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Abstract

Background: Data analysis pipelines are known to be affected by computational conditions, presumably owing to the
creation and propagation of numerical errors. While this process could play a major role in the current reproducibility
crisis, the precise causes of such instabilities and the path along which they propagate in pipelines are unclear. Method: We
present Spot, a tool to identify which processes in a pipeline create numerical differences when executed in different
computational conditions. Spot leverages system-call interception through ReproZip to reconstruct and compare
provenance graphs without pipeline instrumentation. Results: By applying Spot to the structural pre-processing pipelines
of the Human Connectome Project, we found that linear and non-linear registration are the cause of most numerical
instabilities in these pipelines, which confirms previous findings.
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Introduction

Numerical perturbations resulting from variations in compu-
tational environments affect data analyses in various fields,
but identifying the origin of these perturbations in complex
pipelines remains challenging. In some cases, small pertur-
bations resulting from changes in operating system (OS) ver-
sions [1], hardware [2], or parallelization parameters [3] result
in substantially different analysis outcomes, owing to the prop-
agation and amplification of floating-point errors. While the ex-
istence of such numerical errors is well known [4], their impact
on scientific computations has multiplied with the rise of the
Big Data era, owing to the sustained growth of datasets, the in-
creasing complexity of analysis pipelines, and the diversification
of computing infrastructures. To better understand and correct
these effects, efficient tools are needed to assist pipeline devel-

opers in the comparison of results obtained across different con-
ditions.

In neuroimaging, our primary application field, data analy-
ses often consist of hundreds of computational processes— of-
ten coming from multiple toolboxes—that are aggregated to per-
form a specific function. For instance, the fMRIprep pipeline [5]
assembles software blocks from FSL [6], AFNI [7], FreeSurfer [8],
and ANTS [9] to provide a state-of-the art functional magnetic
resonance imaging (fMRI) processing tool with minimal user
input. Another example are the pipelines of the Human Con-
nectome Project (HCP) [10] that combine tools from FSL and
FreeSurfer to pre-process structural, functional, and diffusion
data from their uniquely high-fidelity open dataset. In both
cases, pipelines leverage toolboxes that are widely trusted in the
community, yet, at the same time substantial variations in re-
sults have been observed in these toolboxes resulting from mi-
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nor data or infrastructure perturbations [1, 11–13], suggesting
that further investigation of their numerical conditioning is re-
quired. For such complex pipelines, a lightweight solution has
to be found to perform such evaluations with limited code in-
strumentation.

Numerical evaluations are traditionally performed using
techniques such as interval arithmetics [14] that require com-
plete code rewrites and are therefore barely applicable to com-
plex pipelines. Recently, Monte Carlo arithmetic (MCA) [15,16]
provided a practical way to evaluate the uncertainty of numer-
ical results without the need to rewrite the application in a dif-
ferent paradigm. By perturbing floating-point computations, it
introduces a controllable amount of noise in the pipelines, effec-
tively sampling results from a random distribution. While this
technique is appealing, it is hindered by 2 main issues that make
it impractical at the scale of a complete pipeline. First, it requires
all software components to be recompiled for MCA instrumen-
tation, which is not always feasible. Second, it multiplies the ex-
ecution time by a factor of 10–100, which is impractical when
executions already take a few hours to complete.

We present Spot, a tool to identify the source of numeri-
cal differences in complex pipelines without instrumentation.
Using system-call interception through the ReproZip tool [17],
Spot traverses graphs of processes and intermediary files to
pinpoint the pipeline components that are unstable across ex-
ecution conditions. When differences start accumulating, ef-
fectively masking any further instability, it restores clean data
copies through a set of wrapper scripts. Wrapper scripts are also
used to restore temporary data that might have been deleted
during the execution and to disambiguate files that have been
written by multiple processes. The remainder of this article
presents the design of Spot and its application to pre-processing
pipelines of the HCP.

