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Aims This study aims to assess whether information derived from the raw 12-lead electrocardiogram (ECG) combined
with clinical information is predictive of atrial fibrillation (AF) development.

...................................................................................................................................................................................................
Methods
and results

We use a subset of the Telehealth Network of Minas Gerais (TNMG) database consisting of patients that had
repeated 12-lead ECG measurements between 2010 and 2017 that is 1 130 404 recordings from 415 389 unique
patients. Median and interquartile of age for the recordings were 58 (46–69) and 38% of the patients were males.
Recordings were assigned to train-validation and test sets in an 80:20% split which was stratified by class, age and
gender. A random forest classifier was trained to predict, for a given recording, the risk of AF development within
5 years. We use features obtained from different modalities, namely demographics, clinical information, engineered
features, and features from deep representation learning. The best model performance on the test set was
obtained for the model combining features from all modalities with an area under the receiver operating character-
istic curve (AUROC) = 0.909 against the best single modality model which had an AUROC = 0.839.

...................................................................................................................................................................................................
Conclusion Our study has important clinical implications for AF management. It is the first study integrating feature engineering,

deep learning, and Electronic medical record system (EMR) metadata to create a risk prediction tool for the man-
agement of patients at risk of AF. The best model that includes features from all modalities demonstrates that
human knowledge in electrophysiology combined with deep learning outperforms any single modality approach.
The high performance obtained suggest that structural changes in the 12-lead ECG are associated with existing or
impending AF.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

* Corresponding author. Tel: (þ972) 4 829 4125, Email: jbehar@technion.ac.il
VC The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

European Heart Journal - Digital Health (2021) 2, 576–585 ORIGINAL ARTICLE
doi:10.1093/ehjdh/ztab071

https://orcid.org/0000-0002-2740-0042
https://orcid.org/0000-0003-3632-8529
https://orcid.org/0000-0001-5956-7034
http://creativecommons.org/licenses/by-nc/4.0/


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

...........................................................................................................................................................................................
Keywords Atrial fibrillation • Deep learning • Risk prediction

Introduction

Major cardiovascular and cerebrovascular events occur in individuals
without known pre-existing cardiovascular conditions. Preventing
such events remains a serious public health challenge. For that pur-
pose, clinical risk scores can be used to identify individuals with high
cardiovascular risks.1,2 However, available scoring scales have shown
moderate performance.3 Despite being part of the routine evaluation
of many patients in both primary and specialized care, the role of
electrocardiogram (ECG) analysis in cardiovascular disease predic-
tion and, hence, prevention is not clear.

Atrial fibrillation (AF) is the most common arrhythmia, with an
estimated prevalence of 3% in adults.4 It is associated with quivering
or irregular heartbeat that can lead to blood clots, stroke, heart fail-
ure, and other heart-related complications.5 Much interest has been
given to developing novel algorithms for AF detection in the past dec-
ade.6 Because of its prevalence and clinical importance, AF is a good
model for the development of new risk assessment algorithms. Wang
and Wang7 highlight AF risk-prediction using big data and Machine
learning (ML) as a new opportunity to improve AF management.
Two recent work from Christopoulos et al.8 and Raghunath et al.9

made use of a deep learning approach using the raw 12-lead ECG sig-
nal as input for AF prediction. However, the deep learning approach
limits the interpretation of the features found to be predictive of fu-
ture AF. Furthermore, combining features engineered from the ECG
morphology and heart rate variability (HRV) with deep representa-
tion learning features may improve the predictive performance.
Overall, little research to date has investigated the feasibility of

cardiac abnormality risk prediction, i.e. predicting the future occur-
rence of a cardiac abnormality, using a data-driven approach based
on the raw 12-lead ECG time series. Novel robust predictive models
are likely to enhance clinical management of at-risk individuals and
may also provide new insights into the aetiology of cardiac abnormal-
ities. We introduce in this work a hybrid data-driven model combin-
ing demographics, feature engineering (or ‘digital biomarkers’) and
deep representation learning obtained from the raw 12-lead ECG to
predict the future occurrence of AF.

