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Abstract

Background

Mobile health apps (MHA) have the potential to improve health care. The commercial MHA

market is rapidly growing, but the content and quality of available MHA are unknown. Instru-

ments for the assessment of the quality and content of MHA are highly needed. The Mobile

Application Rating Scale (MARS) is one of the most widely used tools to evaluate the quality

of MHA. Only few validation studies investigated its metric quality. No study has evaluated

the construct validity and concurrent validity.

Objective

This study evaluates the construct validity, concurrent validity, reliability, and objectivity, of

the MARS.

Methods

Data was pooled from 15 international app quality reviews to evaluate the metric properties

of the MARS. The MARS measures app quality across four dimensions: engagement,
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functionality, aesthetics and information quality. Construct validity was evaluated by assess-

ing related competing confirmatory models by confirmatory factor analysis (CFA). Non-

centrality (RMSEA), incremental (CFI, TLI) and residual (SRMR) fit indices were used to

evaluate the goodness of fit. As a measure of concurrent validity, the correlations to another

quality assessment tool (ENLIGHT) were investigated. Reliability was determined using

Omega. Objectivity was assessed by intra-class correlation.

Results

In total, MARS ratings from 1,299 MHA covering 15 different health domains were included.

Confirmatory factor analysis confirmed a bifactor model with a general factor and a factor for

each dimension (RMSEA = 0.074, TLI = 0.922, CFI = 0.940, SRMR = 0.059). Reliability was

good to excellent (Omega 0.79 to 0.93). Objectivity was high (ICC = 0.82). MARS correlated

with ENLIGHT (ps<.05).

Conclusion

The metric evaluation of the MARS demonstrated its suitability for the quality assessment.

As such, the MARS could be used to make the quality of MHA transparent to health care

stakeholders and patients. Future studies could extend the present findings by investigating

the re-test reliability and predictive validity of the MARS.

Introduction

The global burden of disease is high across the world [1]. Mobile health applications (MHA)

have the potential to substantially improve health care by providing accessible, effective, cost-

efficient, and scalable interventions, as well as health information that can improve the screen-

ing, diagnostics, prevention and treatment of diseases [2–6].

Currently, there are over 300,000 MHA available in the app stores, and more than 200

MHA are added each day [7]. Several randomized controlled trials have shown that MHA can

be an effective intervention tool for the prevention and treatment of various health conditions

[6]. A recent meta-analysis of randomized trials reported small to moderate pooled effects of

MHA for improving depression, anxiety, stress levels, and quality of life [6, 8]. However, the

number of evidence-based MHA on the MHA market is surprisingly small [3, 4, 9, 10]. The

lack of evidence-based MHA in combination with the rapidly growing MHA market highlight

that patients and health care providers need better guidance to identify high-quality MHA that

meet patients’ needs [11]. Reliable and valid measures to assess the quality of MHA are needed

to provide such information to health care stakeholders and patients.

The Mobile Application Rating Scale (MARS) is the most widely used scale for evaluating

the quality and content of MHA [3, 10, 12, 13–24]. The MARS is a multidimensional instru-

ment to assess MHA quality and was developed based on semantic analysis and synthesis of

relevant literature [16]. In total four separate dimensions were derived: engagement, function-

ality, aesthetics and information quality [16]. The original validation study showed good reli-

ability of the subscales (α = 0.80 to 0.89) and the overall scale (α = 0.90), and good objectivity

(subscales: Intra-class correlation (ICC) = 0.50 to 0.80; overall = 0.90) [16]. These results were

replicated in several other studies investigating the metric basic of translated versions of the

MARS [25–27]. However, the generalizability of previous findings is limited due to small
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sample sizes, and MHA used for specific health conditions and geographic areas. Furthermore,

crucial metric properties have not been extensively evaluated: 1) no study has evaluated the

construct validity of the MARS–meaning whether the proposed four separate dimensions are

indeed independent—, 2) the concurrent validity with other quality instruments, such as the

ENLIGHT instrument [28], is unknown, and 3) the findings regarding the concurrent validity

with user-ratings in the app stores are inconclusive to this point [3, 14, 16]. Moreover, there

are some methodological limitations in previous MARS evaluations (e.g., using Cronbach’s

alpha for reliability [29–31]).

