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Quantum halo states 
in two‑dimensional dipolar clusters
G. Guijarro*, G. E. Astrakharchik & J. Boronat

A halo is an intrinsically quantum object defined as a bound state of a spatial size which extends 
deeply into the classically forbidden region. Previously, halos have been observed in bound states of 
two and less frequently of three atoms. Here, we propose a realization of halo states containing as 
many as six atoms. We report the binding energies, pair correlation functions, spatial distributions, 
and sizes of few-body clusters composed by bosonic dipolar atoms in a bilayer geometry. We find two 
very distinct halo structures, for large interlayer separation the halo structure is roughly symmetric 
and we discover an unusual highly anisotropic shape of halo states close to the unbinding threshold. 
Our results open avenues of using ultracold gases for the experimental realization of halos composed 
by atoms with dipolar interactions and containing as many as six atoms.

One of the most remarkable aspects of ultracold quantum gases is their versatility, which permits to bring 
ideas from other areas of physics and implement them in a clean and highly controllable manner. Some of the 
examples of fruitful interdisciplinary borrowings include Efimov states, originally introduced in nuclear physics 
and observed in alkali atoms1–3, lattices created with counter-propagating laser beams4,5 as models for crystals 
in condensed matter physics, and Bardeen–Cooper Schrieffer (BCS) pairing theory first introduced to explain 
superconductivity and later used to describe two-component Fermi gases6,7. In the present work, we exploit the 
tunability of ultracold gases to demonstrate the existence of halo states composed by a large number of atoms with 
dipolar interactions. Originating in nuclear physics8–10, halo dimer states have been studied and experimentally 
observed in ultracold gases11.

A halo is an intrinsically quantum object and it is defined as a bound state with a wave function that extends 
deeply into the classically forbidden region12,13. These states are characterized by two simultaneous features: a 
large spatial size and a binding energy which is much smaller than the typical energy of the interaction. One 
of the most dramatic examples of a halo system, experimentally known, is the Helium dimer ( 4He2)14, which is 
about ten times more extended than the size of a typical diatomic molecule11.

While most of the theoretical and experimental studies of halos have been carried in three dimensions 
(3D)15–24, there is an increasing interest in halos in two dimensions (2D)12,25,26. In fact, two dimensions are espe-
cially interesting as halos in 2D have different properties12 of the 3D ones. A crucial difference between 3D and 
2D geometries is that lower dimensionality dramatically enhances the possibility of forming bound states. If the 
integral of the interaction potential V(ρ) over all the space is finite and negative, Vk=0 =

∫

V(ρ)dρ < 0 , this is 
always sufficient to create a two-body bound state in 2D but not necessarily in 3D. Furthermore, the energy of 
the bound-state is exponentially small in 2D and it can be expressed as E = −�

2/(2ma2) exp[−�
2|Vk=0|/(2πm)]

27, where a is the typical size of the bound state. An intriguing possibility arises when such integral is exactly 
equal to zero, Vk=0 = 0 , as a priori it is not clear if a bound state exists. This situation exactly happens in 
a dipolar bilayer in which atoms or molecules are confined to two layers separated by a distance h and the 
dipolar moments d are aligned perpendicular to the plane of motion by an external field. The interaction 
between atoms of different layers is given by V(ρ) = d2(ρ2 − 2h2)/(ρ2 + h2)5/2 , where ρ is the in-plane dis-
tance. The vanishing Born integral has first lead to conclusions that the two-body bound state disappears when 
the distance between the layers is large28 although later it was concluded that the bound state exists for any 
separation29–34, consistently with Ref.35. A peculiarity of this system is that the bound state is extremely weakly 
bound in h → ∞ limit. That is, a potential with depth V(ρ = 0) = −d2/h3 and width h would be expected 
to have binding energy equal to E = −�

2/(2ma2) exp(−const · r0/h) where r0 = md2/�2 is the characteristic 
distance associated with the dipolar interaction and m is the particle mass. Instead, the correct binding energy, 
E = −4�2/mh2 exp(−8r20/h

2 + O(r0/h))
31,32 is much smaller as it has h−2 in the exponent and not the usual 

h−1 . This suggests that the bilayer configuration is very promising for the creation of a two-body halo state. 
Moreover, the peculiarity of the bilayer problem has resulted in the controversial claim that the three- and 
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four-body36 bound states never exist in this system, and only very recently it has been predicted that actually, 
they are formed37.