Tool Description

Spot identifies the components in a pipeline, at the resolution
level of a system process, that produce different results in differ-
ent execution conditions. First, a directed bipartite provenance
graph is recorded for each pipeline execution, where nodes rep-
resent application processes and files, and edges represent read
and write file accesses (Fig. 1a). Second, transient files, i.e., files
that are either deleted during pipeline execution or modified
by multiple processes, are identified and disambiguated, result-
ing in a provenance directed acyclic graph (DAG) in which file
nodes have a single parent (in-degree of 1) (Fig. 1b). DAGs pro-
duced in different conditions are then compared, in a step-by-
step execution that prevents the propagation of differences in
the pipeline (Fig. 1c). The resulting labeled graph identifies the
non-reproducible processes in the pipeline.

To ensure that a file can be unambiguously associated with
the process that created it, we assume that the pipeline can be
transformed such that:

i. Processes do not run concurrently;
ii. Each process sequentially reads, computes, and writes.

In practice, pipeline processes may still run concurrently pro-
vided that they do not write concurrently to the same files.
A process may also interleave file writes with computing, e.g.,
when different file blocks are processed sequentially. However,
only a single version of the file must eventually be made avail-
able to the other processes. In particular, in case a process
deletes a file that it had created itself, this file must not be used

by any other process. Finally, we also require processes to be as-
sociated to a command line (executable and arguments) to facil-
itate process instrumentation.

Recording provenance graphs

We use ReproZip [17] to capture (i) the set of processes created by
the pipeline and (ii) the set of files read and written by each pro-
cess, including temporary files. ReproZip collects this informa-
tion through the ptrace() system call, with no required instru-
mentation of the pipeline. Using the ReproZip trace, Spot recon-
structs a provenance graph by creating process and file nodes
and by adding directed edges corresponding to file reads and
writes (Fig. 1a). We assume that provenance graphs are identi-
cal for the ReproZip traces obtained from the same subjects in
different OSs.

Provenance graphs are often data dependent, owing to varia-
tions in input data that may trigger differing branching or loop-
ing patterns across executions, for example. Some of these dif-
ferences can be neglected: e.g., when a data decompression
step is present at the beginning of the execution for some sub-
jects only. Other differences cannot: e.g., when entirely different
processing paths are used for different datasets. Spot includes
helpers to identify different instances of provenance graphs,
such as supporting the clustering of process trees, where nodes
are processes and edges are fork() or clone() system calls, us-
ing the tree edit distance [18] implemented in Python’s zss pack-
age.

Capturing transient files

We capture temporary files by replacing every process P by a
wrapper that first calls P and then saves the produced tempo-
rary files to a read-only directory. This process replacement is
done by pre-pending to the PATH environment variable a direc-
tory that contains a wrapper script named after the executable
called by P.

Files written by multiple processes are disambiguated using
a similar technique. For a file F written by the processes in P =
{P1, ..., Pn}, we first check that processes in P do not write con-
currently to F, which would violate our assumptions. Then, we
replace every process Pi by a PATH-based wrapper that first calls Pi

and then saves F to a read-only directory. In this way, successive
versions of F are preserved for comparison. We finally update the
provenance graph accordingly, so that all files in the graph have
an in-degree of 1 (Fig. 1b). This operation also makes the prove-
nance graph acyclic because we assumed that a process could
only release a single version of a file.

Labeling processes

After capturing transient files in the first condition (i.e., OS,
library version, and so forth), we rerun the pipeline step by
step in the second one to label processes. The output files cre-
ated by a process in both conditions are compared: if no differ-
ences are found, the process is marked as reproducible; other-
wise, the process is marked as non-reproducible, and the out-
put files produced in the first condition are copied to the sec-
ond one, to ensure that differences do not propagate further in
the pipeline. Processes are instrumented transparently through
a modification of the PATH variable similar to the one described
previously. By default, differences in output files are identi-
fied by comparing file checksums. Other comparison functions
can also be defined for specific file types, e.g., to ignore file
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Figure 1: Provenance graphs created from the example pipeline in Listing 1. Processes are represented with circles, files with rectangles, and read/write accesses with
plain edges. For convenience, the process tree is also shown, with gray dashed edges. Processes forked by bet were captured by ReproZip although they did not appear
in Listing 1. Processes associated with executables located in /usr/bin/ or /bin/ are not shown. (a) Raw provenance graph (ReproZip output), with transient files shown