Methods

Database
The 12-lead ECG were obtained from the Telehealth Network of Minas
Gerais (TNMG) between 2010 and 2017, a public telehealth system
assisting 811 out of the 853 municipalities in the state of Minas Gerais,
Brazil. The 12-lead ECG examination were performed mostly in primary
care facilities using a tele-electrocardiograph manufactured by Tecnologia
Eletrônica Brasileira (S~ao Paulo, Brazil)—model TEB ECGPC—or
Micromed Biotecnologia (Brasilia, Brazil)—model ErgoPC 13. Recordings
were also performed in emergency departments, ambulances and hospi-
tals. Refer to Ribeiro et al.10,11 for more details. The original database had
1 773 689 patients. Patients less than 16 years old and with invalid ECG
recording were excluded, resulting in 1 556 958 patients. The database
used in this research is a subset from the TNMG that includes a total of
n = 1 130 404 recordings from m = 415 389 unique patients who had
repeated 12-lead ECG examinations within the study period (2010–
2017) and while also excluding patients with multiple recordings but all
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being performed during the same day following the baseline examination.
Within the selected subset, the median and interquartile number of
recordings per patient was 2 (2–3), see Supplementary material online,
Figure S1. The median and interquartile age for the recordings were 58
(46–69), see Supplementary material online, Figure S2, and 38% of the
patients were males. The recording length is between 7 and 10 s and
were originally sampled in frequencies ranging from 3 kHz and 1 kHz. We
use the same pre-processing as Ribeiro et al.11: we resample the record-
ing at 400Hz and zero-pad the signal so it becomes 4096 samples long
(4096/400 Hz–10.24 s). All ECGs were interpreted by a team of trained
cardiologists using standardized criteria,12 in order to generate an ECG
free text report. The reference diagnosis for the 12-lead ECG were ori-
ginally obtained by testing the agreement between recognition of specific
ECG diagnoses from the cardiologist reports (using natural language
processing) and the automated diagnosis provided by the Glasgow ECG
analysis software. In the case of disagreement, the decision was taken
heuristically or through manual review.10

Considering the presence or not of AF, we defined C0 as the class con-
taining the recordings with a positive diagnosis for AF. A recording was
included in class C1 if it had a negative diagnosis for AF and there was, for
the same patient, a positive AF diagnosis documented within 5 years, time
interval distribution for those patients is presented in Supplementary ma-
terial online, Figure S3. A recording was included in class C2 if it had a
negative diagnosis for AF and there was no documented future positive
diagnosis of AF for the corresponding patient. The mean follow-up time
was 1.25 years. Recordings that were recorded after a first positive diag-
nosis for AF were discarded. This resulted in a total of 14 947 recordings
in C0, 12 142 in C1 and 1 078 545 in C2—see the block diagram in
Figure 1.

Data preprocessing
To automatically assess the quality of the raw ECG examples and discard
flat or noisy examples, we included a signal quality preprocessing step
(see Supplementary material online, Note SN3). Before computing the

ECG morphological biomarkers prefiltering of the raw ECG time series
was performed. Specifically, we used a zero phase second-order infinite
impulse response bandpass filter with the passband 0.67–100 Hz12 to re-
move baseline wander and high frequency noise. We used a Notch filter
at 60 Hz to remove the power-line interference (see Supplementary ma-
terial online, Figure S4).

Digital biomarkers and representation

learning features
Digital ECG biomarkers engineered from the heart rate variability
(denoted ‘HRV’) and morphology of the ECG (denoted ‘MOR’) time ser-
ies were engineered for each lead. In addition, the pretrained DNN11 was
used as a feature generator to include representation learning features
(denoted ‘DNN’). Briefly, the DNN structure of Ribeiro et al.11 Consists
of convolutional layer followed by four residual blocks with two convolu-
tional layers per block. The output of the last block is fed into a fully con-
nected layer with a Softmax function. The output of each convolutional
layer is rescaled using batch normalization and fed into a rectified linear
activation unit (ReLU). Finally, metadata (denoted ‘META’) were included
as additional features. A summary diagram illustrating the overall ‘hybrid’
strategy taken is shown in Figure 2. A total of 16 HRV-based features13

were engineered for each recording (Supplementary material online,
Table S1). RR intervals were obtained from lead V1 using the epltd R-
peak detector. For MOR features, a total of 36 different features were
engineered; 12 features extracted from intervals duration
(Supplementary material online, Table S2) and 24 from waves characteris-
tics (Supplementary material online, Table S3) to describe the ECG
morphology. These features were extracted for individual leads resulting
in a total of 432 features. Some of these features were described in the
work of Assaraf et al.14 and are based on the detection of fiducial points
on the ECG waveform found using the popular open source wavelet al-
gorithm.15 In addition, within the MOR feature set (Table 1), we included
a measure of signal quality, bsqi, for each lead. Overall the number of
MOR features per recording was 445. The DNN model presented in the

