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Spatiotemporal visualization and analytical tools (SATs) are increasingly being applied to

risk-based surveillance/monitoring of adverse health events affecting humans, animals,

and ecosystems. Different disciplines use diverse SATs to address similar research

questions. The juxtaposition of these diverse techniques provides a list of options for

researchers who are new to population-level spatial eco-epidemiology. Here, we are

conducting a narrative review to provide an overview of the multiple available SATs,

and introducing a framework for choosing among them when addressing common

research questions across disciplines. The framework is comprised of three stages: (a)

pre-hypothesis testing stage, in which hypotheses regarding the spatial dependence

of events are generated; (b) primary hypothesis testing stage, in which the existence

of spatial dependence and patterns are tested; and (c) secondary-hypothesis testing

and spatial modeling stage, in which predictions and inferences were made based

on the identified spatial dependences and associated covariates. In this step-wise

process, six key research questions are formulated, and the answers to those questions

should lead researchers to select one or more methods from four broad categories of

SATs: (T1) visualization and descriptive analysis; (T2) spatial/spatiotemporal dependence

and pattern recognition; (T3) spatial smoothing and interpolation; and (T4) geographic

correlation studies (i.e., spatial modeling and regression). The SATs described here

include both those used for decades and also other relatively new tools. Through this

framework review, we intend to facilitate the choice among available SATs and promote

their interdisciplinary use to support improving human, animal, and ecosystem health.

Keywords: geographical/spatial analysis, geostatistics, epidemiology, disease mapping, framework

SPATIAL EPIDEMIOLOGY

Spatial epidemiology is defined as “the description and analysis of geographic variations in
disease with respect to demographic, environmental, behavioral, socioeconomic, and infectious
risk factors” (1). The importance of understanding the interplay between genetic, population,
and environmental factors, and temporal characteristics of diseases in relation to space (2–4)
has provided a set of powerful reasons to further develop the field of spatial epidemiology. The
integration of epidemiological concepts, spatial analysis, geographic information system (GIS), and

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2020.00339
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2020.00339&domain=pdf&date_stamp=2020-07-07
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kanan009@umn.edu
https://doi.org/10.3389/fvets.2020.00339
https://www.frontiersin.org/articles/10.3389/fvets.2020.00339/full
http://loop.frontiersin.org/people/352759/overview
http://loop.frontiersin.org/people/198845/overview
http://loop.frontiersin.org/people/929625/overview
http://loop.frontiersin.org/people/198846/overview


Kanankege et al. Introduction to Spatiotemporal Analytical Tools

statistics leads to the accomplishment of the objectives of spatial
epidemiology in understanding and modeling spatiotemporally
explicit health risks (5–10). Essentially, geostatistics was
originated in fields of geoscience, and the use of geostatistics
on health data is synonymously referred to as “medical/health
geography” or “spatial/geographical epidemiology” (11, 12).

The poster child of spatiotemporal epidemiological studies
is Dr. John Snow’s map of cholera deaths in Soho, London, in
1854 (13, 14). Dr. Snow used the map to support his theory that
disease was associated with contaminated water, contrary to the
popular belief at the time that it was airborne (14). Dr. Snow’s
classic work is an early example of how spatial epidemiological
methods may support improving the quality of epidemiological
investigations, eventually providing risk estimates in a timely
manner to support decision and policy in preventive and control
measures (15–17). Traditionally, spatial epidemiology focused on
two major concepts: (a) mapping and spatial pattern analysis,
such as cluster analysis, to determine visual and geographical
relational cues (pre-hypothetical stages of research), and (b)
using ecologic approaches to recognize etiologic clues of disease
spread and explanatory factors (hypothesis-driven research) (18).
However, the emergence of a large variety of tools and methods
over the last decades has made the landscape of spatiotemporal
epidemiological tools quite complex, challenging researches
ability to identify the analytical approaches most suitable for
their needs.

SPATIOTEMPORAL VISUALIZATION AND
ANALYTICAL TOOLS (SATs)

A plethora of SATs, especially geostatistical tools, have been
published and used in the field of spatial epidemiology (15, 19).
However, for a beginner in spatial eco-epidemiology, selecting
an appropriate analytical tool is often a challenging decision.
Different disciplines, including epidemiology, econometrics,
and ecology, use different SATs to address similar research
questions (20–23). Juxtaposing these diverse techniques may
support an interdisciplinary approach of shared knowledge
while providing a list of options for researchers. The choice
of SATs depends on a variety of factors/criteria. The majority
of the published reviews and books on SATs are focused on
describing the features of the tools/methods and do not guide
a beginner researcher through the options to consider when
choosing a spatial eco-epidemiological analysis. The objective
of the paper here was to suggest a framework that facilitates
choosing SATs which enables the researchers to analyze existing
epidemiological data, draw inferences, and plan future research
in spatiotemporal epidemiology.

DATA USED IN SPATIOTEMPORAL
ANALYSIS

The types of spatial data that can be used in epidemiology
to represent the distribution of diseases and adverse events in
space include (1) point-referenced data (presence and absence
of the disease or number of animals at each farm location),
(2) point-pattern data (presence of the disease: where the

disease occurrence itself is random giving rise to a “spatial
point process”), and (3) areal data or “lattice data” (number
of disease cases aggregated by an administrative division such
as counties) (19, 24). The first case is often referred to as
“geocoded” or “geostatistical” data (19). The point-referenced
data and areal data may be of binary, count, or continuous in
nature. The key difference between point-referenced and point-
pattern data is that the former has a set of pre-known locations
from which a certain value for a given variable was observed,
whereas in the latter the events are assumed to have a stochastic
or random nature (19). Therefore, in point-pattern data both
the location and the observation of the disease themselves are
random or stochastic. While the term “lattice data” may lead to
the assumption that the areal units are regular shaped grids, in
practice most areal data are summarized over irregular lattice
such as administrative divisions. Reduced spatial explicitnessmay
lead to aggregation of the events by administrative divisions and
non-availability of the temporal details would limit the researcher
to use purely spatial tools for the analysis.

