
Visual Function Assessment in Simulated Real-Life
Situations in HIV-Infected Subjects
Giulio Barteselli1,2", Jay Chhablani1,3", Maria Laura Gomez1, Aubrey L. Doede1, Laurie Dustin4,

Igor Kozak1,5, Dirk-Uwe Bartsch1, Stanley P. Azen4, Scott L. Letendre6, William R. Freeman1*

1 Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California San Diego, La Jolla, California, United States of America,

2 Ophthalmological Unit, Department of Clinical Sciences and Community Health, Ca’ Granda Foundation-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy,

3 Srimati Kanuri Santhamma Vitreo-Retina Service, L.V. Prasad Eye Institute, Hyderabad, India, 4 Department of Preventive Medicine, Keck School of Medicine, University of

Southern California, Los Angeles, California, United States of America, 5 King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia, 6 HIV Neurobehavioral

Research Center, University of California San Diego, La Jolla, California, United States of America

Abstract

Visual function abnormalities are common in people living with HIV disease (PLWH) without retinitis, even after
improvement in immune status. Abnormalities such as reduced contrast sensitivity, altered color vision, peripheral visual
field loss, and electrophysiological changes are related to a combination of retinal dysfunctions, involving inner and outer
retinal structures. The standard protocol for testing vision performance in clinical practice is the Early Treatment Diabetic
Retinopathy Study (ETDRS) chart. However, this method poorly correlates with activities of daily living that require patients
to assess visual stimuli in multiple light/contrast conditions, and with limited time. We utilized a novel interactive computer
program (Central Vision Analyzer) to analyze vision performance in PLWH under a variety of light/contrast conditions that
simulate stressful and real-world environments. The program tests vision in a time-dependent way that we believe better
correlates with daily living activities than the non-timed ETDRS chart. We also aimed to correlate visual scores with retinal
neuro-fiber layer thickness on optical coherence tomography. Here we show that visual acuity is more affected in PLWH in
comparison to HIV-seronegative controls in varying contrast and luminance, especially if the nadir CD4+ T-cell count was
lower than 100 cells/mm3. Visual impairment reflects the loss of retinal nerve fiber layer thickness especially of the temporal-
inferior sector. In PLWH the ETDRS chart test led to better visual acuity compared to the Central Vision Analyzer equivalent
test, likely because patients had indefinite time to guess the letters. This study confirms and strengthens the finding that
visual function is affected in PLWH even in absence of retinitis, since we found that the HIV serostatus is the best predictor
of visual loss. The Central Vision Analyzer may be useful in the diagnosis of subclinical HIV-associated visual loss in multiple
light/contrast conditions, and may offer better understanding of this entity called ‘‘neuroretinal disorder’’.
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Introduction

Visual function abnormalities are common in people living with

human immunodeficiency virus (HIV) disease (PLWH) without

retinitis, even after improvement in immune status with antiret-

roviral therapy (ART). [1,2] Abnormalities include reduced

contrast sensitivity, altered color vision, peripheral visual field loss

and electrophysiological changes.[3–9] These changes in visual

function are thought to be caused by HIV-associated ‘‘neuror-

etinal disorder,’’ which is characterized by damage in the retinal

nerve fiber layer (RNFL), as detected by optical coherence

tomography (OCT), most likely due to microinfarctions and

microangiopathy. [10] Although the exact pathogenesis of HIV-

related microangiopathy remains uncertain, several hypotheses

have been reported including direct HIV infection of vascular

endothelial cells, damage from immune complexes, and rheolog-

ical abnormalities. [11] Moreover, recent data from our group

showed dysfunction of the outer retinal layers, especially photo-

receptors and retinal pigment epithelium, in autopsy eyes of HIV-

seropositive donors. [12] Therefore, there may be a second

separate mechanism of vision dysfunction in these eyes.

Since their introduction to clinical practice, the Snellen chart

test and the more recent Early Treatment Diabetic Retinopathy

Study (ETDRS) chart test have been the standard protocol for

testing best-corrected visual acuity (BCVA). [13] However, these

tests are unable to detect subtle visual loss, especially under low

contrast or glare conditions. Indeed, it is generally recognized that

the ETDRS chart test poorly correlates with activities of daily

living [14] (such as driving at night or playing sports outside), since

it’s not time-dependent, and as it allows an evaluation of the

BCVA only in a pre-determined single high-contrast glare

environment. [15] If the widely used ETDRS chart test is poorly

reliable in evaluating BCVA in other contrast or luminance
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conditions for normal eyes, this may be also worse for PLWH.

