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Abstract: This paper tackles the complex issue of detecting and classifying epileptic seizures whilst
maintaining the total calculations at a minimum. Where many systems depend on the coupling
between multiple sources, leading to hundreds of combinations of electrodes, our method cal-
culates the instantaneous phase between non-identical upper and lower envelopes of a single-
electroencephalography channel reducing the workload to the total number of electrode points.
From over 600 h of simulations, our method shows a sensitivity and specificity of 100% for high
false-positive rates and 83% and 75%, respectively, for moderate to low false positive rates, which
compares well to both single- and multi-channel-based methods. Furthermore, pre-ictal variations in
synchronisation were detected in over 90% of patients implying a possible prediction system.

Keywords: epilepsy; synchronisation; envelope; DSP; hilbert transform; detection; Alzheimer disease;
Parkinsons disease; prediction

1. Introduction

Synchronisation has been a fundamental area of study in recent decades and has been
linked with many different types of disorders and diseases, such as Alzheimer Disease
(AD), Parkinsons Disease (PD) and Epilepsy (EP). Synchronisation is usually obtained from
a pair of sources such as from Electroencephalography (EEG), which is a multi-channel
recording system of the brain’s electrical field potential, and made up of billions of Action
Potentials (AP). The activity is captured using special electrodes organised into specific
patterns attached to the surface of the head. The resulting signal is the difference between
two electrode positions, one of which is a reference. During seizure onset neurons tend to
increase rhythmic behaviour, resulting in non stationary patterns of multiple frequencies.
EEG has several benefits over intracranial data recording, such as a reduction in artefacts
due to spatial averaging [1]. Furthermore, it has been show that certain frequencies are
responsible for certain tasks and physiological states; therefore, EEG is usually separated
into multiple frequency bands, such as, infraslow <0.2 Hz, δ = 0.2–3.5 Hz, θ = 4–7.5 Hz,
α, µ = 8–13 Hz, β = 14–30 Hz and γ = 30–90 Hz. For example, during sleep, the most
prominent band is δ and θ, whilst the awake and alert band is considered to be β [2].

Synchronisation has proven to be an effective tool in the detection of various neuro-
logical disorders (ND). For example, in AD, synchronisation has been observed to increase
in the θ and δ bands whilst, conversely, reducing in both the α and β bands at resting state.
Using a synchronisation likelihood (SL) measure, it was determined that these bands de-
creased in synchronisation over both long- and short-range recording sites [3–5]. However,
in PD, there is evidence to suggest that short sharp bursts of increased β activity could be
responsible for tremors [6]. EP, on the other hand, is a well-studied neurological disorder
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with overwhelming evidence suggesting that seizures occur due to hyper-synchronous net-
works. High-frequency oscillations in the γ and β band were observed in EEG both during
the ictal and pre-ictal periods [7]. Furthermore, the β band is of interest for its possible
seizure prediction purposes, where synchronisation spikes were detected during pre-ictal
periods and a synchronous activity was reduced during the ictal event [8]. Conversely, a
decrease in synchronisation was proposed in [9], who examined the synchronous activity
of eight patients finding a pre-ictal reduction in the β band in 77% of seizures.

EP is one of the world’s most common neurological disorders, defined by the recur-
rence of two or more unprovoked seizures. In fact, the incidence of EP is estimated at
61.44 per 100,000 with 95% confidence and affects all ages and races. EP can be caused by
several factors, such as environmental factors, or after an attack on the central nervous
system; however, in many cases the causes is unknown [10]. Although EP is common,
it can be treated successfully in nearly 70% of patients using anti-epileptic medications;
this leaves 30% without any possible care [11]. EP can be related to other diseases and
disorders; however, Rett syndrome (RTT) is a particularly large contributor. RTT is an
X-based neuro-development disorder which exists in females with an incidence rate of
approximately 1 in every 10 to 20 thousand. It was estimated that between 60 and 80% of
patients with RTT experience epileptic episodes [12].