Figure 1 Block diagram showing the patient inclusion and exclusion criteria and classes definition.
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original work by Ribeiro et al.11 was used as feature generators by using
the features generated at the level of the first fully connected layer. For
that purpose, the DNN was retrained using the 1 141 569 examples that
had only 12-lead ECG recording(s) performed during the day of the base-
line examination and thus were not used for our AF risk prediction ex-
periment. In other words, the trained risk prediction models did not use
any of the recordings used for training the DNN feature generator. Thus,
there was no information leakage. For a 12-lead ECG recording, a total of
5120 DNN features were generated (Table 1). Finally, 15 META features
(Supplementary material online, Table S4) were included (Table 1). This
was to evaluate how patient information typically available from the hos-
pital EMR may improve the model prediction. Although it is important to
note that the META features used were self-reported by the patient at
the time of the examination and thus are not directly obtained from an
hospital EMR.

Performance statistics
The nonparametric Mann–Whitney rank test was used to determine
whether individual features were significantly different between
recordings in class C1 and C2. The lower the P-value the stronger the
evidence against the null hypothesis. For all features, a P-value cut-off
at P < 0.05 was used for significance testing. In order to assess the per-
formance of the models in correctly classifying individual examples
the following statistics will be computed: sensitivity (Se), specificity
(Sp), positive predictive value (PPV), the harmonic mean between the
Se and PPV termed F1 measure and the area under the receiver oper-
ating characteristic curve (AUROC). We estimated the confidence
interval for AUROC using bootstrapping. That is, the AUROC was
repeatedly computed on randomly sampled 80% of the test set (with
replacement). The procedure was repeated 1000 times and used to
obtain the intervals.

....................................................................................................................................................................................................................

Table 1 The feature groups that compose each one of the presented models

DNN MOR HRV META Number of features Number of selected features

Model 1 X 15 —

Model 2 X 16 —

Model 3 X 445 80

Model 4 X 5120 340

Model 5 X X X 5581 400

Model 6 X X X X 5596 180

Feature selection was performed using mRMR.

Figure 2 Overview of our experimental setting: digital biomarkers (HRV and MOR) are engineered from the 12-lead ECG. In addition, a pretrained
DNN model is used as a feature generator taking as input the raw 12-lead ECG. Finally, EMR information are added as metadata features. The resulting
vector of features (HRV, MOR, DNN, and EMR) is used to train random forest classifier in predicting whether an individual will develop AF within 5
years.

AF risk prediction from the 12-lead ECG 579
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Examples from C1 and C2 were assigned to train-validation and test sets
in an 80:20% split and with stratification by class, age and sex, see
Supplementary material online, Table S5. ML models were trained to as-
sess AF risk prediction defined as the ability of the classifier to predict the
future development of AF within 5 years. A random forest (RF) classifier
was trained with the biomarkers as input. To account for the class imbal-
ance, the minority class was proportionally over-weighted. Feature selec-
tion was performed using the minimum redundancy maximum relevance
(mRMR) algorithm.16 In brief, mRMR selects the set of relevant features
while controlling for redundancy within the set of selected features.
Hyperparameters were selected using BayesSearchCV algorithm imple-
mented in the scikit-optimize library17 and five-fold cross-validation on
the training set using 100 iterations. Hyperparameter and associated
ranges for the search are listed in Supplementary material online, Table
S6. The behaviour of the model was also assessed on examples belonging
to C0 as it would be expected that the models predict a probability close
to one for example in this class. A total of six models, listed in Table 1
were evaluated. The threshold on the RF probabilistic output was defined
on the ROC curves obtained in cross-validation and so that Sp ¼ 0:95:
Indeed, having some false positive (FP) predictions is acceptable because
the consequences of interventions such as change in lifestyle, increases of
some drugs to better treat risk factors such as diabetes will be minimal.
Yet, the number of FP needs to be reasonable otherwise it would over-
burden the healthcare system with unnecessary follow-up examinations.