Indeed, these patients have a poor low-contrast visual performance

– even without any retinitis [2] – and can also have poor driving

performance. [16,17] Thus, a method able to measure the visual

function in varying contrast and glare conditions and in time-

dependent situations is needed.

The Central Vision Analyzer (CVA; Sinclair Technologies,

LLC, Media, PA) is a new interactive computer program to

analyze BCVA under conditions that simulate stressful and real-

world environments. [18,19] This backlight-glare computer-based

test for BCVA is able to simulate luminance, contrast, and glare

conditions that one may experience in a variety of daily activities,

such as glare, dim lighting, and night vision. Moreover, the CVA

testing is a time-dependent technique, yielding a better assessment

of real-life encounters. Therefore, it may be an ideal tool to assess

visual function and to understand the visual behavior under real-

life situations. The usefulness of this device has been tested in a

registered study at http://clinicaltrials.gov (identification, NCT

02028351), but results are not yet published.

The present study of PLWH aims to 1) assess visual acuity

measurements in simulated real-life situations using the CVA; 2)

correlate visual scores with RNFL thickness on spectral-domain

OCT; and 3) assess the best predictors of visual performance

under different light/contrast conditions using the CVA.

Methods

Subjects
This prospective, cross-sectional study included 89 eyes of 47

PLWH without active or healed retinitis and 105 eyes of 57 HIV-

seronegative adults (Table 1). The PLWH were part of a cohort

consecutively recruited from the University of California San

Diego (UCSD) AIDS Ocular Research Unit at the Jacobs Retina

Center in La Jolla, CA from June 2010 to June 2011. The PLWH

were recruited during the annual visit scheduled for research

purpose; none of the patients had any ocular symptoms at

enrollment. The HIV-seronegative individuals were recruited

from the local community. This study was approved by the UCSD

Human Research Protections Program and followed the tenets of

the Declaration of Helsinki. Signed informed consent was obtained

from all subjects before enrollment.

PLWH were divided into two groups based on the nadir CD4+
T-cell count. The high-nadir CD4 group maintained CD4+ T-cell

counts above 200 cells/mm3. From this group, 37 eyes from 19

persons were studied; 1 eye was excluded because of lens opacities.

The low-nadir CD4 group included PLWH with nadir CD4+ T-

cell counts lower than 200 cells/mm3 for at least 6 months in their

medical history. In this group, 52 eyes from 28 patients were

studied; 4 eyes were excluded because of a history of infectious

retinitis. All PLWH were taking ART for at least 6 months prior to

the time of the examination. The exclusion criteria included

history of ocular opportunistic infections; visible ocular abnormal-

ities on indirect ophthalmoscopy or slit-lamp ophthalmoscopy;

intraocular pressure 22 mmHg or higher; spherical equivalent

refractive error below 25 diopters or above +2.5 diopters; and

concurrent disease that could cause retinal damage, such as

diabetes or glaucoma. In the HIV-seronegative control group, 105

eyes from 57 volunteers were studied; 3 eyes were excluded

because of significant lens opacities; 6 eyes were excluded because

of macular pathology affecting vision.

Ocular Examination and Central Vision Analyzer Testing
All patients had a complete ocular examination, including

BCVA examination using standard ETDRS charts, slit-lamp

examination, intraocular pressure measurement, indirect ophthal-

moscopy under dilated pupils, and peripapillary RNFL thickness

measurement on Heidelberg Spectralis (Heidelberg Engineering,

Carlsbad, CA).