Detection of synchronisation is a computationally intense process, as multiple channel
methods need to calculate a measure between at least two distinct electrode positions. A
10–20 system consists of 21 electrodes, leading to total brain coverage of 210 calculations, as
in [13]. In many cases, especially in implantable devices such as [14,15], it is not possible to
achieve full motorisation, leading to data gaps. This, in turn, could lead to missed seizures.
Single-channel methods, however, reduce the computation complexity to 21 electrodes
for the 10–20 system. This is obviously more suitable for implantable devices; however,
they struggle in terms of performance metrics [16]. Further examples can be found in [17],
where several data acquisition methods for human brain activity can be found, along with
analysis and classification of eeg signals for brain–computer interfaces. In this manuscript,
the authors intend to use the highly accurate multi-channel synchronisation method on
decomposed single channels, gaining accuracy and sensitivity over other single-channel
methods whilst maintaining low computational coverage. This would encourage hardware
reduction, making it suitable for implantable devices.

The following paper is organised into the following sections. In Section 2, we introduce
the concept behind phase synchronisation and fundamental digital signal-processing
(DSP) techniques for phase extraction. In Section 3, we introduce detection methods for
epilepsy and common epidemiologistic measures. Section 4 introduces our envelope-based
synchronisation approach experimental methods and classification procedure. Section 5
introduces the materials and methods. Section 6 discusses the obtained results and, finally,
Section 7 concludes the findings.

The main contributions of this work include the design and implementation of a
novel digital signal processing (DSP) technique for the detection and prediction of epileptic
seizures using single-channel synchronisation. Furthermore, a novel method to classify
and verify seizures is introduced, based on an adjustable binary classifier.

2. Phase Synchronisation
2.1. Concept

In non-disturbed and noise-free systems, synchronisation is usually described as the
phase locking between instantaneous phase angles, such that n ·φs1−m ·φs2 = const, where
φs1 and φs2 are the instantaneous phase angles of source 1 and source 2, respectively. m and
n are integer-based weights which need adjusting based on the source of the oscillating
system. However, in the case of non stationary signals, such as quasi-periodic signals, the
phase-locking condition should be considered as |n · φs1 −m · φs2 −ω| < const, where ω
is some average phase shift. This condition indicates that, although the rate of change is
not completely constant, it should reside (fluctuate) around a common constant [18]. In
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many cases of phase-locking, the values m and n are usually set to a fixed 1 : 1 ratio. This is
especially true if the signals originate from the same source, such as the brain.

2.2. Hilbert Transform

The Hilbert transform (HT) is a common signal-processing technique used in the
evaluation of phase synchronisation. The HT creates a 90◦ phase-shifted version of the
original signal s(t), which is projected onto the imaginary plane. This allows for easy
instantaneous phase extraction [19]:

s̃(t) =
1
π

∫ +∞

−∞

s(τ)
t− τ

· dτ (1)

where the integral is taken in the sense of Cauchy principal value for t = τ .

2.3. Analytical Signal

The analytical signal is a representation of complex analogue signal s(t), which is
composed of both the real and imaginary parts sR(t), sI(t). The relationship between
the two parts is given as s(t) = sR(t) + j · sI(t), where j =

√
−1. Likewise, a complex

number can also be represented in terms of its magnitude a and phase angle θ, such that
s(t) = a exp (jθ(t)). From Equation (1), the analytical signal can be defined as

x(t) = s(t) + j · s̃(t), (2)

where s̃(t), is the HT of s(t).
Given the phase-magnitude representation, it is possible to extract the instantaneous

magnitude of the signal, defined as

a(t) =
√

s2(t) + s̃2(t). (3)

a(t), is often referred to as the complex analytic envelope of s(t), whereas its mod-
ule |a(t)| is referred to simply as the analytic envelope of s(t). The instantaneous phase
angle of the signal is defined as

ϕs(t) = arctan
s̃(t)
s(t)

(4)

2.4. Phase Locking Value

The Phase-Locking Value (PLV) is a method for quantifying the relationship between
a specific set of phase angles. This method is usually adopted along with the HT and
wavelet transform (WT) methods for calculating phase synchronisation, and converts
windows of instantaneous phase angles into unit vectors. In the case where all of the unit
vectors point in the same direction, the PLV will result in a value of 1, indicating maximum
synchronisation. Contrarily, if all of the unit vectors point in different directions, the PLV
will be 0, which signifies minimum synchronisation. The PLV is defined as

PLV =

∣∣∣∣ 1
N

N−1

∑
K=0

ejφk(t)
∣∣∣∣ = 1

N
·

√√√√[ N−1

∑
K=0

cos(∆φk)

