3)3SiCl overnight H
85%

Scheme 7: Synthesis of 1,3-bis(2,6-diisopropylphenyl)-imidazolium
chloride (IDip-HCI).

Synthesis of 1,3-bis(2,6-diisopropylphenyl)-
imidazolinium chloride

In most cases, experimental procedures leading to 1,3-di-
mesitylimidazolinium salts could be successfully extended to
their 1,3-bis(2,6-diisopropylphenyl) counterparts without any
adaptation. Thus, the three-step synthesis of SIDip-HCI (also
known as SIPr-HCI) initially reported by Arduengo et al.
closely matched the one defined for SIMes-HCI in terms of
experimental conditions and yields [43]. Likewise, our
microwave-assisted cyclization performed equally well when
applied to N,N'-bis(2,6-diisopropylphenyl)ethylenediammo-
nium chloride instead of the dimesityl intermediate (Scheme 8).
In both cases, the desired product was isolated in (70 + 5)%
yield after a very simple work-up that involved filtration and

washing.
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Scheme 8: Synthesis of 1,3-bis(2,6-diisopropylphenyl)-imidazolinium
chloride (SIDip-HCI).

Synthesis of 1,3-bis(2,6-bis(diphenylmethyl)-
4-methylphenyl)imidazolium chloride

In 2010, the group of Marké designed a very bulky, yet flexible
NHC ligand by replacing the methyl groups of IDip with phen-
yl rings [71]. This new highly hindered carbene that we shall
designate as IDip* (but it is also trivially named IPr*) was
readily obtained by deprotonation of 1,3-bis(2,6-bis(diphenyl-
methyl)-4-methylphenyl)imidazolium chloride (IDip*-HCI).
The synthesis of this stable precursor was accomplished in three
steps starting from commercially available reagents (Scheme 9).
First, p-toluidine was dialkylated with diphenylmethanol
(benzhydrol) in the presence of stoichiometric amounts of HCI
and ZnCl,. This Friedel-Crafts alkylation was carried out under
solvent-free conditions and afforded high yields of the bulky
aniline needed to follow the Arduengo formylative cyclization
path. It was originally performed in a sealed tube under autoge-
neous pressure at 160 °C. We checked that the reaction could be
carried out in an open vessel without any detrimental conse-
quence, thereby leading to a safer experimental procedure. In
the second step, 2,6-bis(diphenylmethyl)-4-methylaniline
(Dip*NH,) was reacted with aqueous glyoxal to form the
corresponding ethylenediimine. Marké et al. performed this
condensation in dichloromethane containing formic acid as a
catalyst and anhydrous magnesium sulfate as a dehydrating
agent. We found this procedure difficult to reproduce. More-
over, a rather tedious work-up was required to separate and to
purify the product. Inspired by a report from Cole and
co-workers on the preparation of another bulky imidazolium
salt [72], we found that acetonitrile was a much more conveni-
ent solvent than dichloromethane to achieve the condensation of
Dip*NH, and glyoxal. Although the reaction was slow and took
about a week to reach completion at 60 °C, the desired diazabu-
tadiene cleanly precipitated from the reaction mixture and could
be isolated in high yield by simple filtration and washing.

Beilstein J. Org. Chem. 2015, 11, 2318-2325.
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Scheme 9: Synthesis of 1,3-bis(2,6-bis(diphenylmethyl)-4-
methylphenyl)imidazolium chloride (IDip*-HCI).

For the critical cyclization step of IDip*-HCIl, Mark¢ et al.
ingeniously took advantage of the Lewis acidity of zinc chloride
to activate paraformaldehyde and of its coordinating ability to
maintain the intermediate diimine in the required s-cis con-
formation [71]. Concentrated hydrochloric acid was added as
the counterion source and the final imidazolium product was
isolated in 50-60% yield. We further improved this procedure
through the use of chlorotrimethylsilane as the chloride donor to
minimize hydrolysis and other side-reactions of the diimine.
The templating effect of ZnCl, was also maximized by
combining this stoichiometric additive with the diimine and
paraformaldehyde prior to the addition of Me3SiCl. Under these
revised conditions, IDip*-HCI was isolated in 65% yield after

recrystallization.

Conclusion

The one-pot condensation of glyoxal, two equivalents of a pri-
mary alkylamine, and paraformaldehyde in the presence of
aqueous HBF, provided a straightforward access to symme-
trical 1,3-dialkylimidazolium tetrafluoroborates. To achieve the
preparation of 1,3-diarylimidazolium salts, it was necessary to
isolate the intermediate diimines prior to their cyclization.
Although this additional step required more time and reagents,
it led to a much more efficient overall process. It proved also
very convenient to carry out the synthesis of imidazolinium
salts in parallel to their imidazolium counterparts via the reduc-
tion of the diimines into diamines or diammonium salts. The
critical assembly of the C2 precarbenic unit was best achieved
with paraformaldehyde and chlorotrimethylsilane in the case of
the imidazolium derivatives, whereas the use of triethyl ortho-
formate under microwave irradiation was most appropriate for

the fast and efficient synthesis of imidazolinium salts.

2323



With the possible exception of a monomodal microwave
reactor, all the equipment and glassware needed to carry out the
syntheses outlined in this report are widely available in chem-
ical laboratories and do not require any particular skills from the
experimenter. Furthermore, the detailed experimental pro-
cedures supplied in Supporting Information File 1 of this article
are easy to scale up or down according to the particular needs
for a given compound. Thus, we hope that they will be helpful
to the large community of organic and organometallic chemists
working with NHCs.

Supporting Information

Supporting Information File 1

Full experimental section with detailed synthetic
procedures and analytical data for all the compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-11-252-S1.pdf]
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