Survival analysis
We also performed Kaplan–Meier incidence-free survival analysis with
the patients included in the test set and considering a new AF as the clinic-
al endpoint. In order to build a per patient model (versus per recording),
we only considered the model prediction for the baseline, AF free, 12-
lead ECG (n = 26 982). Patients who did not developed new AF were
censored at the most recent encounter. A Cox proportional hazard ratio
(HR) model was trained using as input variable the AF risk prediction
model-predicted probability output. We computed the area under the

curve (AUC) for 5 years of new AF risk prediction, adjusted for age and
gender. In a subsequent model, we adjusted for comorbidities and cardio-
vascular risk factors variables. In a first analysis, the patients were divided
in five groups, according with quintiles of probability output of the ML
model: (i) those with probability less than 0.2; (ii) those with probability
between 0.2 and 0.4; (iii) those with probability between 0.4 and 0.6; (iv)
those with probability between 0.6 and 0.8; and (v) those with probability
greater than 0.8. In a second analysis, we considered two groups, based
on the decision threshold found for the model.

Results

Overall, 53 505 out of 1 095 942 recordings (i.e. 4.9%) were excluded
from the database after the signal quality step (Figure 1). Table 2 sum-
marizes the META data statistics for the patient’s baseline recording.
The patients in C1 (72.0 ± 13.17) were significantly older than those
in C2 (55.0 ± 16.27) and there were significantly more males in C1

(51.55%) vs. C2 (37.61%).

Statistical analysis of the features
The Mann–Whitney rank test performed for individual features for
C1 and C2 rejected the null hypothesis for 360 out of 445 MOR fea-
tures, for 14 out of 16 HRV features and 13 out of 15 META features.
Among the HRV features the minRR and PNN50 yielded the lowest
P-values. Among the MOR features the Q; ST; J; and PR yielded
the lowest P-values. Violin plots in Supplementary material online,
Figures S5 and S6 show the distributions of the HRV and MOR fea-
tures with the lowest P-values. The median and standard deviation
for HRV features and the top-20 MOR features are presented in
Supplementary material online, Tables S7 and S8, respectively. META
features are summarized in Supplementary material online, Table S9.

....................................................................................................................................................................................................................