In an effort to address the aforementioned research gaps, this study aimed to validate the

MARS based on pooled MARS data from 15 international reviews assessing the quality

and content of MHA in various health conditions. The following research questions were

investigated:

1. What is the validity of the MARS in terms of:

a. Construct validity: What is the latent structure of the MARS and are the proposed four

dimensions independent?

b. Concurrent validity: What are the correlations between the MARS and another fre-

quently used quality assessment tool called ENLIGHT [28]?

2. Reliability: What is the internal consistency of the overall MARS and its subscales?

3. Objectivity: What is the agreement between reviewers?

Methods

Study design

This is a validation study evaluating the metric quality of the MARS [16]. Similar to an individ-

ual patient data meta-analysis approach [32], research groups using the MARS were contacted

and asked to provide their primary data (= quality ratings of MHA). Subsequently, all data sets

provided were verified, homogenized, and merged into a single data set.

Inclusion criteria and search

To obtain a large data set, only reviews about MHA using the MARS were eligible. Reviews

that used the MARS to assess the quality of MHA were identified through literature searches

conducted in Google Scholar and PubMed in July 2019, using terms such as MHA reviews,

app quality or MARS. The literature searches were conducted by PP, YT and EM. The corre-

sponding authors of the identified reviews were contacted and asked to share their data. Data

from on-going reviews in which the authors were involved were also included. Data from the

original validation study of the MARS [16] were excluded to obtain an independent sample for

the present validation study.

Measurement: Mobile Application Rating Scale

The MARS is a multidimensional instrument assessing the quality of MHA [16]. The quality

assessment consists of a total of 19 items covering four dimensions. The dimensions are: (A)

engagement (5 items: fun, interest, individual adaptability, interactivity, target group), (B)

functionality (4 items: performance, usability, navigation, gestural design), (C) aesthetics (3

items: layout, graphics, visual appeal), and (D) information quality (7 items: accuracy of app

PLOS ONE Validation of the Mobile Application Rating Scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0241480 November 2, 2020 3 / 14

https://doi.org/10.1371/journal.pone.0241480


description, goals, quality of information, quantity of information, quality of visual informa-

tion, credibility, evidence base). All items are assessed on a 5-point scale (1-inadequate,

2-poor, 3-acceptable, 4-good, and 5-excellent). Items assessing information quality can also be

rated as not applicable (e.g., in case of missing evidence or missing visual information).

Statistical analysis

Validity. Construct validity: Confirmatory factor analysis. Confirmatory factor analysis

(CFA) was applied to examine four proposed models. The MARS was designed to measure

app quality. Based on the four subscales engagement, functionality, aesthetics, and information

quality, we hypothesized four competing confirmatory models:

1. Model 1 consisted of four latent factors accounting for the item co-variance of the respec-

tive subscales, correlations between the four latent factors were allowed (see Fig 1);

2. Model 2 assumed a latent factor for the items of each subscale, and in contrast to model 1,

a higher order factor was introduced to account for correlations between the factors (see

Fig 2);

3. Model 3 has one general latent factor (g-factor) accounting for the co-variance of all items

and four residual factors accounting for the remaining co-variances of the respective sub-

scale items (see Fig 3);

4. Model 4 assumed only a general factor (see Fig 4).

Due to the high power of the χ2-test and its tendency to reject slightly mis-specified models

[33–35], the model fit was evaluated using various fit indices: the root mean square error of

approximation (RMSEA) as a non-centrality parameter, the standardized root mean square

residual (SRMR) as a residual index, the confirmatory fit index (CFI) and the Tucker-Lewis

index (TLI) as incremental indices. Cut-off values for an acceptable goodness of fit were based

on standard modeling criteria: RMSEA < 0.06, SRMR< 0.08, CFI > 0.95 and TLI > 0.95 [36].

