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Abstract: Gentiana genus, a herb mainly distributed in Asia and Europe, has been used to treat the
damp heat disease of the liver for over 2000 years in China. Previous studies have shown significant
differences in the compositional contents of wild Gentiana genus samples from different geographical
origins. Therefore, the traceable geographic locations of the wild Gentiana genus samples are essential
to ensure practical medicinal value. Over the last few years, the developments in chemometrics
have facilitated the analysis of the composition of medicinal herbs via spectroscopy. Notably, FT-IR
spectroscopy is widely used because of its benefit of allowing rapid, nondestructive measurements.
In this paper, we collected wild Gentiana genus samples from seven different provinces (222 samples in
total). Twenty-one different FT-IR spectral pre-processing methods that were used in our experiments.
Meanwhile, we also designed a neural network, Double-Net, to predict the geographical locations of
wild Gentiana genus plants via FT-IR spectroscopy. The experiments showed that the accuracy of the
neural network structure Double-Net we designed can reach 100%, and the F1_score can reach 1.0.

Keywords: wild Gentiana genus; FT-IR spectroscopy; deep learning; Double-Net; geographical
location identification

1. Introduction

Gentiana genus is an herb found mainly in Asia and Europe that has been used for
treating liver damp heat disease for more than 2000 years in China [1]. Recent studies have
demonstrated the efficacy of Gentiana in treating diabetes, with liver protection and anti-
inflammatory properties [2–5]. The TCM classic herbal formula with Gentiana as the ‘Jun
herb’ (critical herb), Longdanxiegan, has been widely prescribed in treating hypertension by
TCM physicians in China [6]. The literature data on the chemical composition suggests that
the medicinal substances of Gentiana are iridoids (gentiopicroside, swertidine), flavonoids
(isoorientin), xanthones, and polysaccharides [7–9]. Differing from chemical drugs, herbal
products exhibit their curative efficacy on the basis of multi-components and multi-targets,
and the medicinal substances are closely related to the soil, climate, harvest season, growth
age, and other factors [10,11]. As an important medicinal plant, Gentiana is widely dis-
tributed in the temperate mountainous regions of China [12]. Previous studies have shown
significant differences in the contents of wild Gentiana samples from different geographical
sources [13,14]. Hence, tracing the geographical origin of wild Gentiana samples is crucial
to ensure their valid medicinal value, which will help to ensure the potency of the herb.

Several advanced spectral and chromatographic techniques have been successfully
utilized to identify the authenticity and quality of various herbal medicines, including
Fourier transform infrared (FT-IR), high-performance liquid chromatography (HPLC),
ultra-performance liquid chromatography (UPLC), nuclear magnetic resonance (NMR),
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and Raman spectroscopy techniques [15–17]. However, some of the above methods require
complicated sample pre-processing procedures and generate a considerable amount of
organic solvent waste solution during the experiment. In contrast, FT-IR spectroscopy is
more widely used because of its advantage of allowing rapid and nondestructive measure-
ments [18,19]. Furthermore, the sample volume required for FT-IR testing is very small
(down to a few milligrams). As a result, it is more sensitive and possibly more appropriate
to obtain valuable information from the sample profile. FT-IR spectroscopy focuses on the
MIR region of the electromagnetic spectrum, which could provide information about the
foundational vibration (from the stable vibrational state to the first excited vibrational state)
of the chemical functional group [20].