Table 2 The table summarizes the META data statistics

C0 C1 C2 P-value

Age yearsð Þ; mean SDð Þ 72.00 (12.98) 72.00 (13.17) 55.00 (16.27) <0.001*

Amiodarone; n ð%Þ 197 (2.73) 165 (2.53) 2013 (0.51) <0.001*

Diuretics; n ð%Þ 2334 (32.3) 2072 (31.78) 85 025 (21.36) <0.001*

Sex; male; n ð%Þ 4011 (55.52) 3361 (51.55) 149 755 (37.61) <0.001*

PAH; n ð%Þ 3504 (48.5) 3198 (49.05) 143 902 (36.14) <0.001*

Chagas; n ð%Þ 432 (5.98) 384 (5.86) 9634 (2.42) <0.001*

Beta blockers; n ð%Þ 878 (12.15) 740 (11.35) 31 419 (7.89) <0.001*

Family CHD; n ð%Þ 1005 (13.91) 923 (14.16) 50 140 (12.59) <0.001*

MI; n ð%Þ 121 (1.67) 95 (1.46) 3207 (0.81) <0.001*

COPD; n ð%Þ 86 (1.19) 57 (0.87) 2423 (0.61) <0.001*

DM; n ð%Þ 561 (7.76) 542 (8.31) 28 633 (7.19) <0.001*

Obesity; n ð%Þ 335 (4.64) 391 (6.0) 22 868 (5.74) 0.001*

Dyslipidaemia; n ð%Þ 287 (3.97) 268 (4.11) 15 363 (3.86) 0.031*

Calcium blockers; n ð%Þ 0 (0.0) 0 (0.00) 95 (0.01) 0.155

Smoking; n ð%Þ 367 (5.08) 387 (5.94) 24 627 (6.19) 0.486

It includes a summary for the baseline recordings in C0; C1; C2. With examples in C0 being AF, examples in C1 developing AF within 5 years and examples in C2 not developing
AF within 5 years. Mann–Whitney rank test was performed between C1 and C2. Features ordered from most to least significant according to their P-value. The sign * indicates
statistical significance (Mann–Whitney rank test, P < 0.05).
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Classification
Using mRMR, a subset of the features was selected for models
3–6 (Table 1). The RF classifier performed the best for model 6
with AUROC = 0.909 [95% confidence interval (CI): 0.903–
0.914] on the test set. The decision threshold at 0.387 was found
so that Sp was 0.95 on the validation sets. Figure 3 shows the
ROC curves for the RF classifiers for models 1–6. Results are
shown on the test set that consists of 205 730 recordings among
which 2162 that belonged to C1 and 203 568 to C2. Table 3 sum-
marizes the performance statistics of the RF model. Figure 4
shows the probability distribution outputted by model 6 for all
examples belonging to the test set and for classes C0;C1; and C2.
The probability distribution for C1 was significantly (P < 0.05)
higher than for class C2.

Features importance
Supplementary material online, Figure S7 shows the feature im-
portance ranking for the top-30 features of the RF classifier for
model 6. The most important feature was age. Overall the top-
30 features included 1 META feature, 3 HRV features, 9 MOR
features, and 17 DNN features. Looking at the top-100 features,
these included 2 META features, 3 HRV features, 23 MOR fea-
tures, and 72 DNN features. Supplementary material online,
Figure S8 shows the feature importance for model 6 while the
colours reflect the category a feature belongs to (i.e. MOR,
HRV, META or DNN). Supplementary material online, Figure S9
shows the feature importance ranking for the top-20 features of
the RF classifier for all models.

Figure 3 ROC curves for RF classifiers. The ‘þ’ symbol on each
curve marks the Se-Sp trade-off for the selected probability decision
threshold.
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Error analysis
Considering model 6, there was a total of 9517 FP and 873 false nega-
tive (FN). Violin plots representing the probability outputs for all FP
per arrhythmia class are presented in Supplementary material online,
Figure S10. In particular, we observed that a large relative proportion
of examples with 1dAVb (18.0%) and left bundle branch block
(LBBB) (14.8%) rhythms were FP. The mean ± standard
deviationðSD) of time between the examination and a follow-up
positive AF examination for true positive (TP) is 1:48 ± 1:23 years.
Mean ± SD for FN is 1:57 ± 1:20 years. A cardiologist (G.M.) with 5
years of clinical practice carefully reviewed 100 TP recordings within
the test set blinded to any clinical or diagnosis information. Among
the 100 TP, the cardiologist identified 50 recordings with a form of
hypertrophy [Left ventricular hypertrophy (LVH)/Right ventricular
hypertrophy (RVH)/Left atrial hypertrophy (LAH)/LVH], 24 record-
ings with AF/AFL, 16 recordings with premature atrial contraction
(PAC)/premature ventricular contraction (PVC), 10 recordings with
a form of bundle branch block (BBB) (LBBB/right bundle branch
block), 25 recordings with other cardiac abnormalities, 4 recordings
that were too noisy and could not be interpreted, and 2 recordings
were normal sinus rhythm (NSR). It is important to note that a
recording may present multiple cardiac abnormalities.

Survival analysis
The risk of development of AF for the two evaluated settings are
shown in Table 4 and adjusted survival curves in Figure 5. In (A) the
model indicates that patients with probability >0.8 had higher risk of

development AF (HR 43.77, 95% CI: 36.19–52.93; P < 0.001), consid-
ering as the reference those with probability less than 0.2. For b) the
survival curve for probabilities >0.387 had a higher risk of develop-
ment AF (HR 10.72, 95% CI: 9.39–12.24; P < 0.001), compared to
those with probability less or equal to the decision threshold. The
Cox models adjusted by age and gender present a good performance
in the prediction of new AF risk prediction, with an AUC of 0.87
(95% CI: 0.86–0.90) and (B) 0.84 (95% CI: 0.82–0.86). The adjusted
survival curves for the model by different selections of comorbidities
and cardiovascular risk factors are given in Supplementary material
online, Table S10. This analysis had similar results compared to the
models adjusted by age and gender.

