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Abstract. We have examined the subcellular localiza- 
tion of p60 ~-~ in mammalian fibroblasts. Analysis of 
indirect immunofluorescence by three-dimensional op- 
tical sectioning microscopy revealed a granular cyto- 
plasmic staining that co-localized with the microtubule 
organizing center. Immunofluorescence experiments 
with antibodies against a number of membrane mark- 
ers demonstrated a striking co-localization between 
p60 ~-~rr and the cation-dependent mannose-6-phosphate 
receptor (CI-MPR), a marker that identifies endo- 
somes. Both p60 ..... and the CI-MPR were found to 
cluster at the spindle poles throughout mitosis. In ad- 
dition, treatment of interphase and mitotic cells with 

brefeldin A resulted in a clustering of p60 .... and CI- 
MPR at a peri-centriolar position. Biochemical frac- 
tionation of cellular membranes showed that a major 
proportion of p60 ..... co-enriched with endocytic mem- 
branes. Treatment of membranes containing HRP to 
alter their apparent density also altered the density of 
p60 ~ ..... containing membranes. Similar density shift 
experiments with total cellular membranes revealed 
that the majority of membrane-associated p60 ~ .... in the 
cell is associated with endosomes, while very little is 
associated with plasma membranes. These results sup- 
port a role for p60 r in the regulation of endosomal 
membranes and protein trafficking. 

p 60 ~-~r is a member of a family of cytoplasmic tyro- 
sine kinases that are associated with cellular mem- 
branes and are thought to be involved in signal trans- 

duction events underlying growth control (for review see 
Cooper, 1989). The normal function of p60~-~c is not clear, 
although studies of mutant forms of the protein (e.g., the vi- 
ral transforming protein p60 ~-~) have implicated p60 ..... in 
the control of cell growth and proliferation. On the other 
hand, p60 ~ .... is expressed at high levels in terminally 
differentiated ceils such as platelets and neurons (Cotton and 
Brugge, 1983; Golden et al., 1986). In addition, p60 ~-~ is 
activated during mitosis in fibroblasts and thus may mediate 
certain mitotic events (Chackalaparampil and Shalloway, 
1988; Morgan et al., 1989; Shenoy et al., 1989). Finally, a 
homozygous disruption of the c-src gene in mice is not le- 
thal, but instead leads to defects in bone remodeling (proba- 
bly as a result of defective osteoclast function) (Soriano et 
al., 1991). 

Clues about p60 ~ .... function have been obtained from 
studies of the subcellular location of src proteins. Immuno- 
fluorescence and biochemical fractionation studies have sug- 
gested that both p60 ..... and p60 ..... are localized to peri- 
nuclear and plasma membranes, while transforming proteins 
have also been found in association with adhesion plaques 
(Courtneidge et al., 1980; Resh and Erikson, 1985; Rohr- 
schneider, 1980). Immunoftuorescence studies of p60 ~-~ 
have also revealed a punctate staining pattern that is depen- 
dent on membrane attachment domains in the amino-termi- 

nal region of the protein (Kaplan et al., 1990). This punctate 
pattern is characteristic of membrane vesicles, suggesting 
that p60 ~ .... is associated with cellular membranes distinct 
from the plasma membrane. Although these membranes re- 
main uncharacterized, analysis of p60 ..... over expressed in 
3T3 cells indicates a possible connection with endosomal 
membranes (David-Pfeuty and Nouvian-Dooghe, 1990). In 
addition, recent efforts to localize p60 ~-srr in differentiated 
PC12 ceils and neuroendocrine cells have shown that a sig- 
nificant proportion of p60 ~-sr~ is associated with an endo- 
somally derived population of vesicles (Linstedt et al., 1992; 
Grandori and Hanafusa, 1988). 

To gain insight into the normal role of p60 ~-src, we have 
used high resolution immunofluorescence analysis and bio- 
chemical fractionation to characterize the nature of p60 c ..... 
containing membranes. Our results indicate that p60 ~-s~ is 
mainly associated with endosomal membranes and is partic- 
ularly enriched in a population of late endosomes. 

Materials and Methods 

Cells 
The RTCS cell line was derived from a Rata cell line infected with a 
retroviral construct expressing chicken p60 c-~rr (Morgan et al., 1989) and 
expresses ~,,7.5-fold more p6@ "src than the parental Rat-1 cell line (deter- 
mined by Western blot: our own unpublished observations). In some experi- 
ments, we used cell lines derived from the spontaneous immortalization of 
mouse embryo fibroblasts isolated from mice heterozygous or homozygous 
for a disruption of the c-src gene (ceils kindly provided by P. Soriano, Bay- 
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lot College of Medicine, Houston, TX). Cells were cultured in DME H-16 
with 10% FCS at 37~ in 5% CO2. 

Antibodies 
mAbs against p60 r were kindly provided by Joan Brugge (University of 
Pennsylvania, Philadelphia, PA) (mAb327) and Sara Courtneidge (mAb2- 
17) (Lipsich et al., 1983). Polyclonal rabbit sera against the cation- 
independent mannose 6-phosphate receptor (CI-MPR) were kindly pro- 
vided by Peter Lobel (Rutgers University, New Brunswick, NJ) and Bill 
Brown (Cornell University, Ithaca, NY). mAbs against cis/mediat-Golgi 
markers (10E6 and 8B3) were also kindly provided by Bill Brown (Cornell 
University). Antibodies against BiP binding protein were obtained from 
David Bole (University of Michigan). mAb against B-tubulin (tub2.1) was 
purchased from Sigma Chemical Co. (St. Louis, MO). Texas red and 
fluorescein-labeled secondary anti-rabbit and anti-mouse antibodies were 
purchased from Accurate Chemical and Scientific Corp. (Westbury, NY) 
and used at recommended dilutions. 

Immunofluorescence 
Cells were plated in six-well plates on glass coverslips 18-36 h before anal- 
ysis. After specified treatments, cells were washed twice with PBS and then 
fixed for 20 rain at 20~ in freshly made 3.7% paraformaldehyde/PBS 
(Polysciences Inc. Warrington, PA). Fixed cells were washed twice with 
PBS and permeabilized with 0.1% Triton X-100 in PBS, Cells were rinsed 
and then blocked in PBS + 0.2% gelatin + 0.02% NAN3. Primary' anti- 
bodies were used at the following dilutions for 20 rain at 20~ in a hu- 
midified chamber: mAb 327 (1 mg/ml): 1/100; tub2.1: 1/200; CI-MPR; 
1/200; mAb 2-17: 1/200; mAb 10E6/8B3: undiluted cell culture superna- 
rants. Coverslips were then treated with secondary antibodies at the appro- 
priate dilutions. Endogenous levels of p60 csrr in Rat-1 fibroblasts were de- 
tected with an unlabeled rabbit anti-mouse antibody (used at 1 #g/ml) 
followed by goat anti-rabbit antibody labeled with Texas red. Controls per- 
formed with only secondary and tertiary antibodies resulted in negligible 
signals. Coverslips were washed in PBS + 0.2% gelatin + 0.02% NAN3, 
followed by PBS, and finally incubated in Hoechst stain (No. 33258, Sigma 
Chemical Co.) for 5 min at 20~ before mounting in a solution of 3% 
n-propyl gallate in glycerol. The specificity of the p60 c-src signal was 
demonstrated by adding excess amounts of purified baculovirus-produced 
chicken p60 c'src (Morgan et al., 1991). 