in gray boxes. (b) Provenance DAG, with disambiguated transient files. (c) Labeled DAG comparing 2 execution conditions, showing 1 non-reproducible process. Green
indicates reproducible, and pink, non-reproducible processes.

Listing 1: Example pipeline that computes the volume of the brain from a T1 im-
age.

headers or file sections containing timestamps. Spot finally cre-
ates a labeled provenance graph highlighting non-reproducible
processes.

Fig. 1c illustrates a hypothetical incremental labeling of the
example in Listing 1. Process bet2 is labeled as non-reproducible
(pink) because it produces files with differences. To prevent the
propagation of these differences, the files produced by bet2 in
Condition 2 are replaced with the files produced by bet2 in Con-
dition 1. Processes fslmaths and fslstats are then executed
and labeled as reproducible (green) because they produce files
without differences.

The labeled graph can differ depending on the order of exe-
cutions in which condition we capture transient files or execute
the pipeline to pinpoint the propagation of differences. There-
fore, we run the comparison in both condition orders, and we
label a process as non-reproducible (pink) if it creates different
results in ≥1 condition order.

Implementation

Spot is implemented in Python (version ≥3.6). In this work
we used Spot version 0.2 and the following version of the
Python package dependencies: NumPy v1.19.0 [19] and Pandas
v1.0.5 [20] for data manipulations, SciPy v1.5.1 [21] and Scikit-
learn v.0.23.1 [22] for the clustering of provenance graphs, Zss
v1.2.0 [18] for tree distances, ReproZip v1.0.11 for the capture of
provenance traces, Docker v17.05 [23] for the edition of container
images, and Boutiques v0.5.25 [24] for uniform pipeline execu-
tions.

Software users will mostly have to interact with the Bou-
tiques and ReproZip packages. Boutiques is a flexible description
framework for containerized pipelines, required by the pipelines
analyzed in Spot. It provides a JSON schema to describe in-
puts, outputs, and their dependencies. Examples, tutorials, and
use documentation are available online [25]. ReproZip intercepts
system calls to identify the files and processes involved in a
pipeline execution. Before using Spot, users have to collect Re-
proZip traces of their pipeline executions. Examples in the Spot
documentation include ReproZip provenance capture. More doc-
umentation on ReproZip is available [26].

Experiments

We applied Spot to the minimal pre-processing pipelines re-
leased by the HCP, a leading initiative in neuroimaging.

HCP pipelines and dataset

The HCP developed a set of pre-processing pipelines to pro-
cess structural, functional, and diffusion MRI data acquired in
the project. We focus on HCP pre-processing pipelines for struc-
tural data, and particularly on PreFreeSurfer and FreeSurfer. A
detailed description of the analyses done by these pipelines is
available [10]. In summary, the PreFreeSurfer pipeline consists
of the following steps:

� Gradient Distortion Correction (DC),
� Alignment and Anatomical Average (AAve), T1w(s), T2w(s),

https://www.reprozip.org
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� Anterior/Posterior Commissure Alignment (ACPC-A),
� Brain Extraction (BExt),
� Bias Field Correction (BFC),
� Atlas Registration (AR).

And the FreeSurfer pipeline consists of the following:

� Image downsampling,
� T1w image registration,
� T1w image segmentation,
� Surface placement,
� Surface registration.