]2

+

[ N−1

∑
K=0

sin(∆φk)

]2

(5)

where4ϕk = (n · ϕeu −m · ϕel) are the relative phase angles between two sources taken
over a specific window of N samples. In our case, the unit vectors are constructed as the
relationship between the instantaneous phase angles of the upper and lower interpolated
envelopes [20,21].
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3. Epilepsy Detection

At present, there are dozens of methods which claim the successful detection of
epileptic seizures in the time, wavelet and frequency domains, which act on either a single
channel or multiple channels. Table 1 shows some examples of epilepsy detection or
prediction methods. For single-channel methods, in the time domain, many features can be
combined using feature integrators, such as in [22], where they combine the noise levels,
entropy, Lyapunov Exponent and others in order to improve the overall sensitivity, which
can be greater than 90%. Other methods in the time domain rely on statistical analysis
and probability forecasting, such as in [23]. However, these methods usually need to be
multi-feature, which is reflected in the sensitivity of 60%. Much of the research in the area
of epilepsy detection and prediction is focused on the frequency and wavlelet domains.
One such example of frequency analysis is [24], where the authors use the intrinsic mode
function from an empirical mode decomposition (EMD) to calculate the instantaneous area,
reaching 90% sensitivity with no classifier; however, the FPR rate was not stated.

Table 1. This table shows some examples of epilepsy detection methods.

Method Database Domain Frame
Length Classifier Sen, Spec, Acc

[22]
Time analysis

correlation entropy
Freiburg

database [25] Time 10s None Sen
75% to >90%

[23]
Time analysis
Probability TF

Unknown
8-patients Time 30s None Sen

60%

[2]
frequency analysis

phase entropy Unknown Frequency 23s SVM Acc
98%

[26]
Wavelet analysis

Coherence
CHB-MIT

database [27] Wavelet 60s SVM Sen
52% to 74%

[24]
EMD analysis

correlation entropy
Freiburg

database [25] Frequency 15s None
Sen, 90%
Spec, 89%

Performance Indexes

Performance indexes form part of epidemiology, which is the study of distributions
and determinants of health events; several import diagnostics are included, which should
be used to assess the potential liability of a test. Below, we will show four of the most com-
mon; however, many more do exist. The diagnostic tests rely on several key measurements.
To begin, a true positive (TP) indicates when a seizure was correctly detected by the test. A
false positive (FP) indicates when that a seizure was wrongly detected by the test. A true
negative (TN) occurs when the test correctly identifies no seizure. Finally, a false negative
(FN) occurs when a the test incorrectly declares no seizure [28].

The sensitivity is the fraction of people that the test will correctly identify as having
seizures and is calculated as

Sensitivity =
∑ TP

∑ TP + ∑ FN
(6)

The specifitiy is the fraction of people without seizures which the test will correctly
identify as not having seizures and calculated as

Speci f ity =
∑ TN

∑ TN + ∑ FP
(7)

The accuracy is calculated as

Accuracy =
∑ TP + ∑ TN

∑ TN + ∑ FP + ∑ FN + ∑ TP
(8)
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4. Envelope-Based Phase Synchronisation and Classification

The envelope of a signal can be thought of as the imaginary curve which encompasses
the upper and lower extremes of any given signal. Several key techniques can be used to
find the envelopes, such as the use of the analytical signal, as described in (3). However,
the analytical approach leaves us with an identical upper and lower envelope, which offers
little information on the rapidly changing phase angle relationship between upper and
lower. One interesting method is the use of peak detection, where the local maxima and
minima of the signal are found and connected via interpolation. Common interpolation
methods include the use of polynomial and cubic splines. In our case, we use a custom,
simplified and hardware friendly maxima and minma detection scheme based on zero
crossings and sample constraints as follows:

• For a given signal. a sample is defined as Si, where S is the signal to which the sample
belongs and i is the sample position;

• If Si−1 > 0, then consider that we are in the positive half wave, and if Si > Si−1,
then consider that there is a new maximum to be detected. To reduce artefacts and
noise, we add a 20-point constraint, such that the current maximum value must be
greater than 20 samples after the previous maximum. If the condition is met the new
maximum will be stored;

• For the negative half, we check if Si−1 < 0 and Si < Si−1, then consider a new
minimum to be detected and store the minimum value if 20-point condition is met;

• Repeat the process until 2 · N values have been collected.