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were used

for model comparisons.

Fig 1. Hypothesized CFA model 1 of the MARS. Item-wise error variances are not represented in the models;

correlations between errors were not allowed.

https://doi.org/10.1371/journal.pone.0241480.g001
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Full information maximum likelihood was used as a robust estimator given its capability to

handle missing data [37, 38]. Hubert-White robust standard errors were obtained [38]. Modi-

fication indices were used to further investigate the structure of the MARS and potential

sources of ill fit [39].

Concurrent validity. Since the MARS was designed to measure app quality, it should be

related closely to other app quality metrics. Some of the included data sets provided both rat-

ings using the ENLIGHT instrument and the MARS. Similar to the MARS, the ENLIGHT is a

quality assessment tool for MHA [28], which assesses app quality covering seven dimensions:

a. usability (3 items), b. visual design (3 items), c. user engagement (5 items), d. content (4

items), e. therapeutic persuasiveness (7 items), f. therapeutic alliance (3 items), and g. general

subjective evaluation (3 items). Items are rated from 1 (= very poor) to 5 (= very good). The

Fig 2. Hypothesized CFA model 2 of the MARS. Item-wise error variances are not represented in the models; correlations between errors were not

allowed.

https://doi.org/10.1371/journal.pone.0241480.g002

Fig 3. Hypothesized CFA model 3 of the MARS. Item-wise error variances are not represented in the models; correlations between errors were not

allowed.

https://doi.org/10.1371/journal.pone.0241480.g003

Fig 4. Hypothesized CFA model 4 of the MARS. Item-wise error variances are not represented in the models; correlations between errors were not

allowed.

https://doi.org/10.1371/journal.pone.0241480.g004
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intra-rater-reliability of the ENLIGHT (ICC = 0.77 to 0.98) and the internal consistency (α =

0.83 to 0.90) are excellent [28].

Correlations were used to determine the concurrent validity between the MARS and

ENLIGHT. All correlations reported in this study were calculated using correlation coefficient

r, which ranges between 0 (no relationship) to 1 (perfect relationship) or -1 (perfect negative

relationship) respectively. For all correlation analyses, the alpha-level was 5%. P-values were

adjusted for multiple testing using the procedure proposed by Holm [40].

Reliability: Internal consistency. As a variant of reliability, internal consistency was

determined. Omega was used as reliability coefficient [41]. Compared to the widely used Cron-

bach’s Alpha, Omega provides a more unbiased estimation of reliability [29–31]. The proce-

dures introduced by Zhang and Yuan [42] were used to obtain robust coefficients and

bootstrapped bias-corrected confidence intervals. A reliability coefficient of< 0.50 was consid-

ered to be unacceptable, 0.51–0.59 to be poor, 0.60–0.69 to be questionable, 0.70–0.79 to be

acceptable, 0.80–0.89 to be good, and> 0.90 to be excellent [43].

Objectivity: Intra-class correlation. The MARS comes with a standardized online

training for reviewers [16]. Following the training, the MARS assessment is suggested to be

either conducted by a single rater or by two raters (pooling their ratings) [16]. Consistency

between raters was examined by calculating intra-class correlation based on a two-way

mixed-effects model [44]. A cut-off of ICC above 0.75 (Fleiss, 1999) was used to define a sat-

isfactory inter-rater agreement. All data sets based on ratings of two reviewers were included

in this analysis.

Analysis software. The software R was used for all analyses [45], except for the intra-class

correlation, which was calculated using SPSS 24 [46]. For the CFA, the R package “lavaan”

(version: 0.5–23.1097) was deployed [47]. Omega was assessed using “coefficient alpha” [42].

Correlations were calculated using “psych” (version: 1.7.8.) [48].

