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Abstract 

Aging frailty is a complex geriatric syndrome that becomes more prevalent with advancing age. It 
constitutes a major health problem due to frequent adverse outcomes. Frailty is characterized by 
disruption of physiological homeostasis and progressive decline of health status. Multiple factors 
contribute to development of frailty with advancing age, including genome instability, DNA damage, 
epigenetic alternations, stem cell exhaustion, among others. These interrelated factors comprehensively 
result in loss of tissue homeostasis and diminished reserve capacity in frailty. Therefore, the aged 
organism gradually represents symptoms of frailty with decline in physiological functions of organs. 
Notably, the brain, cardiovascular system, skeletal muscle, and endocrine system are intrinsically 
interrelated to frailty. The patients with frailty may display the diminished reserves capacity of organ 
systems. Due to the complex pathophysiology, no specific treatments have been approved for prevention 
of this syndrome. At such, effective strategies for intervening in pathogenic process to improve health 
status of frail patients are highly needed. Recent progress in cell-based therapy has greatly contributed to 
the amelioration of degenerative diseases related to age. Mesenchymal stem cells (MSCs) can exert 
regenerative effects and possess anti-inflammatory properties. Transplantation of MSCs represents as a 
promising therapeutic strategy to address the pathophysiologic problems of frail syndrome. Currently, 
MSC therapy have undergone the phase I and II trials in human subjects that have endorsed the safety and 
efficacy of MSCs for aging frailty. However, despite these positive results, caution is still needed with 
regard to potential to form tumors, and further large-scale studies are warranted to confirm the 
therapeutic efficacy of MSC therapy. 
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Introduction 
The global population is aging rapidly due to an 

increase in life expectancy [1], so too has the 
increasing prevalence of aging frailty [2]. Frailty is an 
age-associated geriatric syndrome, defined as a state 
of increased physiological vulnerability to stressors 
due to multiple system dysregulation and reduced 
functional reserves [3]. Aging frailty is associated with 
functional limitations in daily living, which conferred 
the greater risk of poor health outcomes in the older 
population, such as mortality, disability, 
hospitalization and falls [4-6], alongside the increased 

healthcare costs which presents a major public health 
problem worldwide [7, 8]. Despite decades of research 
that have led to a growing understanding of biological 
alterations of frailty, the approved medical therapy 
that can effectively attenuate or reverse aging frailty is 
still not available [9]. To date, clinicians have 
attempted several interventions to improve and 
modify frailty status, including physical exercises 
(e.g., strengthening exercises), nutrition (e.g., protein 
and Vitamin D), and multidisciplinary interventions 
[9, 10], but the efficacy of these interventions for 
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protecting the frail patients against adverse outcomes 
is still controversial [11, 12]. Since frailty is one of the 
biggest threats to successful aging, a specific 
intervention that is expected to be effective to improve 
frailty status is highly needed. Currently, cell-based 
therapy is emerging as an innovative approach for 
several degenerative diseases. Mesenchymal stem 
cells (MSCs) represent as the ideal seeding cells for 
tissue engineering and regenerative medicine [13, 14]. 
To date, MSCs has become a promising candidate for 
intervening aging frailty. In this review, we mainly 
focused on the pathobiological process of aging frailty 
and summarized the roles and mechanisms of MSCs 
as the novel biologic agents used in the treatment of 
aging frailty. We also discussed the current status of 
MSCs utilized in clinical research as well as the 
challenge for successful clinical applications of MSC 
therapy. 