With the rise of machine learning and deep learning, more and more people are using
machine learning and deep learning algorithms to accomplish scientific research tasks
related to spectra. Zareef et al. used an improved machine science collaborative interval
partial least squares algorithm combined with competitive adaptive reweighted sampling
(Si-CARS-PLS) to predict the antioxidant activity of walnuts with good results [21]. The
prediction of gentian from various geographical sources using high-performance liquid
chromatography (HPLC) and Fourier transform infrared spectroscopy (FT-IR) was also
achieved by Zhao et al. [22]. In the work by Wu et al. [13], support vector machines (SVM)
and the related PLS algorithm were used in combination with FT-IR spectroscopy and
HPLC to evaluate the quality of wild Gentiana rigescens from different regions, and it
was shown experimentally that the improved PLS and SVM algorithms can be used as
an alternative method for the qualitative identification and quantitative evaluation of
the quality of Gentiana rigescens. In the work by Pei et al. [23], they fused mid-infrared
(MIR) and near-infrared (NIR) data and used random forest (RF) and partial least squares
discriminant analysis (PLS-DA) machine learning models to predict wild Paris polyphylla
populations in Yunnan. They also used a principal component analysis (PCA) and certain
algorithms for the essential feature selection to extract important features, and finally also
achieved a good experimental result with 100% accuracy. There has also been plenty of
related work using machine learning algorithms [24,25].

In addition to machine learning algorithms [26], deep learning algorithms [27,28],
such as artificial neural networks, also show better performance. There have also been
many better research studies using deep learning models to process data related to spectra.
In the work by Mutlu et al. [29], FT-IR spectra were used to predict the quality parameters
of wheat, and they performed a chemical analysis of flour samples from 79 different
wheat varieties grown in different regions of Turkey and used NIR spectra to train the
artificial neural network (ANN), and finally achieved a better result. In the work by
Gonzalez-Viejo et al. [30], they used PLS and ANN correlation algorithms to predict four
chemometrics of beer, such as the pH, alcohol, brix, and maximum volume of foam. After
the experiments, they showed that the artificial neural networks could predict these four
chemometrics well and that the R2 of their model built with neural networks reached 0.95.
Neural network models have been used in many scientific tasks with good results, and
in addition to the application of neural networks in FT-IR spectroscopy, there are many
applications of neural networks in other fields. For example, Qie et al. used a BP neural
network to study the trajectory planning of redundant robotic arms during upper limb
rehabilitation [31], and they demonstrated the feasibility of their method through relevant
experiments. Fatigue driving has been a hot topic for a long time, and Chen et al. combined
a BP neural network with a time-cumulative effect to detect drowsy driving [32]. They used
three features related to fatigue (the longest time a driver closes their eyes continuously,
the number of yawns in a period, and the time their eyes are closed) as inputs to the neural
network, and finally built an effective model for driver fatigue detection.

The aim of this study was to build a fast, nondestructive, and efficient method for
the identification of the geographical origin of wild Gentiana genus using FT-IR combined
with chemometrics. Meanwhile, for the identification of the geographic location of the wild
Gentiana genus, we designed a well-performing neural network structure, Double-Net. Due
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to its good performance, we believe that Double-Net can be applied for the geographical
origin identification of other similar herbs.

2. Results
2.1. Results of Data Pre-Processing
2.1.1. Pre-Processing Results for FT-IR Spectroscopy

The results of the different pre-processing methods for the FT-IR spectra are shown in
Figure 1. For the pre-processing of wild Gentiana genus FT-IR spectral data, in addition to
using a single pre-processing method in Figure 1, we also combined different pre-processing
methods in our experiments to observe the experimental results of the different models.
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Figure 1. The results of six different pre-processing methods for FT-IR spectra of wild Gentiana
genus: (a) normalization (Norm); (b) Savitzky–Golay (SG); (c) mean centralized (MC); (d) standard
normalized variate (SNV); (e) multivariate scatter correction (MSC); (f) wavelet transform (WT).

2.1.2. Results of PCA Processing

The percentages of each of the 20 principal components in the FT-IR spectra processed
in six different ways are shown in Figure 2. It can be seen from Figure 2 that when we used
20 principal components, the first 15 principal components had the largest contribution and
the last few principal components contributed almost 0 (variance ratio < 0.1%). In order to
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make the machine learning model, we used more features for learning and we input all of
the 20 obtained principal components into the model.
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(a) percentage contributions of the 1st to 5th principal components for the six different data pre-
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different data pre-processing methods.