4. Discussion

Models performance
The results indicate that the ML models are indeed learning residual
features that are predictive of the future development of AF. The
best model was combining features from all modalities (META, HRV,
MOR, and DNN) with AUROC ¼ 0:909 ð 95% CI : 0:903
� 0:914Þ: This highlights the value in combining engineered features
that encapsulate Human knowledge in electrophysiology acquired
over the past two centuries, DNN features which are less interpret-
able but enable to let the model to include features that are not intel-
ligible to an human observer but are yet important for the task at
hand, and finally metadata which encode demographic and medical
information about the patient. The test set Se for individuals in C0

was 0.970 and for individuals in C1 it was 0.596 when using the deci-
sion threshold of 0.387. Although we found a high gap between train-
ing and test set performances, this is not uncommon when using RF
and the performance between validation sets and the test set were
close as seen on Table 3. Furthermore, the Cox analysis showed that
for different groups of probability results from the ML model further
indicated that the highest probability resulted in the highest risk of AF
future development (see Table 4 and Figure 5).

Error analysis
The cardiologist review of 100 TP examples highlighted that a large
number (24%) of the recordings correctly predicted as future AF
were actually AF at the time of the examination and thus were likely

Figure 4 Violin plot showing the probability distribution for the
output of the RF classifiers according to the reference class label,
for 13 739 recordings in C0, 214 recordings in C1<30, 1948 record-
ings in C1>30 and 203 568 recordings in C2. The dotted red hori-
zontal line depicts the probability decision threshold to classify an
example as future AF or not.

.................................................................................................

Table 4 Risk of new AF

HR CI 95% P� value

Adjusted by age and gender

prob (0.2, 0.4] 5.222 4.343 6.279 <0.001

prob (0.4, 0.6] 12.063 9.933 14.651 <0.001

prob (0.6, 0.8] 20.967 17.053 25.779 <0.001

prob (0.8, 1] 43.764 36.186 52.928 <0.001

prob (0.387, 1] 10.719 9.389 12.237 <0.001

The table shows the hazard ratios (HRs) with for the different probability groups.
The models were adjusted by different selection of variables. For the quintiles,
the reference class is prob (0, 0.2]; for the dichotomic analysis, the reference class
is (0, 0.387].
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..misdiagnosed. This number is coherent with the sensitivity of 0.769
reported in Ribeiro et al.10 for AF diagnosis by a cardiologist. Within
this context, we foresee that our model may support the diagnosis of
AF and avoid a significant number of misdiagnosis. Our second obser-
vation is that a number of TP had a type of hypertrophy, BBB or pre-
mature beats. This observation is coherent with previous reports
that hypertrophy,18 ectopic beats,19 and BBB20 are predictive of AF.
Examples of three TP are displayed in Figure 6.

Clinical usability of the new ML model
The best model obtained AUROC = 0:909 ð95% CI : 0:903� 0:914Þ;
Se = 0:596; and Sp = 0:953. Practically speaking, with such a high Sp,

and considering that a significant number of FP have another cardiac
abnormality, this means that the number of FP is reasonable since
intervention in FP will have limited consequences and the added
need from the healthcare system is acceptable. The Se is more
modest, yet it means that >50% of patients that will develop (or
have a missed diagnosis of) AF can be identified which is a significant
added value for the better management of these patients. Since
examples in C0 have AF then it is expected that the model will pre-
dict a high probability of AF risk and this was confirmed by our
observations (Figure 4) where Se for individuals in C0 was 0.970.
Furthermore, when separating C1 into two subclasses C1ð<30daysÞ
and C1 >_30 daysð Þ we observed that the model indeed had a signifi-
cantly higher probability distribution for C1 ð<30 daysÞ than
C1 >30 daysð Þ—see Figure 4 for the violin plot. In the work by Attia
et al.21 individuals that developed AF within 31 days were consid-
ered as actually having AF at the baseline recording time but likely
paroxysmal so that AF was not exerted at this time.

Overall, our findings are very promising. Predicting AF in a 12-lead
ECG, a low cost and widely available exam, can help physicians in de-
cision making. The model prediction could be used in the following
fashion: patients with a high probability of future AF should first

undergo a careful review for the presence of AF. Eventually a second
12-lead ECG may be acquired at the same examination date in the
case of doubt. This should result in lowering the number of misdiag-
nosis. Patients with no visible AF but with a high probability of future
AF are at risk of imminent appearance of AF in a likely already dis-
eased patient with paroxysmal AF and thus should be referred for a
Holter ECG. If no Holter is available then a follow-up 12-lead ECG
within the next few days should be scheduled. Individuals with no vis-
ible AF but predicted as future AF have a high risk to develop AF
within the next 5 years and should regularly be examined. Although
the model prediction has a good performance, the results are prelim-
inary and it is still premature to make any changes in the current AF
recommendations. Further research and external validation are ne-
cessary, but our data are a step forward in the field of AF screening
and diagnosis.