While disease status data are the primary focus,
epidemiological studies often look into association of the
disease with underlying risk factors, such as human population
density, air pollution parameters, temperature, precipitation,
or soil pH among many other possible examples, which vary
continuously over the space. These variables that are usable
on GIS platforms are available from various data base sources
in the form of point-referenced observations, polygon maps,
or gridded i.e., “raster” maps. WorldClim [www.worldclim.
org; (25, 26)] and LandScan Global Population Database (27)
are examples of such data sources. The relevant value of these
continuous variables, at each location where the disease status
has been determined, can be extracted and used for further
analysis, i.e., point-referenced data (19). The availability of
exact location details and the time of the case supports more
spatiotemporally explicit and reliable analysis. Unless specified as
applicable to a particular type of data only, SATs described here
are suitable to be used point-pattern, point-referenced, or areal
data. It is important to notice that under certain circumstances
the data types can be converted from one form to another.
Point-referenced data can be summarized and represented
by administrative divisions (i.e., polygon data). For example,
point-referenced data representing 10 different farm locations
recorded with a disease can be represented as 10 cases with in
the county. Similarly, disaggregation of areal data with certain
assumptions, such as density dependent disaggregation (28), is
possible. Representing the area by the centroid of each polygon,
thus, converting areal data into a point-referenced format,
which, of course, is a simplification of the analysis that may be
acceptable only under certain circumstances.

A FRAMEWORK FOR CHOOSING
SPATIOTEMPORAL EPIDEMIOLOGICAL
TOOLS

Here, we are suggesting a framework for choosing SATs
(Figure 1). The framework is classified into three stages: (a)
pre-hypothesis testing/hypothesis generating stage; (b) primary
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FIGURE 1 | Schematic illustration of a framework for choosing spatiotemporal visualization and analytical tools (SATs). The research questions/objectives are identified

with Q1:Q6. The specific SATs under the relevant categories, i.e., T1:T4, are listed in Table 1.

hypothesis testing stage; and (c) secondary-hypothesis testing
and spatial modeling stage where the predictions and inferences
are made. The primary hypothesis refers to the existence of
spatial dependence and spatial patterns in the distribution

of adverse health events, while the secondary hypotheses
involve the association of the events with risk factors/covariates.
The different types of SAT are broadly classified into four
categories: (T1) visualization and descriptive analysis; (T2)
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spatial/Spatiotemporal dependence and pattern recognition; (T3)
spatial smoothing and interpolation; and (T4) spatial correlation
studies: modeling and regression. The types of data primarily
applicable with different SATs are listed under T1:T4. The
framework seeks to suggest a suitable category of the SAT among
the four, based on the stage of the research question. The types
of SAT that are commonly used in epidemiological studies are
listed under each category (T1:T4) in Table 1 and discussed
briefly below. The usage of tools are further discussed in relation
to one example case study. It is important to note, however,
that this is not a systematic review on the existing SATs, and
that the classification used here is, somewhat, arbitrary, given
the subjective nature of the problem. This contribution of a
narrative review, while not an exhaustive description of SATs,
intends to provide a short guide to introductory-level population
and ecological scientists on commonly used tools and encourage
the users to explore the diverse algorithms for more informed
conclusions. Detailed reviews on SATs can be found elsewhere
(6, 7, 10, 23, 138), as well as, a glossary of commonly used terms
and their definitions in spatial epidemiology is found in Rezaeian
et al. (11).

COMMONLY USED SPATIOTEMPORAL
VISUALIZATION AND ANALYTICAL TOOLS
(SATs)

T1 Tools for Visualization and Descriptive
Analysis
Spatial data visualization is one of the key steps in understanding
and generating hypotheses on the spatial distribution of
events. Global Navigation Satellite Systems (GNSS), such as
Global Positioning System (GPS); Global Navigation Satellite
System (GLONASS); Galileo; Navigation Indian Constellation
(NavIC); and BeiDou provide the ability to position the exact
geospatial locations during the data collection phase. In the
absence of GNSS based data, geocoding plays a major role
to generate spatially explicit databases (29, 30). In addition
to the visualization, description of the extent of spatial
distribution by means of size, shape, and directionality of
the spread supports understanding the extent of the adverse
health/environmental effect. Descriptive analysis using T1 tools
may support planning primary interventions including assigning
vaccine or surveillance buffer zones and recognizing the distance
to closest epidemiologically important features.

GIS is a system which enables capturing, storing, visualizing,
and analyzing spatially explicit or “georeferenced” data to
cartographic projections (31, 139). The true value of the ability
to place data or measurements on a map, either as discrete
events using its exact location (i.e., point-referenced data) or as
continuous data by regular grids (i.e., raster data), is the ability
to assess possible relationships within the data. GIS technology
makes it technically feasible to integrate large amounts of data
collected from different sources into a single georeferenced
map/model for analysis. Therefore, GIS plays a major role in the
spatial analysis as a platform which facilitates bringing data and

analytical techniques together. The key analytical tools are listed
under T2:T4.