2.2. Macroscopic Chemistry Components in IR Spectra

The roots of gentian are rich in iridoids (gentiopicroside, swertiamarin, loganin),
flavonoids (luteolin, isoorientin, apigenin, and chrysoeriol), xanthones (mangiferin, gen-
tisin, and its glycosides), and polysaccharides [15–17]. The raw FT-IR spectrum of one
of the wild Gentiana genus samples is shown in Figure 3. The 2500–3700 cm−1 region is
called the hydrogen stretching zone, as the vibration frequencies of C-H, N-H, and O-H
appear in this area. The figure shows that the first C-H stretching vibration peaks appear
at 2923 and 2850 cm−1. The region of 2000–2300 cm−1 is referred to as the triple bond
stretching region (C≡C and C≡N), with almost no peaks in the IR spectrum of the Gentiana
sample. The 1600–2000 cm−1 region is known as the double bond stretching region (C=C,
C=N, and C=O). The peaks around 1736 cm−1 represent the CO stretching vibration of the
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ester, and the peak at 1615 cm−1 suggests the presence of free carboxyl groups or carbo-
hydrates. The peaks at 1421 and 1375 cm−1 represent the asymmetric bending vibration
of the methyl group, which is the result of the esters. The presence of intense bands at
1025 cm−1 is considered to be caused by the glucose skeleton. The last interval in the FT-IR
spectra is the fingerprint region, from 1300 to 400 cm−1, which could exhibit more detailed
functional group information for the sample [33]. The spectrograms of Gentiana samples
from different regions were very similar, so we needed to rely on chemometrics for the
analysis [34].
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Figure 3. The raw FT-IR spectrum of one of the wild Gentiana genus samples.

2.3. Dataset Description

In terms of deep learning, since the deep learning model can go through many features
to select those that are important for the current task, there is no need for us to manually
extract the sample features artificially, so for the BP neural network and our own designed
neural network Double-Net, the data we input for each sample are all the features of the
FT-IR spectrum.

In order to make the model show the best performance and also to better test the
performance of the model, 20% of the wild Gentiana genus data are divided into the test
data set, and 80% are divided into the training data set. Meanwhile, to make the data for
the wild Gentiana genus more reasonable, we used stratified sampling for FT-IR spectral
data of the wild Gentiana genus according to the different locations. The first column shows
the different pre-processing methods for FT-IR spectra, where NO_OP indicates the input
for the raw FT-IR data (without any pre-processing of FT-IR spectra).

2.4. Models Verification

The specific accuracy and F1_score values for different pre-processing methods for
FT-IR spectral data of wild Gentiana genus genera are shown in Table 1. Acc in the table
denotes accuracy, and F1_score in the table denotes the F1_score of the model. The first
column of the table shows the different pre-processing methods for FT-IR spectra of the
wild Gentiana genus, and the NO_OP means that the FT-IR spectral data input to the model
are raw (without any pre-processing of the FT-IR spectra).
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Table 1. Performance of each model.

Model Decision Tree Naive Bayes SVM BP
Neural Network

Double-Net
(Ours)

Evaluation
Metrics Acc F1_Score Acc F1_Score Acc F1_Score Acc F1_Score Acc F1_Score

NO_OP 80.00% 0.80 86.67% 0.84 82.20% 0.75 95.56% 0.94 97.78% 0.97
Norm 82.22% 0.79 84.44% 0.85 88.90% 0.86 95.56% 0.93 95.56% 0.94

SG 77.78% 0.78 86.67% 0.84 82.20% 0.75 95.56% 0.94 100.00% 1.00
MC 80.00% 0.81 88.89% 0.88 84.40% 0.76 95.56% 0.95 95.56% 0.92
WT 80.00% 0.78 82.22% 0.81 82.20% 0.75 95.56% 0.95 95.56% 0.94