The N points are then connected using a cubic spline interpolation. Figure 1 shows an
example of the envelopes alongside the original and filtered signal. The varying frequencies
of each envelope, in turn, affect the instantaneous phase angles [29,30].

6.35 6.4 6.45 6.5 6.55 6.6

Sample 10
4

-100

-50

0

50

100

u
V

EEG raw data
Upper envelope

Lower envelope Filtered signal

Figure 1. This figure shows an example of the original EEG raw signal, β filtered signal and the
respective envelopes using a 20-point spline interpolated max,min schema.

Classification

The classification of seizures can be seen in Figure 2 and can be separated into two
main steps. First and foremost, we must identify any type of abnormal activity which
could correspond with a potential seizure. Secondly, a threshold should be placed on the
abnormal activity (to be defined later). To classify the PLV results, we design a two-stage
binary classifier, which results in a logical True if σ% of the maximum PLV values fall
within a given upper and lower boundary and a logical False otherwise.

First, the PLV data are sifted to find the maximum result for each individual EEG
signal; once found, the corresponding vector locations are stored in a new vector Vp, where
each location corresponds directly to 1 s of time.

Next, the boundaries are built with a ρ% tolerance such that

upper = µ + µ · ρ

100
(9)
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lower = µ− µ · ρ

100
(10)

where µ is the median of vector Vp.
The second stage is to appropriately set ρ such that the abnormal activity is classified

as a seizure or not. The threshold is set as the number of the maximum PLV values which
fall within the boundaries, such that

abnormal activity =

{
1 if ∑L−1

l=1 max(PLVsl) > σ

0 otherwise
(11)

where σ is the maximum PLV values.
Example A: Figure 3 shows an example of the the time positions of the maximum PLV

values for a patient who suffered an ictal event. In this case, it can be noted that 14 out of
23 (just over 60%) maximum PLV values fall within the boundary ρ = 20; this increases
to 18 out of 23 (just under 80%) for ρ = 50. For both ρ = 20 and ρ = 50, a value of σ < 19
would result in abnormal activity.

Example B: Figure 4 we note that if just 9 out of 23 (39%) fall within the boundaries
with ρ = 50 the classifier would conclude no abnormal activity.

The classification is finalised by verifying this abnormal activity given by the binary
classifer with respect to the clinically diagnosed seizures available in the chosen dataset. A
TP is set as true by calculating how many of the maximum PLV values which fall under
the abnormal activity condition in (11) fall within a designated zone, where the dedicated
zones are separated into seven distinct sections, as described in Table 2. These zones allow
us to analyse the preictal portion of the seizures as possible prediction biomarkers.

Table 2. This table shows the specified pre-ictal zones as defined.

Zone Start Stop

zone1 clinical start clinical end
zone2 clinical start—60 sec clinical start
zone3 zone2 start—60 sec zone 2 start
zone4 zone3 start—60 sec zone3 start
zone5 zone4 start—60 sec zone4 start
zone6 zone5 start—60 sec zone5 start
zone7 zone6 start—1000 sec zone6 start

An FP is set if abnormal activity was detected but no clinical seizure is present in any
zone. Finally, a TN is set if no abnormal activity was detected and no clinical seizure exists.

In our Example B for ρ = 20 and σ = 10, the classifier would produce a TN, and in
Example A, the classifier would produce a TP.



Brain Sci. 2021, 11, 516 7 of 13

Clinical seizure exists?
 

 

No

Yes

 

 

Find

Abnormal activity = 0

yes Abnormal activity = 1

 

 
Inside one zone ?

TP

Yes

FP

No FP

No

Clinical seizure exists?
No

TN

FNyes

Classify

Verify

Figure 2. This figure shows an overview of the classification and verification process.
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Figure 3. This figure shows an example of a logical true classification process used to identify
abnormal activity. The y-values represent the position of the maximum PLV values in seconds and
the boundaries represent the constraint ρ. In this case, abnormal activity is found.
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Figure 4. This figure shows an example of a logical flase classification process used to identify
abnormal activity. The y-values represent the position of the maximum PLV values in seconds and
the boundaries represent the constraint ρ. In this case, no abnormal activity is found.
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Pre-processing