T2 Tools for Spatial/Spatiotemporal
Dependence and Pattern Recognition
Measures of Spatial Autocorrelation
According to Walter Tobler’s First Law of Geography,
“everything is related to everything else, but near things are more
related than distant things (140).” This phenomenon, otherwise
known as spatial autocorrelation or spatial dependence, is a
key component of spatial epidemiology. The majority of the
T2 techniques are focused on determining the extent to which
data are spatially autocorrelated and performing hypothesis tests
after accounting for spatial autocorrelation (141). Assumptions
involved in the analytics include the spatial stationarity, isotropic
spatial autocorrelation, and spatial continuity (141). In simpler
terms these assumptions imply that events (infectious diseases
in animals for example) of the considered spatial process are
homogeneously distributed across the region regardless of
geographical directions or barriers. However, understanding
the violations of these assumptions, i.e., detecting patterns of
non-stationarity or anisotropy, is paired with the descriptive
analytics (32). Moran’s I (37), Geary’s C (38), Mantel test (39),
and Getis Ord (40, 41), which often referred to as “global spatial
autocorrelation indices” (142) are the commonly used techniques
to measure spatial autocorrelation.

Measurement of spatial heterogeneity, i.e., uneven
distribution of the populations and risk factors across the
geographical space, is another important component for
understanding the disease process. Spatial heterogeneity
measures could be either (1) local where we measure whether
an attribute at one site is different from its surrounding or (2)
stratified where the attributes are stratified within strata, such
as Agro-ecological zones or land use categories in which the
spatial variance between strata was measured. An example of
local measures of spatial heterogeneity is Getis Ord Gi∗ [i.e.,
hot-pot/cold spot analysis; (40, 41)]. Other techniques such as G-
statistics are increasingly available facilitating the measurement
of stratified spatial heterogeneity (51). The indices of spatial
heterogeneity provide opportunity to quantitatively measure the
differences and compare the landscape patterns of populations
and risk factors.

Spatial Cluster Analysis
A spatial cluster is an excess of events or measurements in certain
areas in geographic space, compared to the null expectation
of complete spatial randomness (143). The cluster analysis is
generally aimed at detecting if there is any clustering in the
spatial data (i.e., Global cluster analysis), and detecting and
locating the clusters (local cluster analysis and focused cluster
analysis). In general, the cluster analysis provides information
about the cluster morphology, including the magnitude of the
excess/deficit feature, geographic size, shape, and the locations
of spatial clusters.

Detecting first-order adjacencies such as Local Indicators of
Spatial Autocorrelation (LISA) statistics (41, 50) and nearest-
neighbors relationships such as used in Cuzick and Edward’s
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TABLE 1 | A summary of types of common spatial analytical tools and their purpose.

Purpose Measure Commonly used techniques D* References

T1: Visualization and

descriptive analysis

Transformation of locational

information into geographic

coordinates

Geocoding/

georeferencing

GIS based geocoding of street address,

postal code, or administrative divisions

pp, pr, ar (29–31)

Visualization and description of the

size and shape of the spatial

distribution

Exploratory spatial data

analysis

Mean center pp, pr, ar (32)

Median center (32)

Convex hull (33)

Standard deviation (weighted by

attributes)

(32)

Directional mean and variance (34)

Moran scatter plot (35)

Characterize nearby

features

Features with in a distance band/buffer

zone

pr, ar (31, 36)

Distance to feature (31)

Overlaying features (31)

T2: Spatial/

Spatiotemporal

dependence and

pattern recognition

Test whether there is spatial

dependence in the event data

Spatial autocorrelation Global Moran’s I pr, ar (37)

Geary’s C (38)

Mantel test (39)

Geti’s ord (40, 41)

Spatial autocorrelation

among regression

residuals

Moran’s I test pr, ar (42, 43)

Kelejian–Robinson test (44, 45)

Distance analysis Nearest neighbor analysis (46)

Ripley’s K (47, 48)

Distance matrices (31)

Measure the uneven distribution of

the populations and risk factors

Local or stratified spatial

heterogeneity

Getis Ord Gi* pr, ar (40, 41)

K-means clustering (49)

Anselin’s local Moran’s I (L-Moran) (50)

Spatial stratified heterogeneity test (51)

Measure the spatial dependence

while accounting for background

population

Oden’s Ipop ar [(52, 53); https://

www.biomedware.

com]

Test whether there is any spatial

trends

Testing for first-order

effects

Trend analysis pr, ar (18, 54, 55)

Test whether there is any spatial

clustering in the data

Global cluster detection Nearest neighbor test pp, pr, ar (46)

Cuzick and Edward’s test (case-control

data)

(56)

Local indicators of spatial association

(LISA)

(50)

Locate the clusters and the

statistical significance of the

clustering

Purely spatial local cluster

detection

Spatial scan statistics (57–59)

Flexscan ar (60)

Turnbull’s test pr, ar (61)

Besag and Newell’s test (62)

Test whether there is space and

time clustering in the data

Spatiotemporal cluster

detection

Knox test pp, pr, ar (63)

Mantel test (39)

Barton’s test (64)

kth nearest neighbor test for time-space

interaction

(65)

Space-time permutation scan statistic (66, 67)

Edrer-Myers-Mantel test (68, 69)

Detect the direction of progression

of an event over time

Spatiotemporal

directionality

Spatiotemporal directionality test pr, ar [(53, 70); https://

www.biomedware.

com]

Spatiotemporal anisotropy parameter (71, 72)

(Continued)
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TABLE 1 | Continued

Purpose Measure Commonly used techniques D* References

T3: Spatial

smoothing and

interpolation

Quantifying spatial variations in

event intensity: spatial point pattern

(SPP) intensity

Density based point

pattern recognition

Univariate Kernel density estimation

(KDE)

pr (73–75)

Multidimensional KDE (76, 77)