MSC 75.56% 0.75 88.89% 0.91 82.20% 0.81 55.56% 0.38 95.56% 0.96
SNV 77.78% 0.76 84.44% 0.87 91.10% 0.88 97.78% 0.97 100.00% 1.00

Norm + SG 80.00% 0.75 84.44% 0.85 88.90% 0.86 95.56% 0.93 95.56% 0.94
Norm + MC 82.22% 0.78 88.89% 0.86 88.90% 0.86 91.11% 0.87 95.60% 0.94
Norm + WT 84.44% 0.81 84.44% 0.85 88.90% 0.86 97.78% 0.97 100.00% 1.00

Norm + MSC 26.67% 0.06 64.44% 0.61 26.70% 0.06 26.67% 0.06 95.60% 0.91
Norm + SNV 64.44% 0.59 88.89% 0.87 91.10% 0.91 93.33% 0.91 100.00% 1.00

SG + MC 77.78% 0.81 88.89% 0.88 84.40% 0.76 97.78% 0.97 97.78% 0.97
SG + WT 77.78% 0.76 82.22% 0.81 82.20% 0.75 95.56% 0.94 100.00% 1.00

SG + MSC 77.78% 0.77 88.89% 0.91 82.20% 0.81 73.33% 0.65 97.78% 0.97
SG + SNV 80.00% 0.78 84.44% 0.87 91.10% 0.88 95.56% 0.96 95.56% 0.96
MC + WT 71.11% 0.70 91.10% 0.88 82.20% 0.73 95.56% 0.94 95.60% 0.94

MC + MSC 75.56% 0.75 88.89% 0.91 82.20% 0.81 26.67% 0.06 95.56% 0.95
MC + SNV 80.00% 0.78 84.44% 0.87 91.10% 0.88 95.56% 0.96 100.00% 1.00
WT + MSC 71.11% 0.67 88.89% 0.92 82.20% 0.81 73.33% 0.67 100.00% 1.00
WT + SNV 75.56% 0.70 84.44% 0.89 93.30% 0.91 93.33% 0.94 100.00% 1.00

MSC + SNV 80.00% 0.79 84.44% 0.87 91.10% 0.88 97.78% 0.97 95.60% 0.96
Max 84.44% 0.81 91.10% 0.92 93.30% 0.91 97.78% 0.97 100.00% 1.00
Min 26.67% 0.06 64.44% 0.61 26.70% 0.06 26.67% 0.06 95.56% 0.91
Avg 75.35% 0.72 85.45% 0.86 83.62% 0.79 85.46% 0.81 97.48% 0.97

2.4.1. Machine Learning Models

As presented in Table 1, the highest accuracy of the decision tree model for predicting
the geographic location of the wild Gentiana genus was 84.44%, and the highest F1_score
was 0.81; the highest accuracy of the naive Bayes model for predicting the geographic
location of the wild Gentiana genus was 91.10%, and the highest F1_score was 0.91; the
highest accuracy of the SVM model for predicting the geographic location of the wild
Gentiana genus was 83.3%, and the highest F1_score was 0.91. The accuracy and F1_score
values of these machine learning models with different pre-processing methods are shown
in Figure 4. Since the FT-IR spectral data we obtained had some noise, after using different
spectral pre-processing methods, we achieved different degrees of denoising. For decision
tree models, Norm + WT is a better pre-processing method; for the naive Bayes model,
WT + MSC and MC + WT are the best pre-processing methods to make the model perform
better. For the SVM model, the best pre-processing method is WT + SNV.
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2.4.2. BP Neural Network

As shown in Figure 4d and Table 1, the BP neural network model predicted the geo-
graphic location of the wild Gentiana genus with the highest accuracy value of 97.78% and
the highest F1_score of 0.97. For the BP neural network, the effective pre-processing meth-
ods for FT-IR spectral data of the wild Gentiana genus were SNV, Norm + WT, SG + MC, and
MSC + SNV. Compared to the machine learning models, the BP neural networks improved
in performance. However, there was a decrease in the BP neural network performance for
some pre-processing data methods (e.g., MSC, Norm + MSC, and MC + MSC).