In costaining experiments with mAb tub2.1 and mAb 327, mAb tub2.1 
was directly labeled with Texas red (Harlow and Lane, 1988). The labeled 
mAb tub2.1 was separated from unincorporated Texas red by gel filtration 
on a G-50 Sephadex column. Staining with mAb 327 was carried out as 
above and followed by an additional fixation step before incubation with 
mAb tub2.1-Texas red. This process fixed the anti-mouse antibody and en- 
sured no cross-reactivity between the fluorescein-conjugated anti-mouse 
antibody and the mAb tub2.1. No tubulin staining was seen in the fluores- 
cein channel, indicating that there was no interaction between fluorescein- 
labeled anti-mouse antibodies and mAb tub2.1. 

Three-dimensional Optical Sectioning Microscopy 
and Image Processing 
Data were recorded using a Peltier-cooled charge-coupled device (CCD) 
camera (Photometrics Ltd., Tucson, AZ) mounted on an inverted micro- 
scope (Olympus Corp., Lake Success, NY). Images were collected with a 
60• oil immersion lens (Olympus Corp.); the effective CCD pixel size 
was 0.074 #m • 0.074 #m. Optical sections were recorded at 0.2 #m inter- 
vals. Multiple-wavelength data were collected using a single dichroic mirror 
designed for DAPI (4',6-diamidino-2-phenylindole), fluorescein and Texas 
red wave lengths (Omega Optical Inc., Brattleboro, VT). This prevented 
large registration errors between images recorded with different wave- 
lengths of light (Hiraoka et al., 1991). Excitation and barrier filters were 
mounted on motorized wheels; wavelength switching and all other aspects 
of microscope data collection were controlled by a MicroVax 1II workstation 
(Hiraoka et al., 1990, 1991). Once the three-dimensional data stacks were 
recorded, each was corrected for any photobleaching and lamp intensity 
variations which occurred during data collection (Paddy et al., 1990). Out- 
of-focus information was removed from each data stack by a three-dimen- 
sional, iterative deconvolution program with a non-negativity constraint 
(Agard et al., 1989). This method moves photons from their recorded posi- 
tions (out-of-focus) to their points of origin without subtracting any of the 
information in the images. After the out-of-focus information was removed, 
projections representing the three-dimensional reconstruction of individual 

optical sections through the entire cell were generated. Data are presented 
both as projections of the entire set of optical sections, or as individual opti- 
cal sections where noted. Some data are presented as unprocessed images 
recorded by the CCD camera. 

Membrane Isolation and Fractionation 
RTCS cells were plated 18-36 h before harvesting and allowed to reach a 
final confluency of 75-85 %. Cells were loaded with HRP (Sigma Chemical 
Co.) (7.5-10 mg/n-d in DME H-16, 10% FCS) at 37~ for 30 rain (sufficient 
to saturate the endoc-ytic pathway in these cells). Cells were chilled on ice, 
washed 4 times in ice-cold PBS and then scraped into homogenization 
buffer (20 mM Hepes, pH 7.4, 150 mM KCI, 2 mM MgCI2, 10 mM 
EDTA, 1 mM PMSE 1 t~g/ml leupeptin, 10 t~g/ml pepstatin, 0.1 mg/ml soy- 
bean trypsin inhibitor, 1 U/mi aprotinin, 0.25 M sucrose). Cells were 
homogenized in a 2-mi doance (Wheaton Inds., Millville, NJ) with an A 
pestle for 30-40 strokes. After homogenization, nuclear membranes were 
pelleted for 10 rain at 2,000 g in an SS-34 rotor (Sorvall, Dupont, Wilming- 
ton, DE) at 4~ The postnuclear supernatant (S1) was collected and loaded 
over a 62% sucrose cushion and spun at 100,000 g in an SW50.1 rotor for 
35 minutes at 4~ Membranes at the interface were resuspended in the su- 
crose cushion (adjusted to 45% sucrose) and placed at the bottom of a su- 
crose step gradient consisting of 45, 32, and 18% steps. The gradient was 
centrifuged at 35,000 rprn in an SWS0.1 rotor for 60 rain at 4~ The 
18/32% interface was collected with a 23-gauge needle and a 2.5-ml sy- 
ringe. The remaining fractions were collected from the top of the gradient 
with a pasteur pipette and analyzed for p60 r and membrane markers. 

Under these homogenization conditions (30-40 strokes) 30-40% of HRP 
activity was left in the nuclear pellet and plasma membranes were mainly 
observed in the 45 % sucrose fraction. Harsher homogenization conditions 
(80 strokes) left <1% of the total HRP activity in the nuclear pellet and the 
majority of plasma membranes were observed in the 32 % and interface 
(18/32%) fractions on sucrose gradients. 

To analyze the 18/32 % sucrose interface on percoll gradients, the frac- 
tion was mixed into a 27% percoll solution (8.5% sucrose) and centrifuged 
over a 62% sucrose cushion in a 50Ti rotor at 16,000 rpm for 60 rain at 
4~ Fractions were collected from the bottom of the tube and assayed for 
membrane markers and p60 r by immunoblotting. 

Membrane markers were assayed as follows. The plasma membrane 
marker alkaline diphosphoesterase I (ADPE I) was measured with thymi- 
dine-5'-monophosphate-p-nitrophenyl ester (Sigma Chemical Co.) and as- 
sayed using a Beckman fluorometer at excitation 355 nM and emission 455 
nM (Poole et al., 1983). The lysosomal marker B-hexosaminidase was mea- 
sured with the fluorometric substrate 4-methyl umbelliferyl-N-acetyl-~-o- 
glucosaminide (Sigma Chemical Co.) and samples were read on a Beckman 
fluorometer at excitation 350 nM and emission 450 nM (ref). The Golgi 
marker galactosyl transferase was measured by incorporation of UDP-[3H]- 
galactose (Amersham Corp., Arlington Heights, IL) into BSA (Aoki et al., 
1990). HRP activity was measured using o-dianisidine (Sigma Chemical 
Co.) prepared at 0.11/~gtmi in PBS, pH 5.0, 0.1% Triton X-100. Activity 
was measured at O1:)460 at several time points (or at several volumes of ex- 
tract) to ensure linearity of the assay. 

Density Shift and DAB Cytochemistry 
HRP-containing membranes from the 18/32% interface or from the P100 
fraction (isolated under relatively harsh homogenization conditions; see 
above) were treated with DAB in homogenization buffer to a final concentra- 
tion of 6 t~g/ml. 10/~1 of 30% H202 was added and the mixture incubated 
in the dark at 0~ for 10 min. After treatment, membranes were loaded on 
another sucrose gradient or a percell gradient as described above, cen- 
trifuged, and analyzed for p60 c-src and membrane markers. In control ex- 
periments no density shift was observed if DAB or H202 were added 
separately. 

To inhibit HRP entry in some experiments, cells were chilled on ice and 
cold media containing HRP was incubated with the cells at 0~ for 20 rain. 
Half of the cells were placed at 37~ for 40 min. Both sets of plates were 
then washed and membranes harvested as above. DAB cytochemistry was 
carried out and fractions from percoll gradients were analyzed for p60 c'src 
and membrane markers. 

1. Abbreviations used in this paper: ADPE I, alkaline dipbosphoasterase 
I; BFA, brefeldin A; CCD, chargew.oupled device; CI-MPR, cation-inde- 
pendent mannose 6-phosphate receptor; MTOC, microtubule organizing 
center: TGN, trans-Golgi network. 
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Monitoring of plasma membranes by surface iodination was performed 
with cells loaded for 30 rain at 37~ with HRP. Cells were chilled on ice, 
washed 4 times with ice cold PBS and then dislodged from the plate using 
PBS + 1 mM EDTA. Cells were extensively washed in ice cold PBS and 
then labeled using sulfo-SHPP (Pierce Chemical Co. Rockford, IL) labeled 
with iodobeads (Thompson et at., 1987). Free 125I counts were washed out 
of the cells using ice cold PBS. Membranes were isolated and DAB 
cytochemistry was performed and analyzed as above. 