Empirical Bayes smoothing (EBS) ar (78, 79)

Smoothing and interpolation Deterministic spatial

interpolation

Thiessen (Voronoi) polygons pr (80)

Neighborhood matrices (31)

Inverse Distance Estimation (IDW) (32, 81, 82)

Triangulated Irregular Network (TIN) (83, 84)

Headbang smoothing (85–87)

Spatial modeling with

stochastic partial

differential equations

(SPDE)

pr (88, 89)

Geostatistical interpolation

and spatial regression

Kriging pr (32, 90, 91)

Spline regression models (92)

Trend Surface Interpolation (93–96)

Multivariate spatial

interpolation

Co-kriging pr (32, 91, 97)

Regression kriging (98–100)

Spatiotemporal

interpolation

Space-time kriging pr (101, 102)

Autoregressive spatial smoothing and

temporal Spline smoothing

(103)

T4: Geographic

correlation studies:

modeling and

regression

Estimate the probability of disease

spread using explanatory variables

Regression at spatial units Ordinary least square regression and test

for spatial autocorrelation of residuals

pp, pr, ar (42, 43, 45)

Spatial lag model with independent

variable representing neighbors

(104, 105)

Spatial and

spatiotemporal error

autoregression models for

areal data (When

regression residuals have

spatial autocorrelation)

Simultaneous autoregressive (SAR)

models

pr, ar (19, 24, 106)

Geographically weighted regression

(GWR)

(107, 108)

Purely spatial: Conditional

autoregressive (CAR) models

(19, 109, 110)

Spatiotemporal CAR models (111, 112)

Two-stage space-time mixture modeling (113)

Latent structure models (113–115)

Spatial and

spatiotemporal models for

point-level data

Point process models with weighted

sum approximation

pp (116, 117)

Conditional logistic model pp, pr (118, 119)

Separable models for spatiotemporal

data

(19)

Non-separable models for

spatiotemporal

(19)

Measure the gravitation of adverse

effects and the risk factors based

on distance

Estimate most probable

spatial interactions

between entities

Gravity models pr, ar (120–123)

Analysis of spatially explicit

time-to-event data

Spatial survival models Spatial cure rate model pr (124)

Frailty models (124)

Estimate the probability of disease

when the disease occurrence is

correlated with environmental

variables

Environmental/Ecological

niche modeling

Maximum Entropy Ecological Niche

modeling (Maxent)

pr (125–127)

Genetic Algorithm for Rule Set

Production (GARP)

(128–130)

Machine/statistical

learning techniques

Random forest pr (131, 132)

Generalized additive models (GAMs) (133–135)

Artificial neural networks (ANN) (136, 137)

D* Column represents the type of data primarily applicable on the set of tools, where, pp, point-pattern; pr, point-referenced; ar, areal data.
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(56) test can be considered as global cluster detection techniques.
Most local cluster-detection techniques employ circular scanning
windows, such as the scan statistic (58), Turnbull’s test (61), and
Besag and Newell’s (62) test. In scan statistics, a circular scanning
window of varying sizes that moves across the study area is used
to compare the observed-to-expected ratio of the cases compared
to the expected spatial randomness was calculated, and the
windows that maximize this likelihood ratio were recognized as
the most likely clusters (58). Some of these local cluster analyses
such as scan statistics have been incorporated into widely
used software such as SaTScan that enable temporal, spatial,
and spatiotemporal cluster analysis in a user-friendly manner.
However, it is essential to realize that spatial variation and hence
cluster morphology is complex, and may not be well-described
by the circular cluster window approaches (143, 144). Therefore,
alternative approaches that are flexible for the cluster shape such
as Flex scan (60), Upper Level Set scan statistics (145), and B-
statistics (146) have been introduced. A detailed description on
the spatial pattern recognition and cluster analytical techniques
are found elsewhere (143). The performance of SATs designed to
detect clusters can be highly sensitive to the level of aggregation
of the data (147). Therefore, while the clusters detected based on
point-pattern or point-referenced data are intuitive to interpret,
the clusters of data aggregated at large areal units requires
caution. Distance based assignment of the neighbors instead
of considering shared borders between areal units has been
suggested (147). Morris and Munasinghe (148) have offered
a solution through a user defined computer algorithm that
combines existing areal units, such as administrative divisions,
into regions with populations large enough to diminish spurious
variability in disease rates while limiting the loss in resolution.

T3 Tools for Spatial Smoothing and
Interpolation
Spatial Smoothing Techniques
Many research studies on adverse health/environmental events
apply spatial smoothing and interpolation techniques to improve
estimation and for exploratory mapping of risk (149). There
is a variety of smoothing techniques and they can be broadly
categorized as global (the same function is applied to all the data
points and predictions are made using the entire dataset) and
local (the same function is applied to sub-sets of data points based
on the neighborhood) smoothing techniques. Kernel smoothing,
one of the widely used techniques, facilitates visualization of
the intensity of events (73) while accounting for background
spatial distribution of the population at risk (150), and generate
tolerance contours (i.e., confidence regions) for which the relative
risk of a disease is significantly high (74, 75). Kernel smoothing
can be used to describe and visualize the intensity or the
spatial relative risk of health threats. Smoothing techniques are
used to reduce noise by shrinking values toward the adjacent
observations and estimate the spatial trend, which is applicable to
both homogenous and heterogeneous point processes (75, 151).
In a heterogeneous point process in which the intensity of the
spatially varying event varies within the study area, smoothing
is used to increase accuracy of the estimation of the event

intensity using either parametric or non-parametric methods
(73–75). Spatial smoothing techniques use a moving weighted
function to reduce the noise component, where the differences
in the values on a surface are accentuated resulting in a spatially
continuous map. Commonly used spatial smoothing techniques
include kernel density estimation (KDE) [(73, 74, 152, 153)]
and headbanging (85–87), which are considered as alternatives
of detecting circumscribing clusters of varying shapes in lieu of
circular clusters (74, 143). Empirical Bayes smoothing (EBS) is
a specific case of spatial smoothing where the denominator i.e.,
varying population at risk over the map is used as a measure
of the confidence in risk estimates. Therefore, the confidence
of estimates are higher in highly populated areas, whereas, the
estimates of relative risk would have high margins of error in
the less populated areas (79). For example, if two counties have
same the standardized incidence ratio (SIR) but have different
population sizes, the confidence of EBS estimates would be higher
for the county with a larger population size.