We randomly selected 20 unprocessed subjects from the HCP
data release S500 available in the ConnectomDB repository as a
subset of the 1200 Subject Release (see Supplementary Table S1).
For each subject, available data consisted of 1 or 2 T1-weighted
images and 1 or 2 T2-weighted images, with 256 × 320 × 320
voxels of size 0.7 × 0.7 × 0.7 mm. Acquisition protocols and pa-
rameters are detailed in [27].

Data processing

We built Docker images for the HCP pre-processing pipelines
v3.19.0 (PreFreeSurfer and FreeSurfer) in CentOS6.9 (Final) and
CentOS7.4 (Core), available on DockerHub. Container images
contain the HCP software dependencies, including FSL (version
5.0.6), FreeSurfer (version 5.3.0-HCP, CentOS4 build), and Con-
nectome Workbench (version 1.0).

We processed the 20 subjects with PreFreeSurfer and
FreeSurfer, using the 2 CentOS versions. The PreFreesurfer re-
sults obtained in CentOS6 were used as the input of FreeSurfer
in both conditions. We also used the ReproZip trace file cap-
tured in CentOS6 for labeling the processes in both pipelines.
Each subject was processed twice on the same OS to detect
within-OS variability coming from pseudo-random operations.
We compared pipeline results using FreeSurfer tools mri diff,
mris diff, and lta diff, to ignore execution-specific informa-
tion such as file path or timestamps. To compare segmentations
X and Y, we used the Dice coefficient defined as follows:

Dice = 2|X ∩ Y|
|X| + |Y| .

The Dice coefficient [28] is a commonly used metric to vali-
date medical image segmentation. Dice values range from 0 to
1, with 1 indicating a perfect overlap between 2 segmentation
results and 0 indicating no overlap. Alternatively, the Jaccard co-
efficient [29] could be used; there is a direct correspondence be-
tween both metrics.

Results

All experiments were run on a machine with a 3.4 GHz, 8-core
Intel Core i7 processor, 32 GB of RAM, CentOS 7.3.1611, and Linux
kernel version 3.10. The processing time, output file size, num-
ber of file accesses, and number of processes observed in Pre-
FreeSurfer and FreeSurfer are reported in Table 1. The scripts
and analyses used to create the figures in this section are avail-
able at GitHub [30].

Within-OS differences
We did not observe any within-OS difference in PreFreeSurfer.
In FreeSurfer, we identified 2 processes leading to within-OS dif-
ferences due to the use of pseudo-random numbers: image reg-

Table 1. Execution statistics of the pipelines per subject

Statistic
PreFreeSurfer,
mean (SE)

FreeSurfer,
mean (SE)

Processing time
(minutes)

106.67
(2.68)

650.25
(8.88)

Output file size (GB) 2.8 (0.10) 4.15 (0.15)
No. of file accesses 94,089

(2,645)
62,729 (984)

No. of processes 8,731
(198)

4,031 (47)

Table 2. Types of provenance graphs in PreFreeSurfer

Type
No. of

subjects
No. of images

T1w T2w

1 9 2 2
2 8 1 1
3 1 1 2
4 2 2 1

istration with mri segreg, and cortical surface curvature esti-
mations with mris curvature. Fixing the random seed used in
FreeSurfer removed these differences.

Between-OS differences in PreFreeSurfer
We identified 4 types of subjects with different PreFreeSurfer
provenance graphs (Table 2). Differences between subject types
came from different numbers of T1 and T2 images in the raw
data. We verified that the provenance graphs were identical for
all subjects of the same type, for both versions of CentOS.

Fig. 2 shows the frequency of non-reproducible pipeline
processes in PreFreeSurfer. The processes identified as non-
reproducible were observed in linear registration with FSL flirt

(in ACPC-A, BExt, DC, and AR), in non-linear registration with
FSL fnirt (in BExt and AR), and in image warping with FSL
new invwarp (in BExt and AR). Differences were also observed
in image mean computations with FSL maths (in AAve). Fig. 3
shows a complete PreFreeSurfer labeled DAG, localizing the ob-
served differences in the entire pipeline, for a given subject.