2.4.3. Double-Net

Based on the performance of the BP neural network in predicting the geographic
location of the wild Gentiana genus, we believe that there is much potential for improvement,
and after many experiments, we designed a neural network structure called Double-Net
that performs better. As shown in Figure 5 and Table 1, we designed the neural network
Double-Net for the geographic location prediction of the wild Gentiana genus with the
highest accuracy of 100% and the highest F1_score of 1.0. Based on our experiments, for
different methods of data pre-processing, the average accuracy of Double-Net can reach
94.48% and the average F1_score can reach 0.97. Compared with the models used in this
experiment, the neural network structure Double-Net that we designed performs better
than other models for various data processing methods. This proves the effectiveness of
our designed neural network structure Double-Net.
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For the neural network Double-Net that we designed, there are 8 FT-IR spectral pre-
processing methods that make the model perform the best. These eight methods are SG,
SNV, Norm + WT, Norm + SNV, SG + WT, MC + SNV, WT + MSC, and WT + SNV. This
means that the pre-processing methods are essential for the FT-IR spectral data. It was also
found that our neural network Double-Net performs better in predicting the geographic
location of the wild Gentiana genus by pre-processing the FT-IR spectral data. In addition, we
also found from Table 1 that the accuracy of both the BP neural network and Double-Net can
reach more than 95% without FT-IR spectral pre-processing. There are 7468 features being
fed into the deep learning model (far more than the number of features fed into the machine
learning models). There is no doubt that there are many unimportant features among the
7468 features, which means that the deep learning model needs to select the major features
among the 7468 features to predict the geographic location of the wild Gentiana genus. This
is a powerful reflection of the advantage of deep learning models, which can select the
significant features among many features to achieve better performance.

3. Discussion

In previous studies [13,18–22], most of the methods used to accomplish herb location
prediction were machine learning algorithms. Machine learning methods (e.g., PLS, SVM)
work well for data with few sample features. However, when there are more features in
the sample to be processed, the following solutions are commonly used. First, based on
human a priori knowledge, the important features are selected among many features and
then processed via machine learning algorithms. Second, high-dimensional data are first
changed into easy-to-process low-dimensional data by using a dimensionality reduction
algorithm, and then processed using certain machine learning methods. Third, an important
feature selection algorithm is used to select certain critical features, which to a certain extent
achieves the dimensionality reduction, and then certain machine learning algorithms are
used for processing. All of these algorithms contain a tedious step, meaning they have to
find certain crucial features among the many features to perform the following steps.

However, with the improvement of scientific research, the algorithms related to deep
learning have performed well in many fields and solved many challenges. Among the
many deep learning algorithms, combined with the relevant data for this experiment, the
neural network is a very applicable network model. A neural network is an algorithm that
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simulates the human brain, and the use of activation functions such as ReLU, Tanh, and
Sigmoid in the neural network can mean the relevant model of the neural network has
stronger nonlinear characterization ability [35]. When using an artificial neural network,
we can hand over all of the features of the sample to the artificial neural network, which
removes the need to manually extract the relevant variable features of the sample. All
features of the sample are input into the model of the artificial neural network, which also
enables the artificial neural network to have more features to learn, so that the model has a
better basis for making decisions. At the same time, this can also avoid the occurrence of
poor model results due to feature extraction errors, so that the model can achieve better
results. For the task of predicting the geographic location of the wild Gentiana genus using
FT-IR spectra, because all data from the FT-IR spectra of the wild Gentiana genus were input
into the deep learning model, such that the deep learning model was able to make full use
of the relevant information in the TF-IR spectral data of the wild Gentiana genus, which is
perhaps one of the reasons for the improved performance of the deep learning model.