Overview of Aging Frailty and its 
Pathophysiology 

Aging frailty is a complex geriatric syndrome 
with multifactorial pathogenesis and declines in 
physiological reserves. Frail syndrome can lead to the 
reduced homeostatic capability to withstand stressors 
and increased vulnerabilities to environments, which 
account for the high risk of adverse events [2, 15, 16]. 
The overall prevalence of aging frailty in community 
worldwide is estimated to be between 5% and 20% 
[17-19]. The prevalence of frailty increases with age 
and women are more likely to be frail than men [18]. 
Aging frailty can be identified by two main models: 
physical frail phenotype and cumulative deficit index 
[2, 15]. According to the phenotypic model, frailty can 
be identified by the presence of at least three 
components: unintentional weight loss; self-reported 
exhaustion; weakness; slow walking speed and low 
physical performance [2]. It is characterized by 
diminished strength, endurance and reduced 
physiologic function, which increase an individual’s 
vulnerability for developing increased dependency or 
death [20]. On the other hand, the deficit model 
describes frailty in terms of the accumulation of 
individual impairments that include comorbid 
diseases, symptoms, signs and disabilities, collectively 
referred to as deficits [15]. While these two 
instruments are different for evaluating frailty, both 
have received empirical validation. 

With the process of aging, frailty may be caused 
by multiple causes and contributors, including genetic 
and environmental factors [21-24]. To be more 
specific, genome instability [25], DNA damage [26], 
epigenetic alternations [27], loss of proteostasis [28], 
oxidative stress [29], chronic inflammation [30], 
mitochondrial dysregulation [31], and stem cell 

exhaustion [24, 32] are involved in the progression of 
aging frailty. These hallmarks are interconnected and 
ultimately lead to cellular senescence. The senescent 
cells increase in multiple tissues with aging [33], and 
secrete a host of inflammatory cytokines, chemokines, 
growth factors and matrix remodeling proteases, 
collectively known as the senescence-associated 
secretory phenotypes (SASP), which lead to the 
chronic inflammation and age-related tissue 
deterioration [34, 35]. Moreover, senescence reduces 
the regenerative potential of stem cells pools and 
leads to endogenous stem cells exhaustion. The 
resident stem cells, including MSCs, HSCs 
(hematopoietic stem cells), neural stem cells (NSCs) 
and satellite cells undergo senescence during aging 
process, showing age-related decline in repopulation 
capacity and differentiation potential with reduced 
lifespan [36-39]. The reduced abilities of stem cells fail 
to maintain their proliferation capacity and 
differentiation potential [40]. Accordingly, the 
capacity to regenerate damaged tissues decline of 
regeneration upon damage decline, which results in 
the imbalance of tissue homeostasis after injury or 
stress [34, 41]. The sum of these integrative hallmarks 
produces the clinical phenotypes of the elderly with 
aging frailty, as seen in physiological loss of reserve 
and reduced organ function [42]. The disfunctions of 
brain, heart, muscle, and endocrine system are linked 
to aging and impaired homeostasis, which are 
believed to be involved in the development of frailty 
[16]. The multiple types of aging-related damages 
may constitute the major culprits of phenotypes of 
frailty, as the integrative consequence of stem cell 
exhaustion, diminished homeostasis, and organ repair 
[43]. In this regard, regenerative medicine and cellular 
therapy has been long proposed and examined 
clinically. As a promising candidate for tissue 
regeneration, MSCs have gathered great attention in 
the field of regenerative medicine. Transplantation of 
MSCs may serve as an innovative therapeutic 
approach for preventing and even reversing 
development of aging frailty [44, 45]. 