Before dilation, patients underwent CVA testing using a

Landolt C presentation of 900 msec in 6 different light/contrast

conditions (Table 1). The Landolt C appeared in three mesopic

conditions of 99% contrast against 3 Cd/m2 background (‘‘M1’’

module, that is full-contrast module of white letters presented on a

black background), followed by lower contrast modules of 64%

contrast (‘‘M2’’ module, simulating an environment similar to a

dimly lit restaurant) and 43% contrast (‘‘M3’’ module, simulating an

environment similar to driving at dusk). Photopic glare (backlight-

ing) conditions were simulated using 99% contrast against a 200

Cd/m2 background (‘‘G1’’ module, that is a full-contrast module of

black letters presented on a bright background), 10% contrast

(‘‘G2’’ module, simulating an environment similar to playing a sport

outside with the sun over head), and 8% contrast (‘‘G3’’ module,

simulating an environment similar to playing a sport outside with

the sun 15 degrees off-axis). The CVA displayed a tumbled

Landolt C in 4 different directions on a monitor positioned 4

meters from the patient, and to which the person responds by

pressing one of 4 buttons on a keypad (corresponding to the 4

different orientations). The program utilized a 0.05 logMAR

staircase of optotype size and thresholds for the smallest Landolt C

for which the person accurately identifies the tumbled position

twice with 2 inaccurate responses at the next smaller size. At the

end of the test, results were automatically presented to the

examiner in a report as six separate BCVA scores in logMAR units

for each of the simulated light/contrast conditions. [10].

Table 1. Characteristics of each of the CVA modules tested.

CVA modules Contrast (MC) Landolt C Luminance Background luminance Simulated Environment

Mesopic 1 (M1) 99% 220 Cd/m2 3 Cd/m2 Full contrast

Mesopic 2 (M2) 64% 4.8 Cd/m2 3 Cd/m2 Dim restaurant

Mesopic 3 (M3) 43% 8.4 Cd/m2 3 Cd/m2 Driving at dusk

Glare 1 (G1) 99% 1.6 Cd/m2 200 Cd/m2 Full contrast

Glare 2 (G2) 10% 180 Cd/m2 200 Cd/m2 Outside with sun over head

Glare 3 (G3) 8% 186 Cd/m2 200 Cd/m2 Outside with sun 15u off-axis

CVA, Central Vision Analyzer; MC, Michelson Contrast; Cd/m2, Candelas per Meter Squared.
doi:10.1371/journal.pone.0097023.t001
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Statistical Analysis
Mean age and duration of HIV were compared between HIV

groups using independent samples t-tests and chi-square tests were

used to test for gender differences between groups. Generalized

Estimating Equations (GEE) were used to compare LogMAR

BCVA and RNFL measures between HIV groups, adjusting for

gender. Bonferonni adjustments were made for multiple pairwise

comparisons. GEE was also used for the gender-adjusted

univariate and multivariate analyses, testing for the independent

association of HIV status and RNFL with logMAR BCVA.

Statistical analyses were performed using SAS statistical software

version 9.3 (SAS Inc, Cary, North Carolina, USA). A p-value ,

0.05 was considered to be statistically significant.

Results

Demographic and Disease Characteristics
At the time of examination, all 47 PLWH showed near-normal

immune status with ART. The mean CD4+ T-cell count was

6726281 cells/mm3 (range, 264–1,305 cells/mm3) and the mean

HIV plasma viral load was 24.9619.9 copies/mL (range, 0–50

copies/mL). Table 2 presents groups demographics. The two HIV

groups (i.e., low-nadir CD4 group and high-nadir CD4 group)

were similar for age (p = 0.66), as were the HIV-seropositive and

HIV-seronegative groups (p = 0.45). The HIV-seropositive group

included more men than women compared to the HIV-

seronegative group (p = 0.03). The duration of HIV disease was

similar between the two HIV groups (p = 0.62).

Assessment of Visual Acuity Measurements using the
Central Vision Analyzer

Comparing visual acuity measurements for various mesopic and

backlight-glare conditions among the 3 groups (Table 3), we found

statistically significant differences for ETDRS (p = 0.029), M1 (p,

0.001), M2 (p = 0.021) and M3 (p = 0.029), and G1 modules

(p = 0.001), after adjusting for gender. In particular, the high-nadir

CD4 group experienced worse visual scores than HIV-seronega-

tive subjects for ETDRS (p = 0.028) and G1 scores (p,0.001). The

low-nadir CD4 group experienced worse visual scores than HIV-

seronegative subjects for ETDRS (p = 0.058), M1 (p = 0.001), M2

(p = 0.012) and M3 (p = 0.021), and G1 modules (p,0.001). The

acuity drop between ETDRS and G1 was also significantly

different between groups (p = 0.005); in particular, it was greater in

the low-nadir CD4 group than in HIV-seronegative subjects

(p = 0.001). Among PLWH, the two groups had similar BCVA

scores (p.0.05). Gender-adjusted Spearman correlation coeffi-

cients with visual scores among PLWH showed that G1 scores

were correlated with vision decrease (p,0.001), while EDTRS

scores were not (p = 0.100). No significant correlation was found

between presumed duration of HIV and visual scores in any CVA

module.