In the present work, we analyze the ground-state properties of few-body bound states of dipolar bosons 
within a two-dimensional bilayer setup, as candidates for halo states. In particular, we study the ground-state of 
up to six particles occupying the A and B layers, with A and B denoting particles in different planes. In order to 
find the exact system properties, we rely on the diffusion Monte Carlo (DMC) method38 with pure estimators39, 
which has been used previously to get an accurate description of quantum halo states in Helium dimers17, trimers 
and tetramers18,19. In addition, we report relevant structure properties of the clusters, such as the spatial density 
distributions and the pair distribution functions for characteristic interlayer separations.

Hamiltonian
We consider two-dimensional systems consisting from two to six dipolar bosons of mass m and dipole moment d 
confined to a bilayer setup. All the dipole moments are oriented perpendicularly to the layers making the system 
always stable. In this configuration the angular dependence of the dipolar interaction vanishes. In our model, we 
suppose that the confinement to each plane is so tight that there is no interlayer tunneling and excitations into 
the excited levels of the tight confinement are suppressed. The Hamiltonian of this system is

where h is the distance between the layers. The terms in the first row of the Hamiltonian (1) are the kinetic 
energy of N A dipoles in the bottom layer and N B dipoles in the top layer; the first two terms in the second 
row correspond to the intralayer dipolar interactions of N A and N B bosons; and the last one accounts for the 
interlayer interactions. The in-plane distance between two bosons belonging to the same layer is denoted by 
ρij(αβ) = |ρi(α) − ρj(β)| , and belonging to different layers by ρiα = |ρi − ρα| , where ρi is the in-plane position. 
We use the characteristic dipolar length r0 = md2/�2 and energy E0 = �

2/(mr20 ) as units of length and energy, 
respectively. We use ρ for 2D in-plane distances and r for 3D distances.

Dipoles in the same layer are repulsive, with an interaction decaying as 1/ρ3 . However, for dipoles in differ-
ent layers the interaction is attractive for small in-plane distance ρ and repulsive for larger ρ . In other terms, 
a dipole in the bottom layer induces attractive and repulsive zones for a dipole in the top layer. Importantly, 
the area of the attractive cone increases with the distance between layers h, making the formation of few-body 
bound states more efficient.

Structure of the bound states
We first analyze the structure of few-body clusters, composed of two, three or four particles, as a function of the 
interlayer separation h. To this end, we calculate the pair distribution function g

σσ
′ (r) , which is proportional to 

the probability of finding two particles at a relative distance r. In the case of the ABB trimers and AABB tetram-
ers, we also determine the ground-state density distributions for different values of the interlayer separation.

AB dimer.  The AB dimer is strongly bound for h � r0 and its energy decays exponentially in the limit of 
large interlayer separation32. In order to understand how the cluster size changes with h/r0 , we show in Fig. 1 
the interlayer pair distributions g A B (r) (left-axis, blue curves) for three values of h/r0 . The strong-correlation 
peak of g A B at h/r0 is due to the interlayer attraction V A B (r) at short distances, also shown in the right-axis 
of the figure (red curves). For the cases shown in Fig. 1 we notice that g A B are very wide in comparison to the 
interlayer distance h/r0 reflecting the exponential decay of the bound state. The tail at large distances becomes 
longer as the interlayer distance increases.

ABB trimer.  The ABB trimer is bound for large enough separation between the layers h/r0 > 0.8 while, 
for smaller separations, it breaks into a dimer and an isolated atom37. The trimer binding energy is vanishingly 
small for h ≈ hc , with hc ≃ 0.8r0 , and it becomes larger as h is increased, reaching its maximum absolute value 
at h/r0 ≈ 1.05 . Then, it vanishes again in the limit of h → ∞37. We report the intralayer and interlayer pair 
distributions, g B B (r) and g A B (r) respectively, in Fig. 2 for strongly- (a, b) and weakly-bound (c, d) trimers. 
We observe that the g A B distributions are very wide in comparison to h, similarly to what has been observed 
in Fig. 1 for dimers. The same-layer distribution g B B vanishes when r/r0 → 0 as a consequence of the strongly 
repulsive dipolar intralayer potential at short distances. As r increases, g B B exhibits a maximum, next it mono-
tonically decreases with r/r0 . For a weakly-bound trimer ( h/r0 = 1.6 ), both g A B and g B B produce long tails at 
large distances.