Basic Characteristics of MSCs 
MSCs are the non-hematopoietic stem cells 

which exhibit spindle-shaped structure and plastic- 
adherent properties [46]. Originally isolated from 
bone marrow in 1968 [47], MSCs were successively 
found to exist in various tissues and can be easily 
harvested from multiple tissues, including adipose 
tissue, marrow spaces of long bone, skeletal muscle, 
synovial fluids, umbilical cord blood, placenta, and 
dental pulp [48-51]. As the multipotent progenitors, 
MSCs have displayed the ability to give rise to several 
different phenotypes, including osteocytes, 
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chondrocytes, adipocytes, fibroblast, and many others 
[52, 53]. However, MSCs exhibit heterogeneous 
features among their subpopulations regarding to 
their proliferation rate and secreted cytokines [54, 55]. 
In addition, the discrepancy of isolation and 
cultivation procedures between different laboratories 
also drives the development of standardized criteria 
for identifying unique populations of MSCs. In 2006, 
the International Society for Cellular Therapy (ISCT) 
has proposed the minimum criteria to define human 
MSCs [46]. According to ISCT, MSCs must be 
plastic-adherent and positive for specific surface 
makers, namely, CD73, CD90 and CD105 but be 
negative for CD14, CD19, CD34, CD45 and HLA-DR. 
More importantly, MSCs must be capable of 
differentiating into multilineage cell types in vitro. 
MSCs can migrate automatically toward injury areas 
and spontaneously differentiate into desired tissues to 
perform regenerative functions, which are described 
as tropism [48, 56]. The therapeutic effects of MSCs, 
including their anti-inflammatory and 
immunomodulatory abilities, are exerted via secretion 
of several cytokines and soluble factors and signaling 
pathway activation. MSCs had the low expression of 
MHC/HLA class I but do not express MHC/HLA 
class II, which can protect them from host immune 
detection. The biological property of immune evasion 
prolongs their persistence in the host and enhances 
their therapeutic effects [57]. To date, MSCs have been 
considered as one of the most promising stem cell 
types for cell therapy. MSCs are associated with 
unique capability of self-renewal and extensive 
potential of differentiation, which have generated 
great interest in the fields of regenerative medicine 
[58]. Multiple lines evidence have documented that 
the transplantation of MSCs can be utilized as a 
suitable therapeutic approach in the treatments of 
some intractable diseases, including traumatic brain 
injury [59] and spinal cord injury [60], cardiovascular 
diseases [61], stroke [62] and liver diseases [63]. The 
specific characteristics, along with the therapeutic 
benefits of MSCs support the potential use of MSCs in 
future therapies for aging frailty. 

MSC Therapy for the Attenuation of 
Aging Frailty 
Aging Brain 

Frailty is a state of increased vulnerability to 
stressor events due to multimorbidity and multiple 
impairments in different systems. Aging brain or frail 
brain would lead to central nervous system 
impairments with cognitive decline, which play a 
crucial role in the development of physical frailty [64, 
65]. More importantly, the deterioration of brain is 

associated with gait impairments, which is considered 
as an important contributor to frailty [66]. 

Neuroprotective Effects of MSCs 
In aging process, almost all the brains undergo 

characteristic changes, including brain atrophy, loss 
of neurons and synapse connections. These 
age-related changes are responsible for the decline in 
neuronal activity and synaptic dysfunction that linked 
to neurodegeneration [67]. The effects of transplanted 
MSCs have been documented in vivo and vitro 
experiments in several studies, which have shown 
that MSCs could promote neurogenesis and improve 
neurological state [68, 69]. Intravenous infused MSCs 
can cross the blood-brain barrier (BBB), which is an 
essential prerequisite for proper efficacy [70-72]. Then 
intravenous injected MSCs can migrate to the injured 
regions and differentiate into neuron-like-cells via 
secreting various neurotrophic factors, such as nerve 
growth factor (NGF), vascular endothelial growth 
factor (VEGF) and fibroblast growth factor 2 (FGF2). 
These secretomes are released from non-genetically 
modified MSCs, playing a significant role in inducing 
neuronal differentiation and increasing survival rates 
after injury [73, 74]. Likewise, administration of MSCs 
via intracerebral and intrathecal routes also showed 
positive results of neuronal regeneration promoted by 
MSCs in animal models [75, 76]. Moreover, microglia 
and astrocytes in aging brain become senescent and 
express the senescence-associated secretory 
phenotype; several inflammatory cytokines are 
secreted to maintain state of low-grade inflammation 
that play a significant role in natural aging and 
neurodegeneration [77]. MSCs possess anti- 
inflammatory properties adding to their neuro-
protective effects. A great number of studies have 
showed that transplanted MSCs could reduce the 
levels of pro-inflammatory cytokines [78], or promote 
macrophages to polarize into the anti-inflammatory 
M2 phenotype [79]. The anti-inflammatory effects are 
conducted through secreting multiple cytokines, 
including IL-10 and transforming growth factor-β 
(TGF-β) [80]. At such, the anti-inflammatory 
microenvironments induced by transplanted MSCs 
help promote neurogenesis and prevent neural 
degeneration [78, 81]. Ameliorating cognitive decline 
may be a promising approach to prevent brain frailty. 
There are several altered proteins in the aged brains. 
The presence of amyloid-β, neurofibrillary tangles, 
Lewy bodies, the causative factors of neuro-
degenerative diseases, such as AD, may contribute to 
deterioration of brain [66, 82, 83]. Inspiringly, MSCs 
administration has been documented to reduce 
plaque deposition, restore microglial function and 
increase synaptic and dendritic stability in animal 
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models of AD [68, 69]. To date, substantive preclinical 
studies are underway to provide positive results, and 
MSC-based therapy carries promise to reverse the 
deterioration of brain, which has become a potential 
therapeutic approach for the amelioration of aging 
frailty (Figure 2). 