1. Beta band filtering 13-32Hz
2. maxima / minima detection 20-point

minimum scheme.
3. Cubic spline interpolation to extract

upper and lower envelopes

Domain transformation

1. Hilbert transform of upper and lower
envelopes using FIR filter. and form the

analytical equation:
2. extract instantaneous phase angles

using:
3. Unwrap phase angles

ALLPASS

HT

HT

ALLPASS

Feature extraction, classification and
verification

1. PLV feature calculation over window of
size  N 

2. Classify over range  
3. Verify over range

+ + +
+
+ ++

+

-

Figure 5. This figure shows an example overview of the full DSP process including the pre-processing,
domain changes and feature extraction.
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Figure 6. This figure shows the the PLV results of signal 2 from 3 separate patients, all with a
clinically diagnosed seizure. The zones are pre-ictal definition sections, as explained in Section 4.

5. Materials and Methods

For the experimental setup, the CHB-MIT database from Physionet was used [27].
This database consists of 916 h of continuous scalp EEG data for 22 subjects (5 males, ages
3–22 and 17 females, ages 1.5–19). All signals were sampled at 256 samples per second
with 16-bit resolution and captured using scalp electrodes organised into the international
10–20 system of EEG electrode positions. These records include 198 seizures in total. Please
find information on patients used in this manuscript in Table A1, including age and sex of
the patients.
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Main Setup

The main setup consists of several key steps which can be seen in Figure 5 and are as
follows:

1. Filter signals

• The EEG signals are multi-frequency signals where 0 < f < 150 Hz, making
them non-stationary signals. As explained in Section 2.2, the HT only makes
sense over a small finite frequency range. Furthermore, as explained in Section
seizures generally occur in specific frequency bands which correspond to differ-
ent human physical states. Therefore, we introduced a pre-filtering stage into the
β ∼ 12–30 Hz frequency band. This was achieved using band-pass equiripple
FIR zero-phase filters and the specific band was chosen as it corresponds to the
awake and alert state.

2. Calculate HT

• The HT is calculated in four steps. Firstly, the the fast Fourier transform (FFT)
is calculated for the input signal. Next, a new vector h(i) is formed such that
h(i) = 1 for i = 1, (n/2) + 1, h(i) = 2 for i = 2, 3, ..., (n/2) and h(i) = 0 for
i = (n/2) + 2, ..., n. The inverse FFT is then taken from the product of h(i) and
the input signal.

3. Calculate upper and lower envelopes for each of the filtered signals.

• The upper envelope is calculated using a 20-point maxima detection scheme, as
described in Section 4. These points are then interconnected using a cubic spline
interpolation. The lower envelopes are calculated in the same way, but using the
minima instead of the maxima.

4. Calculate phase angles

• The phase angles are calculated according to (4). Producing the instantaneous
phase angles bound between −2π to +2π. To avoid phase slippage, the angles
are then unwrapped. Whenever the jump between consecutive angles is greater
than or equal to π radians, unwrap shifts the angles by adding multiples of ±2π
until the jump is less than π.

5. Calculate PLV

• The PLV values for each signal are calculated according to (5). In all experiments,
the window size N was set as a rectangular window with a size equal to the
sampling rate of the signal multiplied by ten. Since the sampling rate is equal to
1 s of data, this gives a window size of 10 s. The window is lid across the data at
in increments of N/2, leading to a 50% data overlap.

6. Classify

• Next, abnormal activity is classified as described in Section 4.

7. Calculate sensitivity, specifity and accuracy per (6)–(8)

6. Results

Over 600 h of simulations were run on patients 3, 5, 8 and 10 over a range of 10% to
100% in steps of 10% for both σ and ρ. ρ is held fixed whilst σ scans the range. Once finished,
ρ is allowed to increment one position and continues until the full range is complete. This
provides us with a map of the best classification variables for each patient and allows us to
analyse the metrics in Section .