Immunoprecipitation and Immunobiotting 
For immunoprecipitating p60 r fractions were diluted two times with 
homogenization buffer and adjusted to I% "lYiton X-100. mAb 327 was 
added and incubated at 4"C for 1-4 h. Protein A-sepharose conjugated to 
a rabbit anti-mouse antibody was added (50/zl/fraction of 50% slurry) and 
incubated at 40C for 1-2 h. After one wash with homogenization buffer + 
1% Triton X-t00, protein A-sepharose beads were boiled in loading buffer, 
and supernatants were loaded onto 10% PAGE gels. After etectrophoresis, 
proteins were transferred to nitrocellulose on art electroblot apparatus (Bio- 
Rad Laboratories, Cambridge, MA), and blots were blocked in 2% BSA 
for 1 h at 20"C. Blots were incubated in mAb327 (l /~g/rnl) at 4"C for 
18-24 h. Secondary ~251-1abeled goat anti-mouse IgG (New England Nu- 
clear, Boston, MA) was incubated for 1--4 h at 4~ and the blot washed and 
autoradiography carried out at -700C. Bands were cut from the blot and 
counted to measure relative p60 r signals. In some experiments, HRP- 
linked goat anti-mouse IgO (Amersbam Corp.) was detected with a chemi- 
luminescence procedure as described for the Amersham ECL detection sys- 
tern. To recognize antibodies against the CI-MPR, HRP-tinked goat 
anti-rabbit antibodies (Amersham Corp.) were used in the chemi-lumines- 
cence protocol. 

Results 

Co-staining of p60 ~'~ with Late Endosomes at the 
Microtubule Organizing Center 
Rat-1 fibroblasts over-expressing chicken p60 ~-"c (RTCS cell 
line) were analyzed by indirect immunofluorescence with a 
mAb against p60 ~-~ (mAb 327). To enhance resolution, im- 
munofluorescence was recorded with an optical sectioning 
microscope and both individual optical sections and three- 
dimensional reconstructions of the images were analyzed. 
Two general populations of p60 ~-~r~ were apparent: a granu- 
lar staining throughout the cytoplasm and a concentrated 
staining adjacent to the nucleus (Fig. 1 A). Staining with a 
different mAb against p60 ~-~ (mAb 2-17) demonstrated a 
similar staining pattern, and signals with either antibody 
were blocked by addition of purified chicken p60 ~-s~ pro- 
duced with the baculovirus expression system (Morgan et 
al., 1991) (data not shown). 

Staining with antibodies against tubulin revealed that p60 ~ 
co-localizes with the microtubule organizing center (MTOC), 
the region of the cell where many membranous organelles are 
located (Fig. I B). l~e  concentration of p60 ~-*~ at the MTOC 
was not simply because of the increased cell thickness in this 
region of the cell, as analysis of optical sections showed a 
distinct region of staining along the vertical axis of the cell 
where p60 ~-,~ is concentrated (Fig. 1 C). In addition, p60 ~-~ 
concentrated at the MTOC co-stains with individual cellular 
microtubules when optical sections from cells stained with 
antibodies against tubulin ~ig. 1 D) are compared to the iden- 
tical sections stained with antibodies against p60 ~-~ (Fig. 1 
C). This staining pattern is also not because of the over- 
expression of chicken p60 ~-'r~ in these cells, as endogenous 
p60 ~-~ in Rat-1 fibroblasts exhibited an identical pattern (Fig. 
1 F). In addition, the depolymerization of cellular microtu- 
bules with the drug nocodazole dispersed p60 ~-~r~ (Fig. 1 E) 

and suggested a direct association with the MTOC. P60 ~ .... 
rapidly returned to the peri-nuclear region of the cell upon 
removal of nocodazole and the repolymerization of cellular 
microtubules (data not shown). 

P60 r is myristylated at its NH~-terminus (Buss and Sef- 
ton, 1985), and the myristylation signal is necessary but not 
sufficient for association with cellular membranes (Kaplan 
et ai., 1990). To address the issue of whether membrane as- 
sociation of p60 ~-s~ is required for the localization of p60 ~-s~ 
at the MTOC, we characterized a 3T3 fibroblast cell line ex- 
pressing p60 ..... in which the second amino acid glycine 
has been replaced with alanine. In p60v'sr% this amino acid 
change results in a protein that cannot be myristylated and 
therefore does not associate with cellular membranes (Buff 
et al., 1986; Kamps et at., 1986). Immunofluorescence anal- 
ysis of cells expressing p60 ~-s~ containing this substitution 
showed a diffuse cytoplasmic staining, indicating that mem- 
brane attachment is required for localization at the MTOC, 
as previously suggested (Kaplan et al., 1990) (Fig. 2, A 
and B). We also failed to observe the granular cytoplasmic 
p60 ~-s,c staining pattern, indicating that membrane associa- 
tion is required for this localization as well. To determine 
whether membrane association alone is sufficient for local- 
ization of p60 ~-~ at the MTOC, we analyzed a membrane- 
associated fusion protein comprising the first 14 amino acids 
of p60 ~-~ fused to pyruvate kinase (Kaplan et al., 1990). 
When expressed in Rat-1 cells this protein exhibited a punc- 
tate staining pattern and did not co-localize with the MTOC 
(data not shown). We therefore conclude that myristylation 
is necessary but not sufficient to allow MTOC localization 
of p60 ~-s~, supporting the notion that there are other do- 
mains of p60 ~-~ that contain information important for lo- 
calization (Kaplan et al., 1990). 

Membrane organelles involved in various secretory and 
endocytic processes have been localized to the MTOC. To 
identify candidate membranes that contain p60~-~% co- 
localization studies were performed with a number of anti- 
bodies against markers of specific membrane compartments. 
The Golgi compartment was identified with several markers, 
including fluorescein-conjugated wheat germ agglutinin and 
two mAbs, 10E6 and 8B3, specific for cis/medial-Golgi ele- 
ments (Wood et at., 1991). These markers stained a 
perinuclear region of the cell that was distinct from p60 ~-~, 
suggesting that p60 ~-~ is not found in cis/medial-Golgi 
membranes (Fig. 2 C). Similarly, staining of the ER with an- 
tibodies against BiP (Bole et ai.s 1989) and staining of lyso- 
somes with antibodies against lgpl20 (Lewis et at., 1985) re- 
veaied that these two membrane compartments are clearly 
distinct from p60 ~-~ at the MTOC (data not shown). 

In contrast, staining with antibodies to the CI-MPR, a 
marker of endosomes and trans-Golgi network (TGN), re- 
veaied a striking co-localization with p60 "-s~ at the MTOC 
(Fig. 2, D and E). While all endosomal membranes are be- 
lieved to contain the CI-MPR, the CI-MPR-positive endo- 
somes located at the MTOC represent vesicles at a late stage 
in the endocyfic pathway (late endosomes or pre-lysosomes) 
(Messner and Kreis, 1989). CI-MPR-positive vesicles also 
require intact microtubules for their localization, unlike 
early endosomes (K. Kaplan, unpublished observations) 
(Matteoni et ai., 1987). Thus, our results suggest that 
p60 ~-~ is associated with membranes at the MTOC that 
represent a late stage in the endocytic pathway. While no di- 
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rect attempts were made to distinguish CI-MPR-positive en- 
dosomes from CI-MPR-positive TGN, we observed that 
p60 ~-~ did not exhibit the tubular staining pattern charac- 
teristic of the TGN (data not shown). 