In addition, we explored the hypothesis that the vision

dysfunction has a common pathway to neurophysiological

dysfunction. Changing the definition of low-nadir CD4 value

from 200 to 100 cells/mm3, statistical analysis showed more robust

results (data not shown); the high-nadir CD4 group (over 100

cells/mm3) experienced worse visual scores than HIV-seronegative

subjects not only for ETDRS (p = 0.039) and G1 scores (p,0.003)

as we described above, but also for M1 (p = 0.001), M2 (p = 0.014)

and M3 (p = 0.020).
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Correlation of Visual Scores with RNFL Thickness on
Spectral-domain OCT

After correcting for gender (Table 4), the global peripapillary

RNFL thickness (‘‘G’’ value on the Heidelberg Spectralis) was

similar between groups (p = 0.353). The only RNFL sector that

showed difference between groups was the nasal-superior

(p = 0.039); the low-nadir CD4 group had thinner RNFL

compared the high-nadir CD4 group (p = 0.021) as well as

compared to HIV-seronegative subjects (p = 0.041). No correlation

was noted between duration of HIV disease and RNFL thickness.

Changing the definition of low-nadir CD4 value from 200 to

100 cells/mm3, statistical analysis showed more robust results (data

not shown); the global peripapillary RNFL thickness turned out to

be significantly different between groups (p = 0.032), and in

particular it was thinner in the low-nadir CD4 group compared

to HIV-seronegative subjects (p = 0.011).

Assessment of the Best Predictors of Visual Performance
Gender-adjusted univariate regression analysis (Table 5) con-

firmed that the HIV serostatus was highly associated with visual

scores for M1 (p,0.001), M2 (p = 0.006), M3 (p = 0.008), and G1

(p,0.001), as well as for ETDRS (p = 0.012). The global RNFL

thickness was associated with visual scores for M1 (p = 0.040), M2

(p = 0.018), and M3 (p = 0.005). The temporal-inferior RNFL

sector was the most associated to the vision performance: thinning

of temporal-inferior RNFL sector was associated to visual scores

for M1 (p = 0.033) and M2 modules (p = 0.016). A trend of

association was found between thinning of temporal-inferior

RNFL sector and visual scores for M3 (p = 0.064) and for ETDRS

(p = 0.065).

Gender-adjusted multivariate regression analysis (Table 5)

showed that HIV serostatus was the best predictor of visual

performance under different light/contrast conditions and corre-

lated well with ETDRS (p = 0.012), M1 (p,0.001), M2

(p = 0.031), M3 (p = 0.029), and G1 modules (p = 0.007). Thick-

ness of the temporal-inferior RNFL sector was also an indepen-

dent predictor of visual performance, especially for M1 (p = 0.033)

and M2 modules (p = 0.032).

Discussion

This study documented visual function abnormalities and

RNFL damage in PLWH without retinitis and confirmed findings

of other studies. PLWH have been reported to present reduced

contrast sensitivity, altered color vision, peripheral visual field loss

and electrophysiological changes [3–9]. In our study, the visual

function of HIV-seropositive and HIV-seronegative patients was

comprehensively analyzed in several contrast and luminance

conditions using a unique device – the Central Vision Analyzer –

that has been already approved by the Food And Drug

Administration. This new interactive computer program measures

logMAR visual acuity under conditions that simulate stressful and

real-world environments [18].