Spatial Interpolation Techniques
Spatial interpolation techniques are used to estimate or predict
values at unknown locations using available/known data points
(32). These tools can be broadly categorized as deterministic
(they use the extent of similarity or distance to create the
surface using measured points) and geostatistical (they use
the statistical properties of the measured points to create the
interpolated surface) interpolations. The resulting interpolated
surfaces i.e., statistical surfaces are raster layers and often can
be considered as risk maps in epidemiological analyses. There
are multiple spatial interpolation techniques including Inverse
distance estimation (IDW) (81), Triangulated Irregular Network
(TIN) (5, 83), Kriging as well as its variations such as Co-kriging
(32), and Trend Surface Interpolation (93–96) are among the
commonly used techniques. TIN represents the surface by a
set of contiguous and non-overlapping triangles connecting the
original data points and allows construction of 3-dimensional
surfaces based on a secondary variable of a researcher’s choice,
which, for example, the prevalence of a disease in a farm location.
A review by Li and Heap (84) summarizes and compares several
interpolation methods used in environmental sciences that are
highly applicable in eco-epidemiological studies as well.

Geostatistical interpolation, such as kriging can be understood
as a two-step process, where, step 1 is fitting the spatial variogram
or likelihood for the data observed at the sampled points;
and step 2 involves the interpolation of values for unsampled
points or blocks using the weights derived from this covariance
structure (32). In situations in which disease events are biased or
undersampled, co-kriging can be used to enhance the accuracy
of the estimation using a highly sampled auxiliary variable
(154). For example, when invasive species detected at lakes are
underreported, but the known invasions are highly correlated
with the visitors/boater traffic in-and-out of the lakes and data
are available for this variable, boater traffic network may use as
an auxiliary variable to determine the lakes that are likely to be
invaded (155). Trend surface interpolation facilitates mapping
variables while allowing for the local fluctuations. Therefore,
trend surface analysis may reflect the regional distribution,
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trend, and the local variation of the mapped disease (156, 157).
Interpolation techniques, their model assumptions, and usage are
discussed extensively, elsewhere (32, 96).

Spatiotemporal interpolation techniques are used to
predict variables in-between and beyond observation times
(101, 102). In space-time kriging, the spatial, temporal, and
spatiotemporal dependence structures are modeled using
spatiotemporal variograms (102). Modeling the spatial and
temporal components independently is one of the drawbacks
in most of the spatiotemporal interpolation techniques (158).
A detailed discussion on the spatiotemporal interpolation
techniques used in the environmental modeling is found
elsewhere (158). Recent developments including spatial
modeling with stochastic partial differential equations (SPDE)
have further improved spatial and spatiotemporal smoothing
using Bayesian inference (88, 89).

T4 Tools for Geographical Correlation
Studies: Modeling and Regression
Spatial Regression Models
In geographic correlation studies in epidemiology, spatial
regression analysis is commonly used to examine the effects
of certain risk factors/covariates on disease incidence while
accounting for the spatial autocorrelation/dependence (19, 104,
159–161). Spatial dependence is incorporated into the model
specifications typically using a spatial lag term or spatial error
autorregression models [i.e., assigning autoregression terms for
regression residuals; (104, 160)]. This is because the standard
regression models assume that observations are independent, an
assumption that is not met when spatially dependent data are
analyzed. Fitting regression models while assigning a variable
to represent the neighbor effect is one way of modeling the
spatial dependence. For example in spatial lag model in which
we assume that disease status in at one location is affected by
the disease status at the nearby locations, a “lag” term, which is
a specification of disease status at nearby locations, is included
in the regression, and its coefficient and p-value are interpreted
as for the independent variables (104). Both Frequentist and
Bayesian spatial regression techniques have been extensively used
in epidemiological analyses. Spatial regression models vary by
their computational complexity, capacity of capturing spatial
heterogeneity, and the quantification of uncertainty associated
with parameter estimates (161).

Spatial error autoregressive models for discrete/areal data
include: Simultaneous autoregressive (SAR) models (19, 24, 106,
162), Geographically weighted regression (163), and Conditional
autoregressive models (CAR) with neighborhood structures
defined based on Besag, York, and Mollie (BYM) model or
Leurox (109, 110). Defining the neighbors for areal data is done
based on contiguity including first-order contiguity (i.e., presence
of shared borders between polygons such as adjacent counties);
graph-based contiguity (i.e., based on defined algorithms such
as nearest-neighbor graphs); or distance-based contiguity [i.e.,
neighbors within 10 km; (45)]. Due to sampling and reporting
variabilities of disease incidences and risk factors, borrowing

strength from neighboring regions to get more reliable estimates
is the motivation behind these spatially dependent regression
models (e.g., closer neighbors might receive higher weights). This
strategy of borrowing information from neighbors is applicable
in autoregressive models, where the spatial or spatiotemporal
structure is modeled via sets of autocorrelated random effects
(19, 109, 164).