P60 ~'~ and CI-MPR Co-localize after Treatment 
with BFA 

To further analyze p60 ~ .... containing membranes and to 
distinguish these membranes from cis/medial-Golgi net- 
work, we treated cells with brefeldin A (BFA). BFA disrupts 
the normal distribution of cis/medial-Golgi membranes, 
causing retrograde transport to the ER. This results in a re- 
ticular staining pattern when the Golgi apparatus is visual- 
ized by immunofluorescence (Lippincott-Schwartz et al., 
1989, 1990). In contrast, BFA treatment does not result in 
the transport of CI-MPR-containing membranes into the ER 
(Chege and Pfeffer, 1990; Lippincott-Schwartz et al., 1991; 
Wood et al., 1991). If p60 ~-,~ is associated with CI- 
MPR-containing late endosomes, then the behavior of 
p60 ~-~o and CI-MPR after BFA treatment should be similar, 
and yet distinct from cis/medial-Golgi membranes. 

Consistent with previous findings, we found that after BFA 
treatment the Golgi marker 10E6 exhibited a punctate/retic- 
ular staining pattern characteristic of ER staining in these 
cells (Fig. 3 A). We also observed that CI-MPR-positive 
membranes do not enter the ER after BFA treatment. After 
BFA treatment, both p60 '-~ and CI-MPR (Fig. 3, B and C) 
formed a tight cluster at the centrosome in a staining pattern 
that is distinct from cis/medial-Golgi membranes. This 
clustering of membranes containing p60 ~-~ and CI-MPR at 
the centrosome is less diffuse than the staining pattern at the 
MTOC in untreated cells. The clustering occurs after 30 min 
of BFA treatment, is reversible, and is dependent on intact 
microtubules, since pretreatment with nocodazole abolishes 
the effect (data not shown). In untreated populations of 
fibroblasts, some cells (5-10%) exhibit a similar clustering 
of p60 r and CI-MPR staining at the centrosome, suggest- 
ing that the clustering of endosomes in this region can occur 
in the absence of BFA. These results further support the no- 
tion that p60 r .... and the CI-MPR are in a similar cellular 
compartment that is distinct from the cis/medial-Golgi ap- 
paratus. 

Co-localization of  p60 ~ and CI-MPR at the Spindle 
Poles during Mitosis 

The activation of p60 ..... during mitosis suggests that it may 
play a role in mitosis. Therefore we also examined the local- 
ization of p60 ~-~ in mitotic cells (identified by the state of 
their chromatin after Hoechst staining; see Materials and 
Methods). During mitosis, p t0  ~-~ was observed to cluster 
at the dividing centrosomes (Fig. 4 A; arrows). Co-staining 
with anti-CI-MPR clearly demonstrated that the CI-MPR 

is clustered at the same peri-centriolar position as p60 '-"~ 
(Fig. 4 B; arrows). Reconstructive analysis of three-dimen- 
sional optical sections confirmed that p60 "-s~ staining cor- 
responded to the position of migrating centrioles as deter- 
mined by tubulin staining (data not shown). Analysis of 
additional stages of mitosis showed that the peri-centriolar 
populations of p60 "-"~ and CI-MPR were present through- 
out mitosis and appear positioned to form membrane or- 
ganelles at the MTOC after telophase. 

Over-expression of p60 ~-'~ did not affect staining, as simi- 
lar patterns were apparent when endogenous levels of p60 ~-'~ 
were examined in Rat-1 cells (Fig. 4, D and E). The mitotic 
localization of both CI-MPR and p60 r is dependent on a 
properly formed spindle, since cells treated with nocodazole 
no longer show pericentriolar staining of p60 ~-~ or CI-MPR 
(data not shown). In addition, staining of ceils with antibod- 
ies specific for the Golgi apparatus revealed that Golgi mem- 
branes became vesicularized and were scattered throughout 
the cell during mitosis as previously reported for HeLa 
cells (Lucocq and Warren, 1987; Moskalewski and Thyberg, 
1990). This contrast between Golgi staining and p60~-"~/CI- 
MPR staining during mitosis provides additional evidence 
that p60 r associates with endosomal membranes and not 
with cis/medial-Golgi elements. 

Biochemical Fractionation Reveals that p60 ~-~ 
Co-enriches with Endosomal Membranes 

We next examined the association of p60 ~-~ with endosomal 
membranes by standard cell fractionation techniques. RTCS 
cells were allowed to internalize the fluid phase marker HRP 
to label the endocytic compartment. Cellular membranes 
isolated after a 100,000 g spin (P100 pellet) were placed at 
the bottom of a sucrose step gradient consisting of 45, 32, 
and 18% steps. Membranes were allowed to float to equilib- 
rium during centrifugation. We determined that the endo- 
cytic marker HRP and thus endocytic membranes from these 
cells were enriched at the 18/32 % interphase of the gradient 
(data not shown). We analyzed the fractions from the gra- 
dient by immunoblotting to identify p60 r and observed a 
major peak at the 18/32% interface (Fig. 5 A). Based on im- 
munoblots with ~25I-labeled antibody, we estimate that 65 % 
of the total p60 ~-"~ on the gradient was at the 18/32 % inter- 
face (Fig. 5 B). A similar pattern of enrichment was ob- 
served with cells expressing endogenous levels of p60 "s~ 
(data not shown). The density at the 18/32% interface is 
characteristic of endosomal membranes and is therefore con- 
sistent with the enrichment of p60 ~-"~ with endocytic vesi- 
cles. Analysis of markers for membrane compartments dem- 
onstrated that fractions enriched for p60 ~-"~ are distinct 
from lysosomal (data not shown), Golgi apparatus, and plas- 
ma membrane markers (Fig. 5, C-E), although a small 

Figure 1. Co-staining of p60 r and the MTOC. Projections comprising multiple optical sections of RTCS fibroblasts (see Materials and 
Methods) were obtained with mAb 327 against p60 .... (A) and mAb tub 2.1 against tubulin (B). Individual optical sections that represent 
information from the middle of the cells stained with mAb 327 against p6(F -s'~ (C) and mAb tub2.1 against tubulin (D) are also presented. 
A single optical section is presented from RTCS cells treated for 30 rain with 0.5 #g/ml noeodazole to depolymerize microtubules, and 
stained with mAb 327 (E). A projection of Rat-1 fibroblasts expressing only endogenous c-src was obtained with mAb 327 against p60 ~-s~ 
(F). Endogenous p60 .... signal was enhanced with a rabbit anti-mouse antiserum (sandwich antibody) between the primary mAb and 
fluorophore-conjugated secondary antibody. Arrows indicate the MTOC. Bar, 10 #m. 
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Figure 3. Brefeldin A treatment causes p60 ~-s~ and CI-MPR membranes to cluster at the centrosome. RTCS fibroblasts were treated with 
1/~g/ml brefeldin A for 30 min at 37~ and then processed for immunofluorescence. A single unprocessed image of staining with mAb 
10E6 against cis/medial-Golgi is presented (A), while projections of multiple optical sections are presented for staining with mAb 327 
against p60 ..... (B) and anti-sera against CI-MPR (C). Arrows indicate clustered p60 c-s~ and CI-MPR staining at the centrosome. Bar, 
10/~m. 

amount of plasma membrane marker was found at the 18/32 % 
interface (see Materials  and Methods). 