We demonstrated that visual scores are worse in PLWH in

comparison to HIV-seronegative subjects in most of the CVA

light/contrast conditions, especially if patients had history of nadir

CD4+ T-cell count lower than 100 cells/mm3. The HIV serostatus

turned out to be the best independent predictor of visual

performance under different light/contrast conditions. We have

already demonstrated that visual scores decline with decreasing

contrast and luminance conditions both in healthy eyes and in eyes

with macular pathology (Gomez ML, et al. IOVS 2011,52;ARVO

E-Abstract 5555). Moreover, in that study we found that the drop

in visual scores with decreasing light and contrast does not differ

between these two groups, even if the visual outcome is worse for

patients with macular pathology. In eyes with age-related macular

degeneration, damage of the outer retinal layers is the principal

cause of low visual outcomes. [20] In eyes of PLWH, visual

disturbances are mainly related to damage of the inner retinal

layers such as the RNFL, as detected by OCT, most likely due to

microinfarctions and microangiopathy. [10] In addition, recent

evidence has demonstrated a significant dysfunction of the outer

retinal layers in autopsy eyes of HIV-seropositive donors even in

the absence of infection or clinically apparent retinal lesions. [12]

Therefore we can conclude that the lower visual outcomes in eyes

of PLWH compared to HIV-seronegative controls may be related

to a combination of retinal dysfunctions, involving both inner and

outer retinal structures.

The luminance and contrast of the G1 module is the most

similar to that of the ETDRS chart test; however in PLWH we

found that the ETDRS chart test led to better visual acuity

compared to the G1 test. This finding is likely due to the time-

dependent nature of the automated CVA testing. Since the

EDTRS chart is not time-dependent, patients have indefinite time

to visualize letters on the chart; however this approach does not

mimic real-world situations. The CVA testing simulates stressful

and real-world environments, recreating light and contrast

conditions of time-dependent real life activities such as reading,

driving, or recognizing objects that are presented transiently.

Therefore, if letters are projected only for a short period of time,

patients with macular pathology may fail to recognize them since

they have slower reading speed than healthy patients. [21]

Similarly, PLWH may not be able to speedily recognize letters

because of HIV-related cognitive impairment, which is common

and can affect psychomotor speed and executive function. [22].

Although the nadir CD4+ T-cell count reflects the past severity

of the immune disease, in our study we did not find significantly

reduced visual scores in the low-nadir CD4 group compared to the

high-nadir CD4 group in any of the several light and contrast

conditions. Interestingly, the visual drop in high-contrast environ-

ments (i.e. ETDRS and G1) was also similar between HIV-

seropositive groups. Previous reports have described abnormalities

on visual field and multifocal electroretinogram (mfERG) in eyes

of PLWH in the absence of infectious retinitis; patients with

reduced immune status differed more from healthy eyes than eyes

from patients who never were observed to have reduced immune

status. [8,23] However, a subsequent study using more powerful

data analysis showed equal severity of b-latency abnormalities on

mfERG in the low- and high-CD4 groups. [24] The similarity of

mfERG abnormalities in the low- and high-nadir CD4 groups

[24], as well as the similar visual loss detected by the CVA as

described in the present study, indicates that good immune status

during ART may not protect against retinal damage. However, we

also can hypothesize that the immune status as indicated by the

nadir CD4+ T-cell count may not be the best predictor of visual

dysfunctions in HIV-positive subjects. Many other factors may be

implicated, such as current and highest HIV RNA level, duration

of HIV RNA suppression over time, number of opportunistic

infections, neurocognitive function, and also distribution of ART

drugs into the central nervous system. [25] Although we know the

date of diagnosis of HIV seropositivity, some patients on

presentation already had HIV for many years. This may explain

why we did not find correlations between duration of HIV

seropositivity and visual scores or RNFL thickness. A more

important predictor of visual performance and retinal damage

may be knowledge of the duration of low CD4+ T-cell counts and

uncontrolled HIV RNA. Such data is extremely difficult to

procure. Although we have some of these data on a small number
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of our patients at the moment, we do not have sufficient data for

our analysis. Therefore, in this pilot analysis, we included all

patients and classified them based on the limited data currently

available.