Results

Sample characteristics

The literature searches identified a total of 18 international reviews that assessed the quality of

MHA using the MARS. All research groups that have published an eligible review were con-

tacted. In total, 15 of the 18 contacted research groups responded and agreed to share their

data [3, 10, 12, 14, 15, 18, 19, 22, 24, 49–54]. The present sample consists of N = 1299 MHA.

MHA targeting physical, mental and behavioral health, as well as specific target groups were

included: anxiety (n = 104), low back pain (n = 58), cancer (n = 78), depression (n = 38), diet

(n = 25), elderly (n = 84), gastrointestinal diseases (n = 140), medication adherence (n = 9),

mindfulness (n = 103), pain (n = 147), physical activity (n = 312), post-traumatic stress disor-

der (n = 87), rheumatism (n = 32), weight management (n = 66), and internalizing disorder

MHA for children and youth (n = 16). For all included data sets, the MARS rating was con-

ducted by researchers holding at least a B.Sc. degree.

The overall quality of these MHA based on the quality assessment using MARS was moder-

ate (mean MARS score [M] = 3.74, standard deviation [SD] = 0.59). The quality of MHAs was

highest in relation to the functionality dimension (M = 4.03, SD = 0.67), followed by aesthetics

(M = 3.40, SD = 0.87), information quality (M = 3.06, SD = 0.72) and engagement (M = 2.96,

SD = 0.90) (see Fig 5).

The MARS assesses the evidence base of an app using the question “Has the app been

trialled/tested; must be verified by evidence (in published scientific literature)?”. Overall, 1230

(94.8%) of all included MHAs were rated as not evidence-based.
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Construct validity: Confirmatory factor analysis

None of the a-priori defined confirmatory models were confirmed by CFA. The best-fitting

model was model 3. Model 3 was further investigated using modification indices. Introducing

a correlation between items 3 and 4 (= Model 3a) yielded an acceptable model fit. Fit indices of

all models are presented in Table 1. Model 3a is presented in Fig 6.

Concurrent validity

A total of 120 MHA were rated using both the ENLIGHT instrument and the MARS. Correla-

tions between MARS and ENLIGHT were calculated based on the respective subsample. Cor-

relations are presented in Table 2.

Reliability: Internal consistency

The internal consistency of all sections was good to excellent (see Table 3).

Objectivity: Intra-class correlation

To calculate the agreement of raters only data sets providing ratings of both reviewers were

used. A total of 793 apps (= 15067 rated items per reviewer) were included in the intra-class

correlation analysis. Overall, intra-class correlation was good: ICC = 0.816 (95% CI: 0.810 to

0.822). Section-wise ICC is summarized in Table 4.

Fig 5. Quality of included MHA.

https://doi.org/10.1371/journal.pone.0241480.g005

Table 1. Model fit.

Model AIC BIC RMSEA SRMR TLI CFI

Model 1 49110 49437 0.110 (0.106 to 0.113) 0.095 0.814 0.841

Model 2 49182 49497 0.115 (0.111 to 0.119) 0.098 0.811 0.837

Model 3 48132 48525 0.093 (0.088 to 0.097) 0.095 0.878 0.905

3a 47589 47987 0.074 (0.070 to 0.078) 0.059 0.922 0.940

Model 4 52102 52397 0.166 (0.162 to 0.170) 0.099 0.605 0.649

Note: AIC: Akaike information criterion; BIC: Bayesian information criterion; RMSEA: root mean square error of approximation (RMSEA); SRMR: standardized root

mean square residual; CFI: the confirmatory fit index; TLI: Tucker-Lewis index.

https://doi.org/10.1371/journal.pone.0241480.t001
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Discussion

To our knowledge, the present study is the first study to evaluate the construct validity of the

MARS. Furthermore, this study builds on previous metric evaluations of the MARS [16, 25–

27] by investigating its validity, reliability, and objectivity using a large sample of MHAs cover-

ing multiple health conditions. The CFA confirmed a bi-factor model consisting of a general

g-factor and uncorrelated factors for each dimension of the MARS. Given the theoretical

Fig 6. Model 3a. Loadings are standardized; correlations between all latent variables were set to zero; item-wise error

variances have been excluded; Model 3a differs from the a-priori defined model 3 in the correlation between item 3

(a03) and item 4 (a04).

https://doi.org/10.1371/journal.pone.0241480.g006

Table 2. Correlations between the MARS and ENLIGHT using a subsample of apps.