Cardiovascular Risk 
The cardiovascular diseases and aging frailty 

often coexist. Growing evidence has showed that 
cardiovascular diseases including myocardial 
infarction, atrial fibrillation and chronic heart failure 
are associated with the increased high incidence of 
aging frailty [84-86]. Cardiovascular diseases could 
give rise to physical disability and frailty through 
impaired muscle function [85, 87]. The interplay 
between cardiovascular diseases and frailty may 
provide a novel therapeutic strategy in the 
interventions of frailty. 

Cardioprotective Effects of MSCs 
In the aging process, aging is associated with the 

gradual loss of biological functions, resulting in the 

increased cardiac vulnerability to cardiovascular 
dysfunction. The cardiac senescence is reflected by 
decreased cardiac performance and progressive 
cardiac structural remodeling. The various 
phenotypic changes in functions and structures of 
heart, including cardiomyocyte hypertrophy and 
apoptosis [88], interstitial fibrosis [89], 
comprehensively account for the decreased cardiac 
function, which may eventually lead to the 
progression of cardiovascular diseases in the aging 
populations. Several preclinical studies have 
demonstrated that MSCs could exert cardio-protective 
effects and promote cardiac functions through 
different mechanisms. MSCs could migrate to the 
injured zone and differentiate into endothelial cells 
and cardiomyocyte-like cells to promote 
neovascularization and cardiac functions, which can 
effectively offer repair in the sites of damaged 
myocardium. It has been found that MSCs exert many 
therapeutic functions through paracrine effects [90, 
91]. MSCs can produce multiple cytokines and 
angiogenic factors released directly in soluble form or 
in extracellular vesicles and exosomes, playing a role 

 

 
Figure 1. Overview of Aging Frailty and its Pathophysiology. In the process of aging, several genetic and environmental factors gradually result in the loss of tissue 
homeostasis and organ dysfunction, ultimately leading to the progression of frailty in the aged organism. 

 
Figure 2. Neuroprotective Effects of MSCs on Aging Brain. Administration of MSCs have shown therapeutic potential for the treatment of age- related brain 
dysfunction. The neuroprotective effects of MSCs include promoting neurogenesis, neural differentiation and anti-inflammation, and these effects are mainly associated with 
paracrine functions. In addition, MSCs could improve cognitive functions through reducing plaque deposition and enhancing synaptic stability. Abbr: NGF: nerve growth factor; 
VEGF: vascular endothelial growth factor; FGF2: fibroblast growth factor 2; IL-2: interleukin-2; TGF-β: transforming growth factor-β. 
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in improving cardiac functions after damage [92]. The 
left ventricular ejection fraction (LVEF) is a significant 
parameter for evaluation of cardiac function, which 
would become deteriorated subsequently after 
ischemic events. It has been shown that LVEF can be 
successfully preserved in the MSCs treated group as 
compared to the control group in the animal model 
with ischemic myocardium [93]. The positive results 
have been further confirmed in clinical trials that 
transplantation of MSCs could significantly attenuate 
adverse ventricular remodeling and improve LVEF in 
patients with heart failure [94, 95]. Furthermore, many 
other studies have demonstrated MSC therapy can be 
capable of reducing the infract size and promoting 
cardiac hemodynamics in mice with ischemic 
myocardium [96]. Current evidence shows that MSCs 
could persist for 4 weeks after transplantation, 
predominantly in the border zone of infarcted 
myocardium, whereas few MSCs were detected in the 
normal cardiac tissues [97]. 