In addition to accounting for the spatial dependency,
multiple spatiotemporal regression models have been used in
epidemiological studies that enable the researchers to analyze the
influence of spatial and temporal dependence of disease events
and risk factors (19, 165). Detailed descriptions on spatial and
spatiotemporal autoregressive models can be found elsewhere
(19, 165). For example, latent structure models which accounts
for the heterogeneity or the discontinuity in risk surface such that
homogenous areas can be grouped together while discriminating
for the risk levels (114).

When the events are recorded as point-referenced data
from locations within a continuous spatial domain, such as by
households or animal farms in a certain area, the binary outcome
that the adverse event occurs in each location is assumed to
have an underlying continuous spatial process. Spatial processes
with binary outcomes are usually modeled by spatial logistic
or probit regression models. Assigning the spatial dependence
and neighbors in spatial process is complicated. This is
because point-referenced spatial data often come as multivariate
measurements at each location and we anticipate dependence
between measurements both at a particular location as well
as across locations. For example presence of a certain animal
disease in a farm is correlated with the farms own characteristics
including number of animals and management practices, as
well as the presence of neighboring farms. Separable and non-
separable spatiotemporal regression models are commonly used
to model spatial point processes (19, 166).

Environmental/Ecological Models
Ecological niche modeling (ENM) approaches are widely used to
characterize the complexity and heterogeneity of the landscapes
in research related to epidemiologically relevant vector and
parasite-reservoir distributions (167, 168). In addition to the
characterization of the areas where disease is distributed, ENM
is used to identify potential distributional areas in response to
the likely geographic shifts in distributional areas of species
or phenomena under scenarios of climate change or changing
land use (169). Genetic Algorithm for Rule Set Production
(GARP) (129, 130); Maximum Entropy Ecological Niche
modeling (Maxent) (125, 126); and Machine/statistical Learning
Techniques such as random forest (131, 132) and artificial neural
networks (ANN) (136, 137) are the commonly used algorithms
in epidemiology. Most ENM studies use presence-only data for
the analyses. Further details regarding GARP, Maxent, and other
ENM algorithms are found elsewhere [(125, 126, 128, 129)].
Additionally, hybrid methods that are bringing together multiple
tools are being used in several disciplines to improve estimation
and prediction abilities in spatial analysis.
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EVALUATING THE PERFORMANCE OF
SPATIOTEMPORAL ANALYTICAL TOOLS

Model Performance Indicators
Evaluating model performance is important when choosing
between similar SATs (Especially those listed under T3 and
T4). These measures include correct classification rate (CCR)
(170), model sensitivity and specificity (i.e., the number of
correctly classified cases) and area under the receiver operating
characteristics (ROC) curve (170, 171). The sensitivity of a
spatial model in disease mapping can be defined as the model’s
ability to correctly predict high-risk areas/locations, whereas,
the specificity of the model would be its ability to correctly
identify low-risk areas/locations. Error and accuracy measures,
such as root mean squared error (RMSE), are also used to
measure how wrong the resultant model estimates can be (138).
Similarly, penalized-likelihood criteria for comparing models
including Akaike information criterion (AIC) (172), Bayesian
information criterion (BIC) (173), Deviance information criterio
(DIC) (174, 175), and Watanabe-Akaike information criterion
(WAIC) (176) are used in regression models as relative measures
to compare between models and evaluate goodness of fit with
penalty on model complexity. Further reading on the choice of
model selection criterion is found elsewhere (177, 178).

Model Validation Techniques
The SATs, especially the predictive modeling-and correlation
models (listed under T3 and T4 of Table 1), are evaluated
for their performance because the predictions would have no
merit if the accuracy of the models cannot be assessed using
independent data (138, 170, 179). A variety of techniques are
available to validate the SATs (Listed under T3 and T4 ofTable 1).
Data partitioning techniques such as bootstrapping (180, 181),
randomization (182), prospective sampling (182, 183), and k-fold
partitioning (184, 185), leave-one-out cross-validation (138) are
commonly used to determine training and testing datasets for
model validations.

Cross validation, i.e., partitioning the data into several subsets
and each fitting the model excluding one subset and validating
the fitted model’s ability to correctly predict the risk areas using
the excluded subset of data, is one of the common practices
in spatial model validation (138, 185). This includes dividing
the data over space or time. For example, if the incident
data are from 2000 through 2018, fitting model using early
data/incidents and validation of the model predictions using
recent events is considered an approach of temporal cross
validation. Temporal cross validation is also achieved through
the prospective sampling where new cases are evaluated against
already built models from a different region or from a different
time (170). A review by Anselin (179) discuss model validation
techniques used in spatial econometrics in relation to the
statistical validity of the models. The model fitting concerns
related to theory, hypothesis testing, choice of criteria, and
practical considerations are discussed under this criteria of model
validations (179).

AVAILABLE SOFTWARE TOOLS
FACILITATING SAT

Multiple free and proprietary software tools are available
facilitating the spatiotemporal analytical studies. However, there
is no quality control over to assess the accuracy, reliability,
and sustainability of the majority of those non-proprietary
software. Some software, such as SaTScanTM (https://www.
satscan.org) and ArcGIS (https://geocode.arcgis.com), have
become successful commercial products that are widely in use
(7, 186), while others are underutilized due to less popularity and
irregular maintenance. Sustainability and maintenance of these
software is essential when incorporating these software based
eco-epidemiological analyses into surveillance or intervention
measures. An overview of the spatial data analytical software is
found elsewhere (186).