P60 ~~ was sometimes observed in the 45 and 32 % frac- 
tions. To address whether this material  was membrane- 

associated, each fraction from the sucrose step gradient was 
diluted to a final concentration of 8.5 % sucrose, pelleted at 
100,000 g and the pellet analyzed for p60 ~-s~c by immuno- 
blotting. Approximately 90% of the p60 ~-s~ in these frac- 

Figure 4. Co-staining of p60 r and CI-MPR at the spindle poles of mitotic ceils. A-C represent projections of the same RTCS fibroblast 
prophase cell stained with mAb 327 against p60 r (A), anti-sera against CI-MPR (B) and Hoechst stain (C) to reveal the chromatin. 
Projections were obtained of Rat-I fibroblasts stained with mAb 327 against p60 .... plus a sandwich antibody (see legend to Fig. 1; D) 
and with Hoechst stain to reveal the chromatin (E). Arrows indicate peri-centriolar staining in mitotic cells. Bar, 10 #m. 
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Figure 5. Enrichment of p60 ~'= and endosomal membranes on su- 
crose step gradients. RTCS fibroblasts were incubated with HRP for 
30 min at 37~ and cell membranes were isolated and loaded on 
the bottom of a sucrose step gradient (see Materials and Methods). 
After centrifugation, fractions were analyzed by immunoblot with 
mAb 327 detected by ~2sI labeled goat anti-mouse antibodies (A). 
Bands were cut from the blot and counted (B). Fractions were also 
analyzed for HRP activity (endosomal marker) (C), ADPE I activ- 
ity (plasma membrane marker) (D), and galactosyl transferase ac- 
tivity (cis/medial-Golgi marker) (E). 

tions remained in the supernatant and was therefore pre- 
sumed to be soluble. In addition, treatment of cellular 
membranes with a water soluble, membrane impermeable 
cross-linking reagent (DTSSP) prevented the appearance of 
p60 ~-~ in the 45 or 32 % fractions, and resulted in a corre- 
sponding increase in the amount of p60 ~-S~c at the 18/32% 
interface. We therefore suspect that under normal homogeni- 
zation conditions a minor fraction of p60 ~-S~c dissociates 
from cellular membranes and sediments near the bottom of 
the sucrose gradient. 

We were particularly interested in separating plasma 
membranes and endosomal membranes because of the 
reported association of p60 ~-'~ with plasma membranes 
(Courtneidge et al., 1980). To further separate membranes, 
material from the 18/32 % interface of the sucrose gradient 
was run on a percoll gradient and fractions were analyzed 
for the presence of p60 r In multiple experiments, p60 ~ .... 
migrated as a single peak in the low density fractions and 
paralleled the endocytic marker (HRP) profile (e.g., Fig. 6, 
A and B). In similar but separate experiments with total cel- 
lular membranes, p60 .... was also detected in low density 
fractions (data not shown) while Golgi markers, iodinated 
plasma membrane proteins (Fig. 6 C) and lysosomal mark- 
ers (data not shown) were not enriched in p60 ~ ..... 
containing fractions. To rule out the possibility that soluble 
p60 ~-~c present in cell homogenates was simply associating 
with endosomal membranes during celt lysis, we mixed 
p60 ~-~rc found in S100 fractions with membranes from cells 
not expressing p60 .... (due to a homozygous mutation at 
the src gene). P60 ~-sro did not associate with endosomal 
membranes under these conditions, indicating that soluble 
p60 ~-~ does not preferentially associate with endosomal 
membranes after cell lysis (data not shown). 

Shift in Density of Endocytic Membranes Alters 
Membrane-Bound p60 ~s~ Density 

To determine if p60 ~-~'~ is directly associated with endocytic 
vesicles inside the cell we specifically altered the density of 
endocytic membranes as described previously (Courtoy et 
al., 1984; Stoorvogel et al., 1991). Ceils were allowed to in- 
ternalize HRP to saturate the endocytic compartment (see 
Materials and Methods). Cellular membranes were isolated 
and sedimented on a sucrose step gradient as above. The 
18/32 % interface was isolated and split equally. Half of the 
interface membranes were treated with DAB and hydrogen 
peroxide (H202), a substrate and catalyst for HRP. The 
modification of DAB by HRP in endocytic vesicles results in 
an increase in vesicle density. Each set of membranes was 
analyzed on separate sucrose step gradients for the presence 
of p60 r .... and HRP activity. As expected, DAB and H202 
treatment resulted in a shift of the endocytic marker HRP to 
the 45 % fraction (Fig. 7 B). Treatment of membranes with 
DAB and H202 also resulted in a shift of membranes con- 
taining p60 ~-~r~ (Fig. 7 A) and CI-MPR (data not shown) to 
the 45 % fraction. Other membrane markers present in the 
18/32% interface did not undergo a shift in density to the 
45 % fraction after treatment with DAB (Fig. 7, C and D). 
The variation in the distribution of the Golgi marker galac- 
tosyl transferase (Fig. 7 D) was found to be dependent on 
homogenization conditions rather than DAB treatment, sug- 
gesting that the DAB-induced density shift was specific for 
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Figure 6. Separation of p60 c-~ 
from plasma membranes on 
percoll gradients. RTCS fibro- 
blasts were incubated with 
HRP and cell membranes from 
the 18/32% interface of a su- 
crose step gradient were iso- 
lated and loaded on a percoll 
gradient (in the absence of 
CaC12; see Materials and 
Methods). Fractions were col- 
lected from the bottom of the 
gradient (1 = highest density 
and 15 = lowest density) and 
analyzed by immunoblot with 
mAb 327 against p60 .... (A), 
for protein concentration (B, 
O) and HRP activity (B, n). 
Whole cellular membranes 
from a pl00 fraction were iso- 
lated in homogenization buf- 
fer (+2 mM CaC12; see Ma- 
terials and Methods), run on 
parallel percoll gradients, 
analyzed for the Golgi marker 
galactosyl transferase (C, n), 
and a gamma counter was 
used to detect the presence of 
iodinated plasma membrane 
proteins (C, A). The addition 
of CaCl2 to the homogeniza- 
tion buffer in this experiment 
(see Materials and Methods; 
Fig. 6 C) further separated 
iodinated plasma membrane 
proteins from endosomal mem- 
branes by altering the apparent 
density of plasma membranes 
on the percoll gradient (Stoor- 
vogel et al., 1989). 

endosomal membranes. To demonstrate dependence of the 
density shift on the HRP reaction, samples treated only with 
DAB (or only with H202, data not shown) exhibited no shift 
in the apparent density of p60~-'~-associated membranes 
(Fig. 7 a, left). 

Association of  the Majority of  ptO ~,,~ with 
Endosomal Membranes 

All of the p t 0  ~-~ isolated from the 18/32 % fraction shifted 
density in these experiments, suggesting that all of the 
p60 ' ' ~  in this fraction is associated with membranes acces- 
sible to the endocytic marker HRP. To determine the amount 
of p60 '-~ in the entire cell that is associated with endosomal 
membranes, we performed density shift experiments on the 
entire population of cellular membranes isolated from a 

100,000 g pellet. The proportion of p60 "-s~ in this pellet that 
undergoes a density shift should represent the proportion of 
membrane-bound p60 "-s~ associated with endocytic mem- 
branes. After treatment with DAB and H202, total cellu- 
lar membranes were separated on a percoll gradient and 
fractions were analyzed to identify p t0  ~-s~ and relevant 
membrane markers. P60 .... from untreated membranes 
paralleled the peak of endosomal membranes (HRP) in low 
density fractions (Fig. 8 A). Treatment of membranes with 
DAB and H202 shifted the density of all detectable p60 .... 
and the endocytic marker HRP to higher density fractions 
(Fig. 8, B and C). 

The shift in density of  all detectable p t0  ~-sr~ suggested 
that the majority of p60 "-~ is associated with endosomal 
membranes and little or no p60 c'~ is associated with 
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To further address the specificity of the density shift, HRP 
was bound to the surface of cells at 0*C to prevent endocyto- 
sis and cell membranes were harvestefl and treated with DAB 
and H202. No detectable density shift of p60 c'~ was ob- 
served (data not shown) despite high levels of HRP activity 
in the membrane pellet. Thus, only HRP internalized into 
the endocytic pathway is able to shift the density of 
p60~-'~-containing membranes. 