It has been well recognized that fibroblast could 
replace cardiomyocytes after injury, which cause 
myocardial remodeling and fibrotic scarring. The 
anti-fibrotic molecule, TNF-α-induced protein 6 
(TNAIP6) is secreted by MSCs to decrease the damage 
to the heart and fibrosis. MSCs suppress the excessive 
inflammatory responses caused by cardiomyocyte 
cells injury and subsequent fibrosis [98]. In addition, 
MSCs attenuate arrhythmia by improving impulse 
conduction in the model of myocardial infarction [99]. 
Taken together, this novel approach of MSCs 
transplantation can ameliorate cardiovascular 
symptoms via several mechanisms, including 
angiogenesis, repair of the injured tissue, and 
reduction of infarct size as well as regulation of 
cardiac structural remodeling, which has a great 
potential to be applied in the regenerative medicine to 
improve the treatment of aging frailty [100] (Figure 3). 

Sarcopenia 
Sarcopenia is an age-related disease with the 

progressive loss of muscle mass and strength [101, 
102]. The declines in skeletal mass and function pose 
significant risks for adverse outcomes including 
mortality, disability and falls among older adults 
[103-105]. The identification of sarcopenia is based on 
the co-occurrence of low muscle mass as well as slow 
gait speed or weak handgrip strength as measures of 
low muscle function [106]. Sarcopenia has been 
considered as an important component of frailty 
syndrome and the pathway through which the frail 
condition can be intervened or reversed [107]. 

Protective Effects of MSCs on Muscles 
The interventions that can alleviate sarcopenia 

may be an important approach to improve or reverse 
frailty status. It has been showed that MSCs could 
attenuate sarcopenia via increasing skeletal muscle 
weight and myofiber cross-sectional area in animal 
models of sarcopenia [108]. The physical performance 
including muscle strength as well as endurance were 
significantly enhanced. MSCs also inhibit apoptosis of 
muscles and suppress expressions of chronic 
inflammatory cytokines, which may explain the 
improvement of skeletal muscle strength and function 
after transplantation of MSCs. In addition, MSCs have 
capability to activate resident skeletal muscle stem 
cells, which lead to myogenesis and differentiation of 
muscle tissues [109]. The positive results provide 
novel insights into sarcopenia intervention, 
suggesting a potential role for MSC therapy in aging 
frailty (Figure 4). 

Altered Hormones 
Advance in age leads to the disruption of 

endocrine system and imbalance of metabolic 
homeostasis, which may result in the breakdown of 
adaptation process in response to stresses [110]. The 
alternations in hormonal networks and abnormal 
hormonal excesses or deficits during aging can be 
translated in clinical scenarios that promote the 
pathogenesis of frailty and diseases [111]. As 
age-related disruption of the endocrine system is 
considered as a fundamental event in the 
pathogenesis of frailty, the efficacious strategies that 
can promote metabolism are needed. 

Therapeutic Effects of MSCs on Hormones 
Accumulating evidence shows that adverse 

ageing profiles and frailty are related to the 
alternations in hormonal networks [110-112]. 
Age-related frailty is a common problem in older 
adults, as a result of the imbalance between the 
anabolic and catabolic hormones. The circulating 
anabolic hormones, including insulin-like growth 
factor (IGFs), growth hormone, and sex hormones, are 
important in maintaining healthy body compositions 
and organ functions. However, there is an overall 
decline in the amounts of hormones with age. For 
instance, the decreased levels of testosterone could 
lead to hypogonadism and reduced muscle mass. 
Researchers have documented that MSCs 
transplantation could recover the levels of 
testosterone back to normal through paracrine 
functions [113]. Notably, growth hormone and IGF-1 
also decrease with aging, the insufficient hormones 
result in body composition parameters with elevated 
fat mass and reduced lean mass [110, 114]. MSCs 
exerting beneficial paracrine effects are well 
recognized. It has been found that MSCs are capable 
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of secreting multiple growth factors and cytokines, 
promoting regeneration of Leydig cells and many 
surrounding cells [113, 115]. In addition, MSCs can 
develop and differentiate into Leydig cells in the adult 
testis [116]. 