Geocoding can be implemented using either commercial
GIS software or online that are developed by governmental
(Ex. USGS map locator: https://store.usgs.gov/map-locator),
private (ArcGIS Online Geocoding Service by Esri (https://
geocode.arcgis.com/arcgis/); QGIS Geocoding Plugins (https://
plugins.qgis.org/plugins/GeoCoding/); Geocoding using Google
maps (https://cloud.google.com/maps-platform), or through
educational organizations (e.g., TAMU Geo coding Services of
the University of Texas A&M: http://geoservices.tamu.edu/).
Similarly, Python based geocoding using open or commercial
spatial data repositories and spatial database management
systems such as Google geocoding application programming
interface (API) and improving the capacity of spatial computing
is a field in developing (187). These software and tools enable
both batch geocoding where multiple addresses are submitted at
once for geocoding, and reverse geocoding, i.e., determining the
nearest street address based on given coordinates.

The commonly used user-friendly software in the
spatiotemporal analysis that are capable of performing
the descriptive analysis, spatial pattern recognition,
smoothing/interpolation, and/or spatial modeling are
ArcGIS (188), QGIS (189), GRASS (190), GeoDa [(191);
http://geodacenter.github.io/index.html], Clusterseer [(53);
https://www.biomedware.com/], SaTScan (http://www.satscan.
org/version 9.6), and CrimeStat (192). Similarly, there are
multiple toolboxes relevant to spatiotemporal analysis that can
be used through following software: R statistical software (193),
SAS (194) (SAS/STAT R© software), STATA (195), and Matlab
(Matlab: https://www.mathworks.com)1. platforms that are
specifically developed for handling geospatial analysis. Some of
the advanced statistical software packages enables performing
both frequentist and Bayesian spatial analyses. For example, the
R package “spatialreg” (196, 197) enables performing frequentist
spatial error models including CAR models (listed under T4),
while R packages “CARBayes” (198), “CARBayesST” (165), and
“R-INLA” [(88); www.r-inla.org; (199)] enables fitting Bayesian
CAR models using Markov Chain Monte Carlo (MCMC)

1MATLAB and Statistics Toolbox TM Release 2018a. Natick, MA: The
MathWorks, Inc.
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or Integrated Nested Laplace approximation (INLA) based
estimation of the posterior distributions, respectively.

HOW TO USE THE FRAMEWORK TO
CHOOSE SAT: AN EXAMPLE

While we have introduced a framework and a categorization
of commonly used SATS, it is important to note that the
choice of the SATs is entirely a researcher-driven decision.
There are certain factors/criteria associated with the decision
of choosing one method over the other. The factors include:
(1) characteristics of the disease/adverse event; (2) study
design; (3) spatial explicitness of data; (4) data quality and
availability; (5) research question and hypothesis; (6) stakeholder
involvement; and (7) existence of resources, policy, and
regulations for the mitigation of events (200). These factors
influences the six questions (Q1:Q6) illustrated in the framework
(Figure 1).

For example, assume a researcher is interested in
understanding epidemiological characteristics of natural
Anthrax in animal populations and intends to use that
information to plan a surveillance/vaccination program in an
endemic area. Let us assume that the final output the researcher
intends to have is a criteria to define zoning distances for
ring vaccination or surveillance when at least one Anthrax
case is reported. Firstly, understanding the extent of spread
and duration of previous Anthrax outbreaks would play a
major role when determining this surveillance/vaccination
radii. Secondly, understanding the association between the
epidemiological drivers of the disease and the characteristics of
susceptible population would be of importance when planning
an area-based surveillance/vaccination program.

At the pre-hypothesis stage of the framework
(Supplementary Figure 1), answering questions Q1 and
Q2 would guide the researcher to use T1 tools and obtain
a spatially explicit data set that is ready for further spatial
analysis. Anthrax, caused by a spore-forming bacterium Bacillus
anthracis, is characterized by the prolonged survival of the spores
on soil and wide range of hosts including wildlife, livestock, and
human (201, 202). Therefore, the observational study designs on
Anthrax are likely to be retrospective based on reported cases
(203). Given Anthrax is reportable to the animal and public
health authorities, most likely type of data available would be
point-referenced in nature (i.e., presence of the disease at farm
locations or grazing lands). Although in rare situations, data may
be available aggregated at administrative divisions due to privacy
policy. If the coordinates of case locations are not recorded
along with the case report, geocoding the locations based on the
descriptions or farm addresses would be the initiating step.

Once geocoded, answering the Q3 and the use of SATs listed
under T2 would facilitate the recognition of spatiotemporal
dependence between the reported cases (i.e., the primary
hypothesis testing stage). Given the prolonged survival of
Anthrax spores in contaminated soils/environment, in addition
to the initial testing for spatial dependence, understanding the
spatiotemporal dependence and spatiotemporal directionality is

the key to understand the extent of past spread of the disease.
Testing whether there are space and time clustering in the data
would facilitate determining any particular area/s with high
relative risk for disease clusters at a specific time [i.e., disease
hot-spots; (203)].

Once geocoded, the primary hypothesis testing stage of the
framework and the T2 tools would facilitate the recognition
of spatiotemporal dependence between the reported cases and
determining any particular area with high relative risk for disease
clusters [i.e., disease hot-spots; (203)]. Given the prolonged
survival of the Anthrax spores conducting purely spatial and
spatiotemporal dependence and directionality is the key to
understand the extent of past spread of the disease. This
spatiotemporal pattern detection may lead to the refinement
of further research questions (Q4: Q6 of the framework) and
secondary hypothesis testing using the SATs listed under T3 and
T4 (Supplementary Figure 1).