Fig. 4 compares fnirt results in BExt for a particular subject
using the checkerboard pattern, a common method to illustrate
the magnitude of the differences in registration results. Differ-
ences appear to be visually important, in particular in the areas
framed in red, to the point that most experimenters would likely
reject such a registration following visual quality control.

Between-OS differences in FreeSurfer
The only non-reproducible process identified by Spot in
FreeSurfer was mris make surfaces (cortical and white matter
surfaces generation), a dynamically linked executable that pro-
duced different results for 10 of 20 subjects.

However, FreeSurfer results still differ between conditions,
owing to the propagation of differences created in PreFreeSurfer.
We observed the effect of this propagation in FreeSurfer results,
as shown in Fig. 5 for whole-brain segmentations. The Dice coef-
ficients associated with the 44 regions segmented by FreeSurfer
are shown in Fig. 6, showing that Dice coefficients <0.9 are ob-
served in most regions, and particularly in the smallest ones.
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Figure 2: Heat map of non-reproducible processes across PreFreeSurfer pipeline steps. Each cell represents the occurrence of a particular command line in a pipeline
step among Anatomical Average (AAve), Anterior/Posterior Commissure Alignment (ACPC-A), Brain Extraction (BExt), Bias Field Correction (BFC), or Atlas Registration
(AR). Cell labels indicate the fraction of subjects for which the corresponding process was not reproducible. For example, the flirt tool was invoked 6 times in step

DC for each of the 20 subjects: 1 instance was not reproducible in all subjects, 3 instances were always reproducible, 1 instance was not reproducible in 18 subjects,
and 1 instance was not reproducible in 19 subjects. Gray cells indicate that the process did not occur in the corresponding pipeline step.

However, no significant correlation between the Dice values and
the region sizes was found (Pearson coefficient = 0.12, P = 0.43).

Discussion

Our results provide insights on the reproducibility of neuroimag-
ing pipelines, and on the relevance of the approach imple-
mented in Spot for reproducibility studies.

Key findings

Linear and non-linear registration with FSL were found to fre-
quently lead to differences between results obtained with differ-
ent OSs. This does not come as a surprise given the instabilities
associated with these processes. It also corroborates our previ-
ous findings [1], where fMRI pre-processing with FSL was found
to vary across OSs starting from the motion correction step, a
step that uses FSL’s flirt tool internally. It would be relevant to
investigate whether the observed instability of registration pro-
cesses generalizes to other toolkits or remains specific to FSL.
In view of the effect of small data perturbations in a variety of
toolboxes and processes, such as cortical surface extraction us-
ing FreeSurfer and CIVET [12] or connectome estimation using
Dipy [31], it is probable that this observation generalizes widely
across toolboxes and requires a deeper investigation of the sta-
bility of linear and non-linear registration.

While only a handful of processes were found non-
reproducible across the tested OSs, the effects of such instabili-
ties were found to propagate widely in the pipelines and to sub-
stantially affect the segmentations created by FreeSurfer. This
illustrates the need to conduct reproducibility studies on entire
pipelines rather than isolated processes. It also highlights the
need for a deeper stability analysis of pipeline processes.

As shown in Fig. 2, the reproducibility of a given tool may vary
across subjects and across processing parameters. For instance,
linear registration with flirt seems to be fully reproducible in
the AAve sub-pipeline, while it is highly non-reproducible in
ACPC-A. In BExt, the same tool was found reproducible for some
subjects only. Therefore, reproducibility studies need to be per-
formed on several subjects. While this is common practice to

some extent in neuroimaging, software tests are often executed
only on a single dataset to reduce the associated computational
load. Our results show that pipeline tests should encompass
enough subjects to cover execution paths adequately.