The trimer is weakly bound close to the threshold, h → hc , and for large interlayer separation, h → ∞ , but 
its internal structure in those two limits is significantly different. This can be seen in Fig. 3a, b, where we plot the 
trimer ground-state spatial distribution for h/r0 = 1.05 and 1.6. The spatial distribution is shown as a function 
of the distance between two dipoles in the same layer |r B

1 − r
B
2 | (horizontal axis) and the minimal distance 

between dipoles in different layers min{|r A
1 − r

B
1 |, |r A

1 − r
B
2 |} (vertical axis). For large separation between lay-

ers, shown in Fig. 3b for h/r0 = 1.6 , the distances between AB and BB atoms are all of the same order, revealing an 
approximately symmetric structure. However, by decreasing the distance between layers the particle distribution 
becomes significantly asymmetric. For h/r0 = 1.05 (Fig. 3a), we observe that the trimer spatial distribution is 
elongated: two dipoles in different layers are close to each other while the third one is far away. Regardless of the 
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interlayer separation, the pair A B is, on average, closer than the B B pair. As the threshold value is approached, 

Figure 1.   Interlayer pair distributions g A B (r) (left-axis, blue curves) and dipolar potentials V A B (r) (right-
axis, red curves) for AB and for three values of the interlayer distance h/r0 = 1.05 , 1.3 and 1.6. Notice the 
different scales in the r axis.

Figure 2.   Interlayer and intralayer pair distributions, g A B (r) and g B B (r) , for ABB (a, b, c, d) and AABB (e, f, 
g, h) clusters, and for different values of the interlayer distance h/r0.
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the trimer becomes more extended and breaks into a dimer and a single atom at h/r0 ≈ 0.8.

AABB tetramer.  As we have shown in the previous Section, an ABB trimer dissolves into a dimer and an 
atom when h ≈ hc . Here, we address the structure properties of the balanced case for a tetramer, in which the 
number of A and B atoms is the same. The AABB tetramer is weakly bound for large values of h/r0 . When the 
distance between layers decreases, the tetramer becomes unbound at h/r0 ≈ 1.1 and splits into two AB dimers37.

The pair distributions g A B and g B B for AABB are shown in Fig. 2e–h for two characteristic values of the 
interlayer distance h/r0 . We observe a behavior that is similar to that previously reported for ABB. That is, both 
g A B and g B B are compact for the deepest bound state ( h/r0 = 1.3 for AABB) and become diffuse, showing long 
tails at large distances, when it turns to a weakly-bound state ( h/r0 = 1.6).

The ground-state spatial distributions for the symmetric tetramer are shown in Fig. 3c, d. We observe that for 
large separation h, i.e., when the tetramer is weakly bound, it has large spatial extension and the distances between 
AA and AB pairs are of the same order. As the interlayer separation is progressively decreased, the tetramer size 
decreases and its structure becomes anisotropic. In this case, the distance between dipoles in the same layer is 
several times larger than the distance between dipoles in different layers. When the tetramer approaches the 
threshold for unbinding the cluster becomes even more elongated and it breaks into two AB dimers at h/r0 ≈ 1.1.

Quantum halo characteristics
A halo is a quantum bound state in which particles have a high probability to be found in the classically forbid-
den region, outside the range of the interaction potential. The key characteristics of a halo are its extended size 
and binding energies much smaller than the typical energy of the interaction. In order to classify a system as a 
halo state, one typically introduces two scaling parameters with which the size and the energy are compared. 
The first parameter is the scaling length R. For two-body systems one commonly chooses R as the outer classical 
turning point. The second parameter is the scaling energy µBR2/�2 , where µ is the reduced mass and B is the 
absolute value of the ground-state energy of the cluster. The size of a cluster is usually quantified through its 
mean-square radius 〈ρ2〉 , where ρ is the interparticle distance. A two-body quantum halo is then defined by the 
condition 〈ρ2〉/R2 > 2 , which means that the system has a probability to be in the classically forbidden region 
larger than 50%12.