In addition to the deficiency of hormones, 
decreased sensitivity of tissues to actions of hormone 
take place in the elderly. Notably, insulin resistance 
develops with age, which is a state of poor sensitivity 
of peripheral tissues to insulin [117]. Insulin resistance 
may lead to metabolic disorders and accelerate 
decline in muscle strength and function that give rise 
to frailty [118, 119]. The roles of aging endocrine 
system in the development of frailty and as a target 
for interventions of frailty are investigated. The 
chronic inflammation is an important determiner of 
insulin resistance [120], so the protective role of MSCs 
in improving insulin sensitivity via suppressing the 
inflammatory activity has been focused. Preclinical 
study showed that MSCs after transplantation could 
significantly promote the response of target organs to 
insulin [121]. The therapeutic effect of MSCs may be 
attributed to regulation of immune process and 
systemic inflammation [122]. Numerous data have 
reported that MSC-based therapy can attenuate 

insulin resistance and improve beta cell function via 
inhibiting the production of inflammatory cytokines 
(e.g., IL-1β, Il-18, TNF-α) [123]. MSCs play a pivotal 
role in reducing the number of CD3+ and CD4+ T 
lymphocytes, which initiate the inflammatory process 
in the organism [122]. Given the therapeutic potential 
of MSCs on delineating the age-related alterations of 
hormones, MSC-based therapy may be a very 
promising candidate for promoting quality of life in 
the elderly population (Figure 5). 

Clinical Transplantation of MSCs in 
Patients with Aging Frailty 

While current evidence sheds a promising light 
for the stem cell-based therapy, data related to frailty 
is still limited in clinical settings [124, 125]. Aging 
FRailTy via IntravenoUS Delivery (CRATUS) went 
through the phase I and II stages. The phase I trial was 
a nonrandomized, dose-escalation study, which has 
reported the beneficial effects after transplantation of 
BM-derived MSCs in patients with aging frailty [124]. 
In that study, a total of 15 eligible patients were 
enrolled to receive the intravenous infusion of MSCs 
with the dose: 20-million, 100-million, 200-million, 

 

 
Figure 3. Cardioprotective Effects of MSCs. With advancing age, heart often develop decreased cardiac performance. The progressive cardiac structural remodeling results 
in low cardiac function and cardiovascular diseases that may contribute to aging frailty. After administration, MSCs home to the injured regions, where MSCs differentiate into 
endothelial cells and cardiomyocyte-like cells to promote neovascularization and cardiac functions. MSCs can suppress the excessive inflammatory responses and subsequent 
fibrosis via paracrine functions. MSC therapy show positive results by improving the prognosis of cardiovascular diseases. 