Because the pathogen is invariably dependent upon
the distribution of susceptible species and environmental
characteristics such as soil pH, rain fall, and flood plains; the
choice of predictive modeling using correlated environmental
factors such as regression or ecological niche modeling (ENM)
(204) is a suitable option to consider (i.e., tools under T4).
However, it is important to recognize that the ideal analysis
for a chronic disease like Anthrax would be spatiotemporal
correlation models that enable incorporating temporal changes
of both the disease and underlying environmental characteristics,
in addition to space.

Once the range of cluster radii (T2 tools) and key
epidemiologically important environmental factors by area (T4
tools) were identified, these two key pieces of information
would facilitate informing the decisions of planning the ring
vaccination/surveillance programs. For example, recognition of
which areas are at high risk for Anthrax based on the models
outputs from T4 tools, such as ENM (204), and the extent/cluster
radii of past outbreaks using T2 tools would allow us to inform
defining the minimum and maximum zoning distances for
ring vaccination/surveillance.

ADVANTAGE, CHALLENGES, AND
DRAWBACKS OF SATs

The framework provides an introductory guide for choosing
SATs for eco-epidemiological studies. Use of SATs improves
an eco-epidemiological investigation by adding precision,
facilitating the comparison of distributions by means
of quantitative criteria, and capturing risk factors and
characteristics that are unlikely to be detected by visual
inspection or analyzing data without the spatial component
(6). Therefore, SAT outcomes, commonly represented as “risk
maps,” may serve as estimates of the effects of “real” exposures to
human, animal, and environmental health threats and facilitate
recognizing the effect size at more vulnerable locations and
time periods.

Common weaknesses associated with the spatial analysis and
risk mapping are related to shortcomings in the accuracy of data,
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choices of mapping and projections, choice of the analytical/
modeling tools and relevant assumptions, and eventually the
decisions related to the representation of the risk maps to
the end users (205, 206). In relation to the data aggregated
by administrative divisions, commonly discussed issues include
“edge effect” i.e., problems posed by the presence of adjacent
locations not included in the analysis but that can influence
its outcome, such as an unknown disease status in a country
adjacent to the study area [(207, 208)]; and the “modifiable
areal unit problem (MAUP)” i.e., the existence of differences
in the analytical results obtained through the analysis of the
same input data after aggregation at different levels. Examples
include aggregation of point data from dairy farms in to
counties or data available at sub districts level into provinces.
The MAUP pertains to scale and zoning effect of the divisions
(209, 210). A variety of methods are discussed in the literature
to quantify and account for the edge effect and MAUP issues
(211, 212). When spatial analytics and models are conducted
based on available and potentially biased data, the resulting
risk maps are invariably subjected to the negative impact of
the data quality. However, we emphasize the use of existing
data, bringing several databases together, and the spatiotemporal
analytical tools can support initiating the process of improving
data quality.

The choice of SAT, as discussed, varies with multiple factors.
Inevitably, all analytical tools and models involve certain
assumptions on statistical properties of variables and often these
assumptions are violated in natural environments. In other
words, none of the SAT are perfect matches for any particular
situation (158). For example, spatial continuity of risk is a
common assumption in risk-mapping process while there can
be natural (e.g., mountain range acting as a physical barrier)
or infrastructural barriers (e.g., urban vs. rural neighborhoods)
that violate the continuity assumption resulting in step changes
of risk between adjacent areas (112). Therefore, clarity on
the choice of SAT, underlying assumptions, and the seven
factors/criteria is essential when choosing SAT to address eco-
epidemiological problems.

FUTURE DIRECTIONS

Improving the quality of spatially explicit health and
environmental data through systematic collection of high-
resolution data and public participation GIS approaches such as
“crowdsourcing” or “citizen science data” is increasingly popular
in both public and environmental health monitoring efforts
(213–215). Additionally, the use of existing databases as passive
surveillance systems and improving systematic data collection
are suggested as ways to generate spatially explicit animal health
databases (203).

While the geostatistical techniques introduced here, especially
those under T4, commonly are frequentist approaches. The
hierarchical specification of geostatistical models (216), therefore
the adoption of a Bayesian framework for inference and suitable

Gibbs sampling, MCMC, or INLA [(88); www.r-inla.org; (199)]
for model fitting is being increasingly used. In addition to the
geostatistical SATs discussed here, there are non-geostatistical
spatial analytical tools such as Agent-based modeling (217–219)
that are increasingly used by the researchers interested in spatial
eco-epidemiological studies.

When modeling complex systems of adverse health and
environmental effects, incorporation of several other analytical
and modeling techniques in addition to SATs may support
further exploring the phenomena including understanding the
network effects (21). Spatial networks are another branch of the
complex system approaches to spatial data. Because complex
systems are often organized under the form of networks where
nodes and edges are embedded in space, such as transportation
networks of swine farms or water connectivity networks between
salmon farms, the importance of connectivity in addition to the
spatial proximity has a major role when determining disease
transmission (220).

Predicting where the phenomenon would move/flow/spread
next is an essential component in spatial modeling. SATs such
as space-time kriging (T3 of Table 1) are capable of estimating
such phenomena (221). Atmospheric dispersion models such
as plume models (222) and Hybrid Single Particle Lagrangian
Integrated Trajectory Model (HYSPLIT) (223) are examples of
applications of spatial models that account for flow directions
and cost surfaces used to predict wind-mediated transmission of
arthropod-borne diseases. While these models can be considered
as advanced spatiotemporal variations of SATs listed under
T4 here, they can be computationally costly. Hence, for the
researchers who are new to population-level spatial analysis and
models, it is recommendable to start with the simpler and more
established SATs to explore health or environmental threats prior
to applying novel modeling techniques.
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