Our results illustrate the type of variability that can be in-
troduced in neuroimaging results due to OS updates. The nu-
merical noise introduced by OS updates is realistic because such
updates are likely to occur throughout the time span of a neu-
roscience study, but it is also uncontrolled, as it originates in
updates of low-level libraries by third-party developers. A possi-
ble method to study this problem more comprehensively would
be to introduce controlled numerical perturbations in pipelines,
which could be done by introducing noise either in the data, or
in floating-point computations through MCA [15]. Beauzamy [31]
discusses and compares these 2 techniques.

Spot evaluation

The processes identified by Spot as non-reproducible were all
associated with dynamically linked executables. This makes
complete sense because statically linked executables are not
affected by library updates. Moreover, the hypothetical ef-
fects of hardware or Linux kernel updates were not mea-
sured because the different OSs were deployed in Docker con-
tainers on the same host, i.e., using the same kernel and
hardware.

To evaluate the reproducibility of a pipeline, Spot needs to
execute it 5 times in order to (1) record a first ReproZip trace,
(2) save transient files in the first condition, (3) compare results
in the second condition, and repeat Steps 2 and 3 for the other
order of execution. It might be possible to further reduce this
overhead by executing at Step 2 only the processes depending
on transient files, and capturing the transient files for the second
condition simultaneously at Step 3.

The target users of the Spot tool are primarily pipeline de-
velopers and users who have technical skills for creating Docker
containers and Boutiques JSON files. We demonstrated the ap-
plicability of our approach by evaluating 2 of the arguably most
complex pipelines in neuroimaging. Technically, these pipelines
consist of a mix of tools assembled from different toolboxes
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Figure 3: A complete provenance graph from the PreFreesurfer pipeline. Node labels use the same abbreviations as in Fig. 2. For better visualization, processes associated
with commands in /bin or /usr/bin were omitted, as well as imtest, imcp, remove ext, fslval, avscale, and fslhd.

through a variety of scripts written in different languages. Our
file-based approach, notably enabled by ReproZip, was able to
analyze these pipelines without requiring their instrumenta-

tion, which saved a very substantial technical effort. The as-
sumptions made on the pipeline structure, related to the ab-
sence of concurrent writes, were not violated in our analysis and
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Figure 4: Differences between T2 fnirt results in PreFreeSurfer’s Brain Extrac-
tion (CentOS6 vs CentOS7). The colored squares indicate results obtained with
CentOS6 (purple) and CentOS7 (green). The red boxes highlight regions with sig-

nificant differences between the 2 OSs. An animated version of the comparison
is available herefor better visualization.

Figure 5: Sum of binarized differences between whole-brain FreeSurfer segmen-
tations obtained from PreFreeSurfer processings in CentOS6 vs CentOS7 (N =
20). Segmentations were resampled and overlaid to the MNI152 volume tem-
plate. Each voxel shows the number of subjects for which different results were
observed between CentOS6 and CentOS7. An animated comparison of segmen-
tations obtained for a particular subject is available here for better visualization.

are likely not to impede Spot’s applicability to the most common
neuroimaging pipelines.

Spot only tests pipeline reproducibility in the scope of a par-
ticular dataset. However, it is very plausible for pipeline pro-
cesses to exhibit different reproducibility behaviors when exe-
cuted on different datasets. Therefore, only the lack of repro-
ducibility of a pipeline process could be guaranteed from an
analysis with Spot because proving reproducibility would re-
quire testing the pipeline on all possible datasets, in all possi-
ble environments, which is not feasible. Two elements could be
considered in future work to address this issue. First, similar to
conventional software testing, a code coverage metric could be
developed to assess the fraction of the pipeline code involved
in the tested dataset and parameters. This would quantify the
representativity of the dataset and pipeline parameters used in
the evaluation. Second, statistical risk models could be used to
estimate the probability for a process to be reproducible, given a
set of observations with no numerical differences. For instance,
models described in Botvinik-Nezer et al. [32] could be leveraged
for this purpose.