Features importance
Through the analysis of feature importance in model 3, that includes
features encoding prior known physiological information, we confirm
the importance of the PR interval length22,23 and importance of QRS
width and the R-wave amplitude as predictors of AF. AF is associated
with functional or structural changes in the atrial myocardium.24 In
the ECG, these changes are often recognized in the P-wave abnor-
malities. Therefore, abnormal P-wave duration, P-axis and beat-to-
beat P-wave variability have been described as AF predictors.25 The
association of the PR interval with AF is controversial in the literature.
PR interval components (P-wave onset to P-wave peak duration, P-
wave peak to P-wave end duration and PR segment) have different
impacts on AF prediction. A prolongation of the PR-interval will be
predictive of AF if the prolongation is mainly due to the P-wave dur-
ation. This also explains the observation that a short PR-segment is
more predictive of AF, as in this case, the P-wave duration would
contribute more to the overall PR interval.26 Although AF is part of a

Figure 5 Adjusted survival curves for the risk of new AF. The plots display the survival curves for the different cohorts. The curves were computed
from probability results of ML model. The models were adjusted by age and gender. In (A) the model with quintiles of probability and (B) the model
with probability less or equal than 0.387 and those with probability greater than 0.387.
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.
syndrome called atrial cardiomyopathy, some ventricular ECG
abnormalities have been reported to be indirect predictors of atrial
disease, QRS duration is a marker of structural modifications and
ventricular remodelling, therefore, can be associated with left atrial
size, supporting the concept of simultaneous processes in the atria
and ventricles. Prolonged QRS duration reflected as fragmented
QRS27 and left ventricular hypertrophy18 have been associated with
AF. Sokolow-Lyon voltage product ½SV1þ RV5=ð RV6��
QRS duration >_ 371 000 lVmsÞ was related to incident AF, show-
ing that both R-wave and QRS duration have an impact on AF predic-
tion. When combining all features with model 6, age was the most
important feature which is consistent with the knowledge that the
likelihood of having AF significantly increases as a function of age.28

Limitations
The main limitation of our study relates to the lack of evaluation of
our model on a longitudinal cohort that was consistently and regular-
ly followed-up for years, i.e. with a baseline examination and then
followed-up regular visits for all the cohort. Also, it will be important
to evaluate the models performance on external datasets in order to
assess their generalization performances. Although it may not be pos-
sible to obtain the exact same metadata for external datasets we may
be able to benchmark the performances of models 1–4 which only
use the raw ECG signal as input. The second main limitation of our
study is the lack of a better mapping with the patient’s EMR. Indeed,
only a limited number of EMR information were available as metadata

and these were self-reported by patients. A better access to EMR
variables would also enable benchmarking our model against state-
of-the-art AF risk scoring systems such as CHARGE-AF.29 Our ex-
perimental setting including patients with repeated 12-lead ECG
recordings and excluding those who did not, has an intrinsic bias to-
wards individuals already having a cardiac abnormality or at risk for a
cardiovascular disease. The clinical endpoints used in this study was
documented AF development within 5 years. With documented cor-
responding to a future 12-lead ECG examination with a positive AF
diagnosis. This label is not necessarily a gold standard as there exists a
number of possible bias in that registration such as individuals that
would develop silent AF after their latest documented visit but would
not perform an additional 12-lead ECG examination. Finally, the
model needs to be further validated on individuals presenting no car-
diac abnormality at the time of the baseline examination but who
later on developed AF.

Conclusion

It is the first study integrating feature engineering, deep learning and
EMR metadata to create a risk prediction tool for the management of
patients at risk of AF. This new hybrid model may also be extended
for the risk prediction of other cardiac pathologies. The high per-
formance obtained suggest that structural changes in the 12-lead
ECG are associated with existing or impending AF. Our study has

Figure 6 Example for three recordings from lead DII, V1, V6. All were re-annotated by cardiologist with 5 years of experience.
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.
important clinical implications for AF management. The system has
the potential to be rapidly incorporated in the clinical practice,
helping to detect those prone to develop AF and better manage
these at-risk patients to prevent complications. For that purpose
further validation of the model on the external test set longitudin-
al cohort is needed.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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