MARS: Engagement MARS: Functionality MARS: Aesthetics MARS: Information MARS: Overall

ENLIGHT (n = 120) ra ra ra ra ra

Usability 0.51��� 0.80��� 0.68��� 0.39��� 0.71���

Design 0.63��� 0.66��� 0.87��� 0.57��� 0.84���

Engagement 0.83��� 0.52��� 0.68��� 0.47��� 0.78���

Content 0.71��� 0.54��� 0.72��� 0.68��� 0.82���

Therapeutic persuasiveness 0.74��� 0.42��� 0.63��� 0.54��� 0.73���

Therapeutic alliance 0.56��� 0.37��� 0.44��� 0.48��� 0.58���

General subjective quality 0.69��� 0.53��� 0.68��� 0.50��� 0.74���

overall 0.83��� 0.65��� 0.81��� 0.64��� 0.91���

Note:
a) correlation coefficient r, which ranges between 0 (no relationship) to 1 (perfect relationship) or -1 (perfect negative relationship) respectively.

� P < = 0.05,

�� P < = 0.01,

��� P< = 0.001.

https://doi.org/10.1371/journal.pone.0241480.t002
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background of the MARS, the latent g-factor could represent a general quality factor or a factor

accounting for shared variance introduced by the assessment methodology. Either way, the

four uncorrelated factors confirm the proposed dimensions of the MARS [16]. Thus, the inter-

pretation of the sum score for each dimension seems legit. However, the present analysis high-

lights that not all items are equally good indicators for the dimensions. Hence, a weighted

average of the respective items of each of the four dimensions a) engagement, b) functionality,

c) aesthetics and d) information quality would be more adequate.

Besides the construct validity, the concurrent validity was evaluated. High correlations to

the ENLIGHT indicated a good concurrent validity. Furthermore, previous metric evaluations

in terms of reliability and objectivity [16, 25–27] were replicated with the present MHA sam-

ple. Our findings showed that both reliability and objectivity of the MARS were good to excel-

lent. Overall, considering the validity, reliability and objectivity results the MARS seems to be

an app quality assessment tool of high metric quality.

The correlation between the MARS and the ENLIGHT instrument was high, at least in a

sub-sample of the analyzed apps. This indicates good concurrent validity between both expert

assessments. However, ENLIGHT contains a section assessing therapeutic alliance [28] which

was only moderately covered by the MARS. The integration of therapeutic alliance in the

MARS could further strengthen the quality of the MHA assessment. Especially in the context

of conventional and digitalized health care, therapeutic alliance, guidance, and therapeutic per-

suasiveness, are important aspects along with persuasive design [25, 28, 55, 56].

Pooling data from multiple international reviews of the quality of MHA using MARS also

provided an insight into the quality of many commercial MHA. While most MHA show high

quality in terms of functionality and aesthetics, the engagement and information quality of

MHA show high heterogeneity and an overall moderate quality. However, most striking is the

lack of evidence-based MHA. Only 5% of the MHA were evaluated in studies (e.g., feasibility,

Table 3. Internal consistency of the MARS.

Section Reliability: Omega (CI)

A: Engagement 0.867 (0.853 to 0.880)

B: Functionality 0.871 (0.856 to 0.886)

C: Aesthetics 0.904 (0.895 to 0.913)

D: Information quality1 0.793 (0.773 to 0.813)

Overall1 0.929 (0.923 to 0.934)

Note:
1) Item 19 was excluded due to high amount of missingness (95%), as it is rated NA (not applicable) if no evaluation

is present.

https://doi.org/10.1371/journal.pone.0241480.t003

Table 4. Objectivity of the MARS.