The dipolar interaction in the bilayer geometry has vanishing Born integral and thus, the AB dimer can 
show an enhancement of its halo properties. In Fig. 4e, we show the scaling plot for the dipolar dimers, cor-
responding to interlayer distance from h/r0 = 0.14 to 1.6, as indicated on the upper axis. All dimers which lie 
above the halo limit �ρ2�/R2 = 2 (horizontal line in Fig. 4e) are halo states and follow a universal scaling law 
�ρ2�/R2 = �

2/(3µBR2) , shown with a dashed line in the figure12. This is exactly the case for all dimers with inter-
layer separations h/r0 > 0.45 . This threshold value is close to the characteristic value, h/r0 = 0.5 , for which the 
dimer binding energy is approximately equal to the typical energy of the dipolar interaction E A B ≈ �

2/(mr20 ).
While AB dimers exist for any interlayer separation, ABB trimers and AABB tetramers are self-bound for 

large h values, where AB dimers are in fact halo states. Thus, it can be anticipated that these few-body bound 
states are also halos. To verify that, the sizes of three- and four-body systems should be compared to the mean-
square hyperradius12,

Figure 3.   Spatial structure of the ground-state for ABB trimer (a, b) and AABB tetramer (c, d) for different 
values of the interlayer distance. The distance between two dipoles in the same layer is plotted in the horizontal 
axis and the minimum distance between dipoles in different layers is shown in the vertical axis. Plots created 
using Matplotlib (version 3.3.3)40.
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where m∗ is an arbitrary mass unit, M is the total mass of the system, and mi is the mass of particle i. In analogy 
to the hyperradius Eq. (2), Jensen et al.12 defined the scaling size parameter ρ0 as

with Rik the two-body scaling length of the i − k system, which is calculated as the outer classical turning point 
for the i − k potential. Considering the problem of a dipolar dimer in the bilayer, the two-body scaling length 
RE,2 is related to the interlayer interaction potential VAB (ρ, h) and the dimer energy E2 according to

For a given value of the interlayer distance h the classical turning points are given by the roots of Eq. (4) which 
is a polynomial of tenth degree in RE,2 . The exact value of the dimer energy E2 depends on h and can be obtained 
by solving numerically the Schrödinger equation with the potential VAB (ρ, h) or using the DMC method. In 
Table 1, we report the classical turning points RE,2 corresponding to interlayer distance from h/r0 = 0.4 to 1.6. 
On the other hand, for repulsive potentials we choose Rik equal to zero. The condition for three- and four-body 
quantum halos is then 〈ρ2

HR〉/ρ2
0 > 212.

While there is a general agreement on the definition of the classical turning point RE,2 in the two-body prob-
lem, Eq. (4), in the few-particle case there is not a single way to determine the scaling length Rik . It has been 
suggested24 to consider Rik as the distance at which the attractive interaction Eq. (4) equals a characteristic energy 
of the system. One possibility is to obtain the classical turning point from the relation,

where the brackets �· · · � denote averaging of the two-body interaction potential over the many-body bound state. 
Another possibility24, denoted by RE,N , is based on comparing the two-body potential to the bound-state energy 
BN divided by the number of pairs N(N − 1)/2,

(2)ρHR =
√

1

m∗M

∑

i<k

mimk(ρi − ρk)
2,

(3)ρ0 =
√

1

m∗M

∑

i<k

mimkR
2
ik ,

(4)VAB (RE,2, h) =
d2(ρ2 − 2h2)

(ρ2 + h2)5/2

∣

∣

∣

ρ=RE,2
= E2.