We also found thinning of the global peripapillary RNFL in the

low-nadir CD4 group compared to HIV-seronegative subjects, as

well as association between global RNFL and visual scores for

most CVA modules. Regression analysis indicated that the

temporal-inferior RNFL sector was the most associated sector

with visual performance in PLWH. This is consistent with previous

studies: a strong relationship was found between contrast

sensitivity and color vision with peripapillary RNFL in PLWH,

most apparent in the temporal quadrant. [26] These results are

biologically plausible; BCVA, contrast sensitivity, and color vision

are macular functions, and it is not surprising that correlations

were found primarily in the temporal RNFL, which reflects the

papillo-macular bundle. Because clinically we see a similar

distribution of cotton-wool spots in HIV-seropositive patients with

low-CD4 counts, we assume that these retinal microinfarctions are

at least one factor responsible for subsequent defects in RNFL

thickness. Indeed, histopathologic and tomographic studies

showed significance of cotton-wool spots in pathogenesis of retinal

neural tissue loss. [27,28].

There are a number of limitations to this study. Sample sizes

were relatively small, which may have affected our ability to

identify some potential associations. Certain components of study

participants’ medical history was self-reported and approximate,

such as date of HIV seroconversion, total number of opportunistic

infections, and ART duration and type over time. A comprehen-

sive analysis of ART is not possible in our population and might

prove extremely difficult because ART protocols are changed

frequently; longitudinal studies are necessary to assess the effect of

ART drugs on visual function. In addition, knowing the changes in

HIV RNA level overtime would be useful for further analysis.

Unfortunately, because of the long duration of HIV infection in

our study population (average duration: 17 years) and because of

the relatively recent referral to our center, we do not have precise

data on fluctuations of the HIV RNA level in our population. This

should be a topic of future studies. However, we found strong and

consistent results and we believe that it is unlikely that they would

be observed based on study deficiencies as opposed to real effects.

In conclusion, in our study we analyzed the visual function in

PLWH without active retinitis using a novel interactive computer

program that is able to test visual acuity in a variety of real-life

mesopic and glare conditions. We demonstrated that the HIV

status (positive vs negative) is the best independent predictor of

visual performance under different light/contrast conditions.

Visual function is more affected in PLWH in comparison to

HIV-seronegative subjects in varying contrast and luminance,

especially if patients had history of nadir CD4+ T-cell count lower

than 100 cells/mm3, and reflects the loss of RNFL thickness

especially of the temporal-inferior sector. This study confirms,

strengthens, and implements the previous finding that visual

function is affected in PLWH even in absence of retinitis. We

suggest paying particular attention while evaluating PLWH, even

if the immune system is near-normal at the time of examination,

because they may experience a greater visual dysfunction than

expected. The CVA, or a similar time-dependent vision testing,

may be of clinical use in the non-invasive diagnosis of early

subclinical HIV-associated visual dysfunction, and may offer better

understanding of this entity called ‘‘neuroretinal disorder’’.
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Table 5. Regression analyses of HIV status (seronegative vs seropositive) and retinal nerve fiber layers thickness with visual acuity,
adjusted for gender.

Univariate Multivariate

BCVA (logMAR) RNFL HIV status RNFL HIV status RNFL

p-value* p-value* p-value* p-value*

M1 ‘‘G’’ (global) ,0.001 0.040 ,0.001 0.055

Temp-Inf ,0.001 0.033 ,0.001 0.033

M2 ‘‘G’’ (global) 0.006 0.018 0.031 0.037

Temp-Inf 0.006 0.016 0.023 0.032

Temp-Sup 0.006 0.123 0.017 0.130

M3 ‘‘G’’ (global) 0.008 0.005 0.029 0.010

Temp-Inf 0.008 0.064 0.019 0.098

Nasal-Sup 0.008 0.076 0.021 0.117

G1 ‘‘G’’ (global) ,0.001 0.047 0.007 0.058

Nasal-Sup ,0.001 0.057 0.006 0.074

ETDRS ‘‘G’’ (global) 0.012 0.016 0.012 0.268

Temp-Inf 0.012 0.065 0.010 0.081

*Applying Generalized Estimating Equations (GEE); BCVA, best corrected visual acuity; RNFL, retinal nerve fiber layer; ETDRS, Early Treatment Diabetic Retinopathy Study;
M1, full-contrast module of white letters presented on a black background; M2, 64% contrast module simulating an environment similar to a dimly lit restaurant; M3,
43% contrast module simulating an environment similar to driving at dusk; G1, full-contrast module of black letters presented on a bright background.
doi:10.1371/journal.pone.0097023.t005
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