It was also possible that there was a preferential solubiliza- 
tion of plasma membrane-associated p60 ' '~ during prepa- 
ration of cellular membranes. The oo10-20% of total p60 ~-'~ 
that we detected in the soluble S100 fracticaa may there- 
fore represent a plasma membrane-associated fraction of 
p60~,~. To address this possibility, cell extracts were treated 
with DTSSP (as described above) to reduce the amount of 
1Ri0 ~~ in the S100 fraction. P60 ~-s~ was fractionated on 
percoll gradients and did not cosediment with plasma mem- 
branes (data not shown). It is therefore unlikely that the pop- 
ulation of soluble p60 .... came from the plasma membrane. 

Figure 7. DAB-induced density shift of p60 c's'~ in HRP-containing 
endosomes. Material from the 18/32% interface of a sucrose step 
gradient was treated with DAB in the presence (right) or absence 
(/eft) of H202. P60 ~m was detected by immunoprecipitation and 
immunoblotting with mAb 327 (A). Fractions were also analyzed 
for HRP activity (B), ADPE I activity (plasma membrane marker) 
(C), and galactosyl transferase activity (cis/medial-Golgi marker) 
(D). 

plasma membranes. However, it was possible that HRP 
bound to the plasma membrane was incorporated into vesi- 
cles, resulting in a shift in density of plasma membranes 
after DAB/H202 treatment. To address this possibility, at- 
tempts were made to determine the fate of plasma mem- 
branes after DAB/H202 treatment. Identification of plasma 
membranes by the measurement of enzymatic markers was 
impeded by low enzymatic activities in percoll. Instead, 
HRP-eontaining cells were surface iodinated at 0*C to iden- 
tify plasma membranes. Measurement of ~ I  after density 
shift revealed that there was no detectable shift in labeled 
plasma membrane proteins, while the p60~-s~-associated 
membranes underwent a shift in density as expected (Fig. 8). 

Discussion 

We have found that the majority of membrane-associated 
1360 ~'~ in mammalian fibroblasts is localized to a compart- 
ment that probably represents a population of endosomes. 
Our immunofluorescence experiments demonstrate that a 
significant proportion of p60 ~'~ is found at the MTOC and 
co-localizes with CI-MPR, a marker of late endosomes. Bio- 
chemical fractionation and density shift experiments indi- 
cate that the majority of p60 ~ in the cell associates with 
endosomal membranes accessible to the endocytic marker 
HRP. These results raise the possibility that p60 ~ plays a 
role in endosomal function. 

Previous immunofiuorescence and electron microscopic 
studies of p60 v-~ tend to support localization of the viral 
src protein at the plasma membrane (Rohrschneider, 1979; 
W'dlingham et al., 1979). Some src family members are 
thought to interact with cell surface proteins, and a putative 
plasma membrane receptor for p60"~ has been identified 
in cross-linking experiments (Resh and Ling, 1990). In con- 
trast, our results suggest that very little p60 ~,~ is associated 
with plasma membranes. Although we sometimes observed 
p60 ~-~r~ staining at cell-cell contacts, we suspect that this 
does not represent plasma membrane association but rather 
is because of enrichment of membranes at bundles of micro- 
tubules (Fig. 1). Dependence on intact microtubules for this 
localization further supports the notion that p60 ~ is mi- 
crotubule-associated at cell-ceil contacts. The discrepancy 
between previous localization studies and our results may 
arise in part from differences between the transforming pro- 
tein p60 .... and the nontransforming protein p60 ~'~. 

Our results also differ from previous studies that have used 
biochemical fractionation to localize src proteins. These 
studies demonstrate an enrichment of both p60 ~ and p60 ~-~ 
in plasma membranes (Conrtneidge et al., 1980; Resh and 
Erikson, 1985). Fractionation techniques used in these stud- 
ies did not differentiate between plasma membranes and en- 
dosomal membranes, which have similar densities and are 
likely to cosediment. We have used variable conditions dur- 
ing homogenization to alter the sedimentation of plasma 
membranes, allowing them to be separated from endosomes 
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Figure 8. DAB-induced den- 
sity shift of p60 ~'~ from to- 
tal cell~ar membranes. RTCS 
fibroblasts were incubated 
with HRP and total cellu- 
lar membranes were isolated. 
Membranes were treated with 
DAB alone (,4), or DAB/H:02 
(B) and then run on percoll 
gradients. Fractions were col- 
lected as in Fig. 6. P60 c-~ 
was detect~ by immunopre- 
cipitation and immunoblot- 
ring with mAb 327. Fractions 
were also analyzed for HRP 
activity to detect endosomal 
membranes (,,) and a gamma 
counter was used to detect the 
presence of iodinated plasma 
membrane proteins (z~). Note 
that plasma membranes do not 
b�9162 as in Fig. 6 due to the 
absence of CaCI2 (see legend 
to Fig. 6). 

(see Materials and Methods). In addition, the specific shift 
in density of  HRP-containing membranes convincingly sepa- 
rated endosomes from plasma membranes. Based on results 
from these fractionation experiments we have concluded that 

no detectable p60 ~ is associated with plasma membranes. 
It remains possible that a very small proportion of p60 ~-~ is 
associated with plasma membranes but is undetectable un- 
der our conditions, 
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Our results suggest that p60 c-sr~ is associated with the 
microtubule cytoskeleton via endocytic vesicles, in contrast 
to previous localization and biochemical studies suggesting 
an association of p60 ..... with the actin cytoskeleton 
(Hamaguchi and Hanafusa, 1987; Henderson and Rohrschnei- 
der, 1987; Resh and Erickson, 1985; Rohrschneider, 1979, 
1980). Analysis of optical sections near the bottom of cells 
over-expressing chicken p60 ~ .... showed only punctate, mi- 
crotubule-associated staining and no localization to adhesion 
plaques. We found that p60 ~-~rc co-localizes with a number 
of microtubule-related structures, including microtubule 
bundles at points of cell-cell contact, the microtubule orga- 
nizing center, and a region associated with the spindle pole 
during mitosis (Figs. t and 4). In all cases this staining is 
dependent on intact microtubules. Ample evidence has dem- 
onstrated that endocytic membranes can be transported along 
microtubules (DeBrabander et al., 1988; Goergi et al., 
1990; Matteoni and Kreis, 1987). It is therefore likely that 
co-localization of p60 ..... with various microtubule struc- 
tures reflects the transport of endosomal membranes along 
cellular microtubules. It is even conceivable that p60 ~ .... 
may regulate microtubules or microtubule-associated mo- 
tors involved in endosomal membrane transport. 

The microtubule-dependent alteration of p60 ..... staining 
induced by BFA treatment provides additional evidence for 
p60 c .... transport along microtubules. BFA is known to 
cause microtubule-dependent retrograde transport of Golgi 
elements into the ER (Lippincott-Schwartz et al., 1989, 
1990). We have shown that treatment of cells with BFA also 
affects the transport of endosomal membranes containing 
p60 ~-~. BFA treatment results in the clustering of p60 ~- .... 
containing membranes at the centrosome, which is distinct 
from the normally diffuse staining of p60 ~-~ at the MTOC 
(Fig. 3). Similar findings have been reported for the effect 
of BFA on a wide range of endocytic membranes in both rat 
and canine cells (Lippincott-Schwartz et al., 1991; Wood et 
al., 1991). While the mechanism of action of BFA remains 
unclear, the behavior of p60 ..... and CI-MPR after BFA 
treatment emphasizes the similar nature of the membrane 
compartment occupied by these proteins. 