 
Figure 4. Protective Effects of MSCs on Muscles. Sarcopenia is a major contributor to frailty in the elderly. Transplanted MSCs can exert protective effects on muscles, 
including inhibition of muscles apoptosis and regulation of chronic inflammatory as well as activation of resident skeletal muscle stem cells. Administration of MSCs can promote 
myogenesis and improve physical performance. 
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respectively (5 patients in each group). Inspiringly, all 
patients in the treatment groups had increased 
6-minute walk distance at 3 months and 6 months. 
The levels of inflammatory cytokine, TNF-α 
decreased at 6 months. Among the three groups, 
100-millon cell-dose group showed the best 
performance in the improvement of 6-minute walk 
distance, cognitive status and physical function. With 
regard to the safety of MSCs administration, no 
treatment-emergent serious adverse events occurred 
within 1-month post infusion. All patients could 
tolerate the doses of MSCs infused well. One death 
was reported at 258 days after infusion in the 
200-million group which was determined to be 
irrelevant to MSCs transplantation. This study 
above-mentioned was succeeded by the randomized, 
double-blinded, and placebo-controlled, stage II of 
CRATUS study [125]. In the consecutive study, a total 
of 30 patients with aging frailty were randomized into 
100-million, 200-million, and placebo groups. The 
results showed that immunologic improvement was 
seen in both the treatment groups. Notably, patients 
in the 100-million group performed better than that in 
the 200 million with improved 6-minute walk 
distance, short physical performance, forced 
expiratory volume in 1 second and decreased serum 
TNF-α levels from baseline to 6 months. More 
importantly, this study documented that intravenous 
administration of MSCs was safe, which did not incur 
any treatment-related serious adverse events for 12 
months post infusion. Intriguingly, the consecutive 
two trials confirm that 100-million cells represent the 
superior dose level compared to 200-millon cells, yet 
the mechanism underlying the inverse dose 

relationship cannot be sufficiently explained [125]. A 
plausible explanation may be associated with 
deleterious effects of higher doses on cell retention, 
survival, or performance. Despite the positive 
findings, these two trials are preliminary and require 
larger RCTs to yield more convincing conclusions. 

In recent years, failure of MSCs to improve 
clinical outcome have been frequently encountered 
[126, 127], partially due to variability in culture 
methodologies [128], and poor survival of MSCs after 
transplantation [129]. The effect of MSCs largely 
depends on their capabilities to migrate, adhere, 
engraft to the injured site. Notably, the freshly 
isolated cells cultured in presence of specific cytokines 
or hypoxic conditions have higher engraftment 
efficiency [130]. Furthermore, aggregate culture 
conditions used for MSC production may improve 
secretory capacity [128]. The use of different MSC 
derivatives, such as extracellular vesicles and 
exosomes, may be more effective and preferable than 
the use of MSCs. There is still a long way to go before 
considering MSCs as an ideal clinical tool for aging 
frailty. 

Challenges for Clinical Application of 
MSC Therapy 
Efficacy  

MSCs have the distinct advantages of rapid 
expansion, multi-lineage differentiation and potent 
ability of secreting tropic and immunomodulatory 
cytokines. For years, transplantation of MSCs has 
evolved as the promising therapeutic strategy for 
regenerative medicine and tissue engineering [131]. 

 

 
Figure 5. Therapeutic Effects of MSCs on Abnormal Hormones. Age-related alternation in hormonal networks include the decline in levels of circulating anabolic 
hormones and insulin resistance, which are associated with development of frailty. Administration of MSCs can increase the levels of anabolic hormones through paracrine 
functions and improve insulin sensitivity by regulating immune response. MSC therapy attenuate the age-related structural and functional changes of muscle and bone, thereby 
promoting the quality of life among the older adults. 
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However, there are major limits to MSCs utilization. 
The allogeneic MSCs derived from different donors 
display different biological properties. Aged MSCs 
tend to exhibit the cellular senescence associated 
phenotypes, including the enhanced senescence- 
associated β-galactosidase activity, decreased 
stemness of stem cells, increased p16 expression, and 
apoptosis of cells as well as telomere attrition [132, 
133]. With telomeres shortening, aged MSCs 
gradually cease to proliferate after a certain number of 
cell divisions. The proliferation and differentiation 
potential of MSCs progressively decline with age of 
donor and passage number of MSCs cultured in vitro 
[134, 135]. Cellular senescence impairs the self- 
renewal and differentiation potential of MSCs, which 
limit their therapeutic effects [136]. The replicative 
senescence of MSCs significantly limits their 
expansion to the large quantity necessary for clinical 
applications that need hundreds of millions of MSCs 
for per treatment [137]. Moreover, there are limits for 
autologous MSC applications. It is difficult to obtain 
sufficient amount of healthy MSCs from patients with 
some systemic diseases. Additionally, the process of 
autologous extraction is time-consuming, which is 
difficult to be utilized for the acute treatment of life- 
threatening diseases [131]. Other concerns regarding 
the efficacy of MSCs are their persistence after 
transplantation. These issues need to be addressed 
prior to widespread clinical application to enhance 
the efficacy of MSC therapy. 