Figure 6 shows an example of the raw PLV results from an hour long recording of
three patients using the envelope synchronisation method. In each case, a single, clinically
diagnosed seizure is present in the range marked start, stop. In all three patients, we can see
that the peak synchronisation between envelopes happens before (in zone 1) the clinical
seizure occurs, and multiple peaks can also be found in zones 3 and zones 4.
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Figure 7, shows the sensitivity, specifity and accuracy results for four of the patients. In
the case of sensitivity, the detection method works extremely well, producing a maximum
sensitivity of 100% for high σ and low values of ρ. The sensitivity diminishes as ρ increases
and σ decreases, as the boundary becomes wider and artefacts are more inclined to be
detected. This ultimately increases the FPR. As for the specifity, the results are conversely
related to the TPR, increasing with increasing ρ and decreasing σ, and ultimately produce
the highest possible specificty rate of 100% in all patients. Finally, the accuracy is high for all
patients for increasing ρ and decreasing σ and reaches values close to 100%. Nevertheless,
σ seems less relevant in this case, where the boundaries have the largest effect.

Another interesting observation is related to the boundaries. From Figure 7, for patient
3,5 and 8, the best values of sensitivity, specifity and accuracy fall in zone 1, which is a
dedicated pre-ictal zone. This indicates that it is possible to detect upcoming seizures
via an increase in synchronisation pre-ictal. Table 3, shows the sensitivity, specifity and
accuracy of the four patients in all of the predefined zones. Here, we can note that, apart
from zone 1 and zone 2, the other zones produce little sensitvity but high specifity. In the
case of patient 5, zone 6 produced a high accuracy of 87%.

In a real life, implementation of the classification process would be run on the patient
to build a look-up-table of the best values of σ and ρ.

Figure 7. This figure shows the sensitivity, specifity and accuracy results for 4 patients 3, 5, 8 and
10 over a range of σ = 10–100% and ρ = 10%− 100%. From top to bottom, sensitivity, specifity and
accuracy.

Table 3. This shows the mean second-best results for sensitivity, specificity and accuracy, respectively, in each zone over all
values of ρ and σ.

Sensitivity, Specificity, Accuracy

Patient Seizure Zone Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

3 0.4,0.8,0.74 best 0.11,0.65,0.74 0,0.8,0.23 0,0.81,0.1 0.12,0.76,0 0,0.74,0
5 0.9,0.86,1 best 0,0.86,1 0,1,0.9 0.16,1,0.9 0,1,0.87 0.3,1,0.87
8 0.2,0.8,0.83 best 0.2,0.48,0.83 0,0.78,0.52 0,0.91,0 0,0.77,0.04 0.32,0.75,0.28
10 best 0.14,0.08,0.79 0,0.48,0.79 0,0.9,0 0,0.8,0 0,0.78,0 0.2,0.78,0

Figure 8 shows the sensitivity and accuracy for seven other patients, this time with a
fixed σ = 7 and ρ = 8. A mean accuracy of over 83% and of 75% is measured.
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Figure 8. This figure shows the true positive rate (TPR) and accuracy (ACC) for patients 1, 2, 7, 11,
19, 21 and 22 for values σ = 7 and ρ = 8.

7. Conclusions

In this paper, the authors have shown that the upper and lower envelopes of filtered
EEG signals can be used to detect epileptic episodes with high sensitivity and specificity,
and an accuracy of up to 100%, with varying classification valuesσ and ρ, for four patients,
which compares to the best single- and multi-channel methods to date. A further seven
patients were tested for fixed values of σ = 7 and ρ = 8, producing an average accuracy of
83% and 75%, respectively, confirming its validity over various patients . An interesting
fact is that this method also allowed for the detection of upcoming seizures in the pre-
ictal regions, where three of the four patients tested in the classifier showed maximum
sensitivity, accuracy and specificity during the fist 60 s prior to the ictal event . The low
number of channels necessary for detection makes the system ideal for implementation as
a medical prosthesis.
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Abbreviations
The following abbreviations are used in this manuscript:

PLV Phase Locking Value
PD Parkinsons Disease
AD Alzhimers Disease
EP Epilepsy
EEG Electroencephalogram
TP True Positive
FN False Negative
TN True Negative
FP False Positive
HT Hilbert Transform
DSP Digital Signal Processing
FPR false positive rate
Sen Sensitivity
Spe Specifity
Acc Accuracy
TPR True Positive Rate
WT Wavelet Transform

Appendix A

Table A1. This table shows patient information used in this manuscript.

Patient Age (Years) Gender (F/M)

1 11 F
2 11 M
3 14 F
5 7 F
7 14.5 F
8 3.5 M
10 3 M
11 12 F
19 19 F
21 13 F
22 9 F
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