Differing from chemical drugs, herbal products have multi-component and multi-
target efficacy, and the resulting drugs are closely related to the soil, climate, harvesting
season, and growing age, among other factors. Meanwhile, these factors also affect the
contents of herbal ingredients. The information related to specific chemical functional
groups (from the stable vibrational state to the first excited state) can be found in FT-IR
spectra. For instance, the information related to groups such as C-H, O-H, N-H, and C=O
is able to be reflected in the FT-IR spectra. In order to establish a rapid, harmless, efficient,
and combined chemometric method to identify the geographic origin of the wild Gentiana
genus, we collected wild Gentiana genus herbs from seven provinces, and we obtained the
FT-IR spectral data of wild Gentiana using FT-IR spectroscopy instruments. Finally, we
designed a neural network called Double-Net that performed well on the wild Gentiana
genus dataset, and the network performed well in the geographic location prediction of the
wild Gentiana genus.

After relevant experiments, we validated the use of FT-IR spectral information to
efficiently, rapidly, and nondestructively predict the geographic location of the wild Gen-
tiana genus as a workable solution. Given the excellent performance of Double-Net, we
believe that this neural network model we designed can be used to roughly identify the
geographical location of the wild Gentiana genus. In addition to the wild Gentiana genus,
we believe that Double-Net can also be used for the geographical location identification
of other medicinal herbs. The use of FT-IR spectroscopy data enables the nondestructive
and rapid identification of the geographical locations of herbs, which is a good way to
avoid time-consuming, laborious, and costly losses of herbs. This is good news for the
geographical identification of valuable herbs. Moreover, we believe that more work like
this can be carried out in the future based on our experiments.

4. Materials and Methods
4.1. Samples Preparation

The 222 roots of wild Gentiana genus samples were collected from seven geographical
locations in P.R China (Jiangxi, Sichuan, Yunnan, Guizhou, Hubei, Hunan, and Shanxi), as
shown in Figure 6a, and the distribution of the number of wild Gentiana genus samples at
each location is shown in Figure 6b. All wild samples were identified as Gentiana genus by
Professor Xianxiang Xu (School of medicine, Huaqiao University). All root samples were
washed with tap water and were dried in a drying oven at 50 ◦C, then milled and sifted
through 80 mesh sieves. All samples were packed in polyethylene zip-lock bags and stored
in a dry environment for a further analysis.
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4.2. Fourier Transform Infrared (FT-IR) Spectroscopy Analysis

The infrared absorption spectra of samples were recorded using an FT-IR spectrometer
equipped with a deuterated triglycine sulfate (DTGS) detector and an ATR (attenuated total
reflection) accessory (NICOLET iS 50, Thermo Fisher, Waltham, MA, USA). Typically, the
accumulation spectra of 16 scans per sample were collected and averaged. The absorption
spectra in the area between 4000 and 400 cm−1 with a 4 cm−1 resolution were obtained.
Three analytical replicates of FT-MIR spectral data of all wild Gentiana genus samples
were obtained.

4.3. Data Pre-Processing
4.3.1. Raw Spectrum and Its Processing

The raw FT-IR spectra of the wild Gentiana genus samples are presented in Figure 7,
and the FT-IR spectra of the wild Gentiana genus from different regions do not vary much.
For some classification models, particularly for machine learning models, it is difficult to
find subtle differences to distinguish the wild Gentiana genus samples from different areas.
In order to improve the robustness and performance of the model we built, we needed to
use some data enhancement algorithms to process the raw data before we built the model,
such as removing noise from the data, reducing random errors in the data, and eliminating
baseline drift interference. For data processing, we used the data processing methods used
by Rinnan et al. and Shao et al. in the processing of the FT-IR spectra, such as normalization
(Norm), Savitzky–Golay (SG), and wavelet transform (WT) methods, to pre-process our
wild Gentiana genus spectral data [36,37].