Safety Concerns 
MSCs are emerging as the promising sources of 

cell-based therapy due to their pluripotency and ease 
of expansion. However, ethical issues regarding to 
security remain inadequately addressed. It has been 
noted that long-term MSC expansion in vitro can lead 
to chromosomal abnormalities [138, 139], which may 
induce tumors in vivo [140]. In the tumor micro-
environment, MSCs possess immunosuppressive 
effects, which promote the progression of tumors 
[141, 142]. MSCs show the potential to differentiate 
into multiple tissues, such as bone and cartilage, so 
the unwanted differentiation of transplanted MSCs 
may promote tumor growth [143]. Furthermore, it is 
well accepted that angiogenesis exerts an important 
role in invasion and metastasis of tumors. MSCs can 
differentiate into vascular endothelial cells, secreting 
several growth factors including VEGF and PDGF 
(platelet-derived growth factor), which promote 
tumor angiogenesis and invasive behavior [144]. 
MSCs also involve in the tumor invasion and 
metastasis known as epithelial to mesenchymal 
transition (EMT), a process driving tumor cells to lose 
polarity and acquire invasive phenotype [145, 146]. In 

this regard, the tumorigenic potential of MSCs may 
become a major safety concern for the use of MSCs in 
clinical practice. MSC-based therapy may be a double- 
edged sword; the application of MSCs in clinical 
setting should be evaluated cautiously due to security 
concerns. Of note, as paracrine effect of MSCs plays a 
pivotal role, the bioactive secretions of MSCs have 
good efficacy and safety. For instance, extracellular 
vesicles, exosomes, and cytokines can avoid the risk of 
genetic instability and potential malignant 
transformation may be developed as a safe and 
effective agent in the regenerative medicine. 
Conclusions and Future Perspectives 

Frailty syndrome is a nonspecific state of 
increased vulnerability to stressors and is much more 
common in the old populations. Frailty is strongly 
associated with adverse outcomes, which may place a 
heavy burden on society in the coming years. As there 
is no specific approved treatment for frail patients, 
deeper understanding of the biological mechanisms of 
aging frailty to explore effective interventions is of 
great significance. Notably, multiple pathologic 
changes develop with age, aside from DNA damage 
and chronic inflammation that may contribute to 
aging frailty, endogenous stem cell exhaustion may be 
involved in the process of aging frailty. The frail 
patients may display the disruption of physiological 
homeostasis with decline in functions of several 
organs. 

MSCs are emerging as the ideal sources of cells 
to solve the multi-organ problems. MSCs have potent 
self-renewal and differentiation capability. They are 
easy to be harvested from many tissues and can 
engraft to injured sites. In addition, the immune 
privileged state and anti-inflammatory property make 
MSC-based therapy as a promising tool in systemic 
applications. Current evidence has showed that MSCs 
could ameliorate status of frailty by promoting the 
functions of multiple important organs, including 
brain, muscles, heart, and endocrine system. To date, 
allo-hMSCs had undergone the phase I/II trials in 
which the safety and efficacy of MSC-based therapy 
for aging frailty were initially demonstrated. MSCs 
could attenuate symptoms of frail patients and no 
treatment-related serious adverse event was reported. 

Transplantation of MSCs has generated great 
interests in regenerative medicine. However, the 
disputes arise regarding lack of efficacy as well as 
tumorigenic potential of MSCs on basis of current 
evidence. Although many findings shed a new light 
on MSC-based therapy for aging frailty, the scales and 
numbers of current clinical trials remain small, much 
further studies are warranted to elucidate if such 
therapeutic strategy could be safe and effective on 
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regenerative medicine. The underlying mechanism of 
MSCs transplantation for the intervention of aging 
frailty should also be investigated. 
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