Studies of cells in early stages of mitosis show that p60~- 
~ and CI-MPR are found at the dividing centrosomes (Fig. 
4). The presence of both CI-MPR and p60 ~~rr at the spindle 
poles during mitosis further suggests that both of these pro- 
teins reside in a similar membrane compartment that is dis- 
tinct from cis/medial-Golgi membranes, which are scattered 
throughout the cell during mitosis (K. Kaplan, unpublished 
observations) (Lucocq and Warren, 1987; Moskalewski and 
Thyberg, 1990). Since p60 ..... is known to be activated dur- 
ing mitosis and phosphorylated by p34 ~ (Chackalaparam- 
pil and Shalloway, 1988; Morgan et al., 1989), it is possible 
that p60 .... is mediating mitotic effects of p34 ~2 at the peri- 
centriolar region of the cell. Several processes associated 
with endosomal membranes are known to be regulated dur- 
ing mitosis. For example, it has been shown in vitro that 
early endosomal fusion events are inhibited by addition of 
active Xenopus p34 ~dr (Tuomikoski et al., 1989; Woodman 
et al., 1992). 

Work with secretory cells suggests that p60 ~~ may be in- 
volved in regulating the function of specialized secretory 
vesicles. In addition to being enriched in secretory granules 
of chromaffin ceils, p60 ~ .... is associated with a 38-kD pro- 

tein that may be important in the function of these secretory 
organelles (Grandori and Hanafusa, 1988). These compart- 
ments may be analogous to the endosomal compartment in 
fibroblasts. The association of p60 ..... with endosomally de- 
rived synaptic vesicles in PC-12 cells is consistent with this 
proposal (Johnston et al., 1989; Linstedt et al., 1992). 

Endosomal membranes are dynamic structures involved in 
the trafficking of proteins throughout the cell and are known 
to be regulated at the level of both transport and fusion. In 
this regard it may be relevant to consider the phenotype of 
mice that are genetically null for the c-src gene through ho- 
mologous recombination (Soriano et al., 1991). The defect 
in bone modeling (osteopetrosis) exhibited by these mice 
arises ultimately from an inability to dissolve bone tissue 
during development. The osteoclasts responsible for dissolv- 
ing bone tissue are known to be highly specialized secretory 
cells that secrete lysosomal enzymes. In the absence of 
p60 ~~rc these cells may be defective in regulating the 
trafficking of lysosomal proteins. 

We would like to thank David Agard and John Sedat for the use of their 
microscopy facilities, Peter Lobel and William Brown for antisera against 
the CI-MPR, Josh Kaplan for the RTCS cell line, and Phil Soriano for 
mouse embryo fibroblasts from transgenic mice. We are grateful to mem- 
bers of  the Src group and Frances Brodsky for helpful discussions and to 
Inke N~thke and John Young for valuable comments on the manuscript. 

This work was supported by grants to D. O. Morgan and H. E. Varmus 
from the National Institutes of Health, a Searle Scholars Award from the 
Chicago Community Trust (D. O. Morgan) and a Basil O'Connor Starter 
Scholar Award from the March of  Dimes Birth Defects Foundation (D. O. 
Morgan). H. E. Varmus is an American Cancer Society Research 
Professor. 

Received for publication 31 January 1992 and in revised form 4 April 1992. 

References 

Agard, D. A,, P. Hiraoka, P. Shaw, and J. W. Sedat. 1989. Fluorescence mi- 
croscopy in three dimensions, Methods Cell Biol. 30:353-377. 

Aoki, D., H. E. Apperti, D. Johnson, S. S. Wong, and M. N. Fukada. 1990. 
Analysis of the substrate binding sites of human galactosyl transferase by 
protein engineering. EMBO (Eur. MoL BioL Organ.) J. 9:3171-3178. 

Bole, D. G., L. M. Hendershot, and J. F. Kearney. 1989. Post-translational 
association of immunoglobutin heavy chain binding protein with nascent 
heavy chains in nonsecreting hybridomas. J. Cell Biol. 102:1558-1566. 

Buss, J. E., and B. M. Sefton. 1985. Myristic acid, a rare fatty acid, is the lipid 
attached to the transforming protein of Rous sarcoma virus and its cellular 
homolog. J. Virol. 53:7-12. 

Buss, J. E., M. P. Kamps, K. Gould, and B. M. Sefton. 1986. The absence 
of myristic acid decreases membrane binding of p60~ but does not affect 
tyrosine protein kinase activity. J. Virol. 58:468-474. 

Chackalaparampil, I., and D. Shalloway. 1988. Altered phosphorylation and 
activation of pp60 ~-s~ during fibroblast mitosis. Cell. 52:801-810. 

Chege, W. N., and S. R. Pfeffer. 1990. Compartmentation of the golgi com- 
plex: brefeldin-A distinguishes trans-golgi cisternae from the trans-golgi net- 
work. J. Cell Biol. 111:893-899. 

Cooper, J. A. 1989. The src-family of protein-tryosine kinases. In Peptides and 
Protein Phosphorylation. B. Kemp and P. F. Alewood, editors. CRC Press, 
Boca Raton, FL. 85-113. 

Cotton, P. C., and J. S. Brugge. 1983. Neural tissues express high levels of 
the cellular src gene product pp60 '-~:. Mol. Cell. Biol. 3:1157-1162. 

Courtneidge, S. A., A. D. Levinson, and J. M. Bishop. 1980. The protein en- 
coded by the transforming gene of avian sarcoma virus (pp60 ~) and a 
homologous protein in normal cells (pp60 p~~ are associated with the 
plasma membrane. Proc. Natl. Acad. Sci. USA. 77:3783-3787. 

Courtoy, P. J., J. Quintart, and P. Baudhuin. 1984. Shift of equilibrium density 
induced by 3,3'-diaminobenzidine cytochemistry: a new procedure for the 
analysis and purification of peroxidase-containing organeUes. Z Celt Biol. 
98:870-876. 

David-Pfeuty, T., and Y. Nouvian-Dooghe. 1990. Immunolocalization of the 
cellular src protein in interphase and NIH c-src overexpressor cells. J. Cell 
Biol. 111:3097-3116. 

DeBrabander, M., R. Nuydens, H. Geerts, and C. R. Hopkins. 1988. Dynamic 
behavior of the transferrin receptor followed in living epidermoid carcinoma 

The Journal of Cell Biology, Volume 118, 1992 332 



(A431) cells with nonovid microscopy. Cell MotiL Cytoskeleton. 9:30-47~ 
Goergi, A., C. Mottola-Harthshorn, A. Warner, B. Fields, and L. B. Chert. 

1990. Detection of individual fluorescently labeled reovirions in living cells. 
Proc. Natl. Acad. Sci. USA. 87:6579-6583. 

Golden, A., S. P. Nemeth, andJ. S. Brugge. 1986. Blood platelets express high 
levels of pp60 ~'~ specific tyrosine kinase activity. Proc. Natl. Acad. Sci. 
USA. 83:852-856, 

Grandori, C., and H. Hanafusa. 1988. P60 ..... is complexed with a cellular 
protein in subcellular compartments involved in exocytosis. J. Cell Biol. 
107:2125-2135. 

Hamaguchi, M., and H. Hanafusa. 1987. Association of p60 S~: with Triton 
X-100-resistant cellular structure correlates with morphological transforma- 
tion. Proc. NatL Acad. ScL USA. 84:2312-2316. 

Harlow, E., and D. Lane. 1988. Antibodies: A Laboratory Manual. Cold 
Spring Harbor Laboratory, Cold Spring Harbor, NY. 726 pp. 

Henderson, D., and L. Rohrschneider. 1987. Cytoskeletal association of 
pp60 ~,  the transforming protein of the Rous sarcoma virus. Exp. Celt Res. 
168:411-421. 