4.3.2. Exploratory Analysis of PCA

Since the machine learning models used in our experiments require the manual
extraction of some features to be input to the models, in order to make our input to
the machine learning models more objective and make our machine learning models
perform better, we used the principal component analysis (PCA) algorithm to reduce the
dimensionality of the 7468-dimensional data.
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4.4. Models
4.4.1. Machine Learning Models

In the experiments, to evaluate the models more objectively, we used models with
good results in performance sharing among machine learning methods [38], such as deci-
sion trees, plain Bayesian, and support vector machine (SVM) classification models, and
compared them with deep learning algorithms and BP neural networks that have good
performance in classification. The decision tree is a tree structure built using the entropy
of information or the Gini index. For the input features of the decision tree, the more
important features will be distributed at the top of the tree structure, and the decision tree
model will judge these important input features first and then the other less important
input features. After the decision tree model, each sample can be assigned to a specific
category. The naive Bayes classification model has a long history and is widely used for
spam filtering and news classification. Of course, the naive Bayes classification algorithm
can be used not only for the classification of textual data, but also for different classification
tasks depending on the target task. In the case of an input sample, the naive Bayes model
will use all input features. In prediction, it will predict the probability for each class in the
current classification task, and in the prediction result the current sample is predicted for
the class with the highest classification probability. The support vector machine algorithm
is a supervised learning algorithm. For simple binary classification data, the SVM can learn
a maximum-margin hyperplane to achieve the classification of binary data. Meanwhile,
the SVM can also classify the data nonlinearly using the kernel method. Based on the
principle of the binary classification of the data via SVM, the SVM can also perform certain
multiclassification tasks using pairwise classification methods.

4.4.2. BP Neural Networks

Artificial neural networks (ANN), also known as neural networks (NN), are types
of algorithms that mimic the structure and function of biological neural networks. There
are three neural network layers (input, output, and hidden layers) in a classical neural
network. The structure of a classical neural network is shown in Figure 8a, where each
blue circle represents a neuron, which is also called a perceptron, and the neurons in a
neural network are an imitation of the neurons in the human brain. The structure of a
neuron in a neural network is shown in Figure 8b, where X1, X2, . . . , Xn represents the
input to the neuron and W1, W2, . . . , Wn represents the weight of the current neuron on
these inputs to X1, X2, . . . , Xn; b represents the bias; F(u) represents the activation function
(used to complete the nonlinear transformation of the data); u represents the output of
the neuron when it is not activated by the activation function; and Y represents the final
output of the neuron. The calculation of these variables is shown in Equations (1) and (2).
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The data from the neurons in the hidden layers and the output layer of a neural network
are calculated from the input data and then they are output. The neurons in a neural
network are connected between layers but not connected between neurons in the same
layer of the neural network. The final layer, the output layer, is also usually called the fully
connected layer.

u =
n

∑
i=1

(Wi ∗ Xi + b) (1)

Y = F(u) (2)
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Figure 8. The structure of a classical neural network and a neuron: (a) classical neural network with
three layers; (b) the structure of a neuron in a neural network.

BP neural networks usually have multiple layers of perceptrons between the input and
output layers [39], which can fit any linear and nonlinear function. The concept of a neural
network was proposed by scientists led by Rumelhart and McClelland in 1986, which was
back-propagated according to the error (usually using a gradient descent algorithm to
optimize the network). Together with training on a given dataset, it is possible to optimize
a BP neural network that can be used for different tasks.

4.4.3. Improved Neural Network Structure (Double-Net)

In order to build a good model for predicting the geographic location of the wild
Gentiana genus, we used algorithms with good performance in machine learning, such as
decision tree, naive Bayes, and support vector machine methods. After experimentation,
these models use the FT-IR spectral data of the wild Gentiana genus to predict the geo-
graphic location of the wild Gentiana genus. When the sample data contain a large number
of features, the processing performance during deep learning will be better. BP neural
networks have achieved good results in many fields through their excellent performance,
especially in classification tasks. Considering that every wild Gentiana genus sample has
7468 spectral datapoints (the step size is 0.5), we used the BP neural network to complete
the prediction of the geographic location of the wild Gentiana genus. The BP neural network
greatly enhanced the performance of predicting the geographic location of the wild Gentiana
genus, but the BP neural network did not achieve the desired effect. Consequently, we
tried to design a neural network structure to predict the geographical location of the wild
Gentiana genus.