Section Objectivity: ICC (95% CI)a

A: Engagement 0.790 (0.776 to 0.803)

B: Functionality 0.758 (0.740 to 0.774)

C: Aesthetics 0.769 (0.750 to 0.787)

D: Information quality 0.848 (0.839 to 0.857)

Overall 0.816 (0.810 to 0.822)

Note:
a) Two-way mixed intra-class correlation coefficient (ICC) with 95% confidence intervals (CI).

https://doi.org/10.1371/journal.pone.0241480.t004
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uncontrolled longitudinal designs, RCT). This lack of evidence is in line with previous research

and a major constraint in the secondary health market [3, 4, 9]. Creating an evidence-based

MHA market and addressing central issues, like 1) data safety and privacy, 2) user adherence

and 3) data integration, are core challenges that have to be solved to utilize the potential bene-

fits of MHA in health care [57–59]. Using the MARS to make those issues transparent to health

care stakeholders and patients, as well as establishing guidelines for the developments of MHA

are both necessary and promising steps to achieve this goal [16, 57].

Limitations

Some limitations of this study need to be noted. First, the main aim of this study was to evalu-

ate the construct validity of the MARS. By including ratings of multiple reviewers across the

world and multiple health conditions, we regard the external validity of the results as high.

Nonetheless, the results might be only valid in the present sample and not transferable to

other conditions, target groups or rating teams. Thus, the confirmed bifactor model should be

challenged in other health conditions and also non-health apps. Notably, the necessary modifi-

cation to the a-priori defined bifactor model should be closely investigated, since it was intro-

duced based on modification indices and is of an exploratory nature. Second, the evaluation

of the construct validity of the MARS might be biased due to the format of the MARS, as

throughout the MARS all items are assessed on a 5-point scale. Since there is no variation in

the item format, item-class specific variance cannot be controlled in the present evaluation. As

a result, item-class variance might be attributed to the quality factor. These issues could be

addressed in future studies by using a different item format. Also using a multi-method

approaches, for example by integrating alternative assessments like the user version of the

MARS [60] or the ENLIGHT [28] could lead to a more comprehensive assessment of the qual-

ity of MHA. Third, although reliability of the MARS was also a focus in this study (i.e., internal

consistency), there are facets of reliability which are still unexplored. For instance, re-test reli-

ability of the MARS has never been evaluated. To investigate re-test reliability, an adequate

study design with time-shifted assessments of the same version of apps by the same reviewers

is needed. This remains to be investigated in future studies. Finally, throughout the study,

quality is discussed as a fundamental requirement for apps. However, the internal validity in

the sense whether quality is predictive, for example, for engagement, adherence, effectiveness

was not evaluated in this study. No study has yet investigated this using the MARS. Baumel

and Yom-Tov [61] examined which design aspects are essential using the ENLIGHT instru-

ment. For instance, engagement and therapeutic persuasiveness were identified as crucial qual-

ity aspects associated with user adherence [61]. Based on the high correlation between MARS

and ENLIGHT, one could assume that their findings could also be applied to the MARS. How-

ever, this has to be confirmed in future studies. The role of quality should also be investigated

in a more holistic model containing MHA specific features (e.g., persuasive design) [62, 63],

user features (e.g., personality) and incorporating existing model such as the unified theory of

acceptance and use of technology (UTAUT) [64].

Conclusion

The MARS is a metrically well-suited instrument to assess MHA quality. Given the rapidly

growing app market, scalable solutions to make content and quality of MHA more transparent

to users and health care stakeholders are highly needed. The MARS may become a crucial part

of such solutions. Future studies could extend the present findings by investigating the re-test

reliability and predictive validity of the MARS.
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27. Payo RM, Álvarez MMF, Dı́az MB, Izquierdo MC, Stoyanov SR, Suárez EL. Spanish adaptation and
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