Hiraoka, Y., D. A. Agard, and J. W. Sedat. 1990. Temporal and spatial coordi- 
nation of chromosome movement, spindle formation, and nuclear envelope 
breakdown during prometaphase in Drosophila melanogaster embryos. J. 
Cell Biol. 111:2815-2828. 

Hiraoka, Y., J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat. 
1991. Three-dimensional multiple wavelength microscopy for the structural 
analysis of biological phenomena. Sere. Cell Biol. 2:153-165. 

Johnston, P. A., P, L. Cameron, H. Stukenbrok, R. Jahn, P. De Camilli, and 
T. C. Sudhof. 1989. Synaptophysin is targeted to similar microvesicles in 
CHO and PCI2 cells. EMBO (Eur. Mol. Biol. Organ.) J. 8:2863-2872. 

Kamps, M. P., J. E. Buss, and B. M. Sefton. 1986. Rous sarcoma virus trans- 
forming protein lacking myristic acid phosphorylates known polypeptide 
substrates without inducing transformation. Cell. 45:105-112. 

Kaplan, J. M., H. E. Varmus, and J. M. Bishop. 1990. The src protein contains 
multiple domains for specific attachment to membranes. Mol. Cell Biol. 
10:1000-1009. 

Lewis, V., S. A. Green, M. Marsh, P. Vihko, A. Helenius, and I. Mellman. 
1985. Glycoproteins of the lysosomal membrane. J. Cell Biol. 100:1839- 
1847. 

Linstedt, L. D., M. L. Vetter, J. M. Bishop, and R. B. Kelly. 1992. Specific 
association of the proto-oncogene product pp60 ~'~ with intracellular or- 
ganelle, the PC12 synaptic vesicle. J. Cell Biol. 117:1077-1084. 

Lippincott-Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. 
1989. Rapid redistribution of golgi proteins into the ER in cells treated with 
Brefeldin A: evidence for membrane cycling from golgi to ER. Cell. 56: 
801-813. 

Lippincott-Schwartz, J., J. G. Donaldson, A. Schweizer, E. G. Berger, H.-P. 
Hanri, L. C, Yuan, and R. D. Klausner. 1990. Microtubule-dependent retro- 
grade transport of proteins into the ER in the presence of Brefeldin A sug- 
gests an ER recycling pathway. Cell. 60:821-836. 

Lippincott-Schwartz, J., L. Yuan, C. Tipper, M. Amherdt, L. Orci, and R. D. 
Klansner. t991. Brefeldin A's effect on endosomes, lysosomes and the TGN: 
a general mechanism for regulating organelle structure and membrane traffic. 
Cell. 67:601-616. 

Lipsich, L. A., A. J. Lewis, and J. S. Brugge. 1983. Isolation of monoclonal 
antibodies that recognize the transforming proteins of avian sarcoma virus, 
J. Virol. 48:352-360. 

Lucocq, J. M., and G. Warren. 1987. Fragmentation and partitioning of the 
Golgi apparatus during mitosis in Hela cells. EMBO (Eur. Mol. Biol. Or- 
gan.) J. 6:3239-3246. 

Matteoni, R,, and T. E. Kreis. 1987. Transtocation and clustering ofendosomes 
and lysosomes depends on microtubules. J~ Cell BioL 105:1253-1265. 

Messner, D. J., G. Griffiths, and S. Kornfeld. 1989. Isolation and characteriza- 
tion of membranes from bovine liver which are highly enriched in mannose 
6-phosphate receptors. J. Cell Biol. 108:2149-2162. 

Morgan, D. O., J. M, Kaplan, J. M. Bishop, and H. E. Varmus. 1989. Mitosis- 
specific phosphorylation of p60 ~-~ by p34~2-associated protein kinase. 
Cell. 57:775-786. 

Morgan, D. O., J. M. Kaplan, J. M. Bishop, and H. E. Varmus. 1991. Produc- 
tion of p60 ~-~ by baculovirus expression and immuno-affinity purification. 
Methods Enzymol. 200:645-660. 

Moskalewski, S., and J. Thyberg. 1990. Disorganization and reorganization of 
the golgi complex and the lysosomal system in association with mitosis. J. 
Submicrosc. CytoL PathoL 22:159-171. 

Paddy, M. R., A. S. Belmont, H. Saumweber, D. A. Agard, and J. W. Sedat. 
1990. Interphase nuclear envelope lamins form a discontinuous network that 
interacts with only a fraction of the chromatin in the nuclear periphery. Cell. 
62:89-106. 

Poole, R. R. J., K. M. Maurey, and B. Storrie. 1983. Characterization of pino- 
cytic vesicles from CHO cells: resolution of pinosomes from lysosomes by 
analytical centrifugation. Cell Biol. Int. Rep. 7:361-367. 

Resh, M. D., and R. L. Erikson. 1985. Highly specific antibody to Rous sar- 
coma virus src gene product recognizes a novel population of pp60 v'~ and 
pp6(F -~ molecules. J. Celt Biol. 100:409-417. 

Resh, M. D., and H. Ling. 1990. Identification of a 32K plasma membrane pro- 
tein that binds to the myristytated amino-terminal sequence of p60 v-~. Na- 
ture (Lond.). 346:84-86. 

Rohrschneider, L. R. 1979. Immunoftuorescence on avian sarcoma virus- 
transformed cells: localization of the src gene product. Celt. 16:11-24. 

Rohrschneider, L. R. 1980. Adhesion plaques of Rous sarcoma virus-trans- 
formed cells contain the src gene product. Proc. Natl. Acad. Sci. USA. 77: 
3514-3518. 

Shenoy, S., J. K. Choi, S. Bagrodia, T. D. Copeland, J. L. Mailer, and D. 
Shalloway. 1989. Purified maturation promoting factor phosphorylates 
pp60 ~~ at the sites phosphorylated during fibroblast mitosis. Cell. 57: 
761-772. 

Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Targeted dis- 
ruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 64: 
693-702. 

Stoorvoget, W., H. J. Geuze, J. M. Griffith, A. L. Schwartz, and G. J. Strous, 
1989. Relations between the intracellular pathways of the receptors for trans- 
ferrin, asialoglycoprotein, and mannose 6-phosphate in human hepatoma 
cells. J. Cell Biol. 108:2137-2148. 

Stoorvogel, W., G. J. Strous, H. J. Geuze, V. Oorschot, and A. L. Schwartz. 
1991. Late endosomes derive from early endosomes by maturation. Cell. 65: 
417--427. 

Thompson, J. A., A. L. Lau, and D. D. Cunningham. 1987. Selective radio- 
labeling of cell surface proteins to a high specific activity. Biochemistry. 26: 
743-750. 

Tuomikoski, T., M.-A. Felix, M. Doree, and J. Gruenberg. 1989. Inhibition 
of endocytic vesicle fusion in vitro by the cell cycle control protein kinase 
cdc2. Nature (Lond.). 342:942-945. 

Willingham, M. C., G. Jay, and I. Pastan. 1979. Localization of the ASV src 
gene product to the plasma membrane of transformed cells by electron micro- 
scopic immunocytochemistry. Cell. 18:125 - 134. 

Wood, S. A., J. E. Park, and W. J. Brown. 1991. Brefeldin A causes a microtu- 
bule-mediated fusion of the trans-golgi network and early endosomes. Cell. 
67:591-600. 

Woodman, P. G., D. I. Mundy, P. Cohen, and G. Warren. 1992. Cell-free fu- 
sion of endocytic vesicles is regulated by phosphorylation. J. Celt Biol. 116: 
331-338. 

Kaplan et al. Association of p60 ~'~'~ with Erdosomes 333 