Inspired by the network structure of the Siamese neural network [40], we designed
a neural network structure (Double-Net) with exceptional performance in the task of
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predicting the geographic location of the wild Gentiana genus. Using our designed neural
network structure Double-Net, the accuracy of predicting the geographic locations of wild
Gentiana genus samples using FT-IR spectroscopy can reach 100%, and our neural network
Double-Net structure is shown in Figure 9, where the blue and yellow circles represent
the neurons of the neural network, the red circle indicates the summation operation of the
parameters of the two neural networks, X1, X2, . . . , Xn indicates the model of the input
(FT-IR spectral data of wild Gentiana genus samples), and Y indicates the output of the
model (geographic location of the wild Gentiana genus).
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4.5. Evaluation of the Model Performance

We applied multiple model evaluation metrics to evaluate the performance of the
models. For the evaluation of the classification task models, the metrics used are usually
the precision, recall, F1_score, and accuracy of the model prediction. Through the precision
results, we can judge the performance of the model classification process. The closer the
accuracy is to 100%, the more efficient the model is. The recall rate indicates whether the
model can classify positive samples as positive samples, reflecting the capacity of the model
to distinguish between each type of sample. The calculation formulas for precision and
recall are shown in Equations (3) and (4), where TP (true positive) indicates the number
of correct predictions by the model for the true location of the sample. FP (false positive)
represents the number of incorrect predictions by the model for the location of the negative
sample, whereby the sample is incorrectly predicted as a positive sample from a certain
location, but the sample is actually a sample from another location. TN (true negative)
is the number of negative samples that the model predicts properly. FN (false negative)
represents the number of errors in the model’s prediction of positive samples, whereby the
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sample is predicted to be a positive sample from other locations, but the sample is actually
a positive sample from the current location:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

The F1_score is a comprehensive metric of the precision and recall, which is a better
metric of the model performance than the precision and recall, so we adopted the F1_score
as one of the metrics of our model (the formula of F1_score is Equation (5). Furthermore,
the accuracy is also a measure of the model performance for classification models, and the
accuracy indicates the number of correct predictions among all samples (including positive
and negative samples). The accuracy is used in our model evaluation metrics, and the
calculation of the accuracy is shown in Equation (6):

F1_Score =
Precison ∗ Recall

2 ∗ (Precision + Recall)
(5)

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

4.6. Software

This experiment was based on the Windows 10 operating system. The FT-IR spectra
were processed using Omnic (Version 8.2, Thermo Fisher Scientific, Madison, WI, USA). All
models were created using PyCharm (version 2021 professional), and the pre-processing of
the FT-IR data was also done using PyCharm (version 2021 professional). The programming
environment was Python 3.7, and the deep learning framework used in our study was
PyTorch 1.7.

5. Conclusions

In this study, the geographical location of the wild Gentiana genus was predicted
using benchtop FT-IR spectroscopy coupled with an improved neural network structure
Double-Net. Here, 21 FT-IR spectral data pre-processing methods and 5 efficient algorithms
were used for comparison and evaluation. The experiments showed that our improved
neural network structure, Double-Net, is the optimal model for predicting the geographic
locations of wild Gentiana genus samples. Our improved neural network structure, Double-
Net, achieved 100% accuracy and an F1_score of 1.0 on the test dataset of the wild Gentiana
genus. This means that it can be used to establish a rapid, nondestructive, and efficient
method for the identification of the geographical locations of wild Gentiana genus plants
combined with chemometrics. Given that this experiment is a preliminary study, we
believe that FT-IR spectroscopy can be used to explore the geographical locations of more
traditional Chinese medicines in the future.
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