File-based analyses also have limitations related to the gran-
ularity at which they operate. Indeed, differences can only be
identified at the level of an entire OS process, which can corre-
spond to arbitrary amounts of code. Narrowing down the analy-
sis to particular libraries, functions, or even code sections would
require another approach. Similarly, Spot would not be able to
detect differences in data not saved in files but instead passed
to subsequent processes in memory. A common scenario in neu-
roimaging pipelines is that tools return results in their standard
output, which is parsed by the calling process and passed to sub-
sequent ones through variables.

Computational environments are only one of many factors
contributing to the ongoing reproducibility crisis. In fact, sam-
ple size selection, publication bias, or methodological flexibility

in the analysis are likely to have a stronger effect than numeri-
cal perturbations, although to our knowledge no evidence of this
is available. We refer to published studies [13, 33–35] for deeper
analyses of the associated effects on neuroimaging analyses. It
should also be noted that the effects of computational environ-
ments and these other factors manifest at different levels: refer-
ring to the terminology used by Salari et al. [36], computational
environments are associated with ”reproducibility,” the mini-
mal standard by which identical results should be obtainable
from identical data and parameters, while the other aforemen-
tioned factors belong to “replicability,” the ultimate standard by
which independent experimenters should be able to draw sim-
ilar conclusions from similar experiments. In practice, variabil-
ity resulting from computational environments manifests dur-
ing software testing (test results depend on execution platform),
deployment on high-performance computing systems (results
obtained on local vs high-performance computing systems dif-
fer), or software version updates (results obtained before vs after
the update differ), while factors related to replicability affect the
community more broadly. Ultimately, both reproducibility and
replicability should be understood and improved.

Conclusion

We present Spot, a tool to detect the source of numerical differ-
ences in complex pipelines executed in different computational
conditions. Spot leverages system-call interception through the
ReproZip tool and therefore can be applied to the most complex
pipelines without requiring their instrumentation. It is available
at the project home page under MIT license.

By applying Spot to the pre-processing pipelines of the HCP,
compared in different OSs, we showed that between-OS differ-
ences are mostly originating in linear and non-linear image reg-
istration tools. Moreover, differences introduced during image
registration propagate widely in the pipelines, leading to impor-
tant variability in whole-brain segmentations.

Future work will investigate in more detail the numerical
stability of registration algorithms. Additionally, we plan on
using MCA to inject controlled amounts of noise in pipelines
and monitor uncertainty propagation and amplification in their
results.

Availability of Source Code and Requirements
� Project name: Spot
� Project home page: https://github.com/big-data-lab-team/s

pot
� Operating system: Linux
� Programming language: Python (3.6 or higher)
� Main dependencies: ReproZip, Docker, and Boutiques
� Other dependencies: see setup.py
� License: MIT License
� Biotools identifier: spottool
� RRID:SCR 018915
� doi:10.5281/zenodo.3873219

Data Availability

Snapshots of our code and other supporting data are openly
available in the GigaScience GigaDB repository [37] and Zenodo
[38].

https://github.com/big-data-lab-team/HCP-reproducibility-paper/blob/master/figures/pfs_t2w_alignment.gif
https://github.com/big-data-lab-team/HCP-reproducibility-paper/blob/master/figures/fs_brain_segmentation.gif
https://github.com/big-data-lab-team/spot
https://github.com/big-data-lab-team/spot
https://scicrunch.org/scicrunch/Resources/record/nlx_144509-1/SCR_018915/resolver


8 File-based localization of numerical perturbations in data analysis pipelines

Figure 6: Dice coefficients between regions segmented by FreeSurfer in CentOS6 vs CentOS7 (N = 20), ordered by increasing median values. Each point represents the

Dice coefficient between segmentations of a particular region obtained in CentOS6 vs CentOS7 for a given subject. Box brightness is proportional to the logarithm of
the corresponding brain region size. CSF: cerebro-spinal fluid, WM: white matter, CC: corpus callosum, DC: Diencephalon.

Additional Files

Supplementary Table S1. Summary of the subjects who partici-
pated in the experiments.
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