(5)VAB (Rpot,N , h) = �VAB �,

(a) (b) (c) (d)

Figure 4.   Top panel: Schematic representation of the AB and ABB states in two limits: (a) AB is a halo state; (b) 
AB is not a halo state; (c) ABB h → ∞ ; (d) ABB h → hc . Figures created using POV-Ray (version 3.7)41. Bottom 
panel: (e) Size 〈ρ2〉/R2 vs ground-state energy µBR2/�2 scaling plot for two-body halos. The horizontal line is 
the quantum halo limit and the dashed one is �ρ2�/R2 = �

2/(3µBR2) , which is a zero-range approximation for 
two-body halos in two-dimensions12. (f) Size 〈ρ2

HR〉/ρ2
0
 vs ground-state energy m∗Bρ2

0
/�2 scaling plot for three- 

up to six-body halos.
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Even while for large values of h, the average potential energy is similar in absolute value to the average kinetic 
energy and is large compared to the bound-state energy BN , energies in Eqs. (5, 6) are so tiny that in both cases 
Rpot,N and RE,N are close to the position where VAB (Rcl) = 0 . In Table 2, we report the values of RE,2 , RE,N , and 
Rpot,N for h/r0 = 1.2 and for N = 2, . . . , 6 . One notices that in the bilayer system the three different definitions, 
Eqs. (4–6), result in very similar values. Therefore, choosing one of these radii over the other two to calculate ρ0 
is a minor effect. In the following we will use RE,2 to calculate the scaling size parameter ρ0.

The dependence of the scaled size on the scaled energy for ABB and AABB are shown in Fig. 4f. We find a 
non-monotonic behavior, in clear contrast with the dependence observed in the dimer case (see Fig. 4e). That 
is, the cluster size decreases with increasing energy and reaches a minimum and then it starts to grow again. The 
minima correspond to the deepest bound states37. This resurgence appears as the clusters approach the thresholds, 
where trimers eventually break into a dimer and an atom, and tetramers into two dimers. We want to emphasize 
that all the trimers and tetramers analyzed in Fig. 4 are halo states, although they are organized in significantly 
different spatial structures. On the left side of the minima, the clusters are almost radially symmetric and all the 
interparticle distances are of the same order. However, at the minima and on the right side of the minima the 
cluster structures are elongated and highly asymmetric. The AABBB pentamer and AAABBB hexamer are self-
bound and are manifestly halo states. Their mean square size has a similar behavior to the one observed before 
for the trimer and tetramer, that is a minimum corresponding to the larger binding energy which separates a 
regime of nearly symmetric particle distribution from another one, more elongated, and thus asymmetric. It is 
important to notice that the existence of halo tetramers, pentamers and hexamers is very unusual as it contra-
dicts the usual tendency of self-bound clusters to shrink and lose the halo character as the number of particles 
is increased. As we demonstrate in the present work, the bilayer geometry is very promising for creation of halo 
states with up to six particles.

Experimental signatures of halo and Efimov states come from the measurement of three- and four-body 
recombination loss rate in ultracold gases2,42,43 or by using techniques such as matter-wave diffraction com-
bined with laser-induced Coulomb explosion imaging14,44. Using the latter techniques the halo states of helium 
dimer14 and trimer44 were detected by measuring the binding energies and pair distances distributions. A pos-
sible experimental implementation for observing the predicted halo states can be realized by using bosonic 
dipolar molecules produced with mixtures of 87 Rb133Cs45,46 and 23 Na87Rb47,48 characterized by dipolar lengths 
r0 ∼ 5× 10−6 m and 2× 10−5 m, respectively. Magnetic dipolar 164 Dy249 and 168 Er164Dy50 ( r0 ∼ 2× 10−7 m and 
r0 ∼ 1× 10−7 m, respectively) molecules can also be used. The interlayer distance, half of the laser wavelength � , 
has typical values of h ≈ (2− 5)× 10−7 m, and typical lengths of the transverse confinement a⊥ = (�/2π)s−1/4 
are a⊥ ≈ (3− 8)× 10−8 m, where s ∼ 16 is the potential depth of the transverse confinement in units of the 
recoil energy.

A possible issue of concern may be the validity of our findings in an experimental realization, where the 
bilayer has a quasi-two-dimensional geometry and not strictly two-dimensional one as in our model. To this 
aim, we have compared the dimer energy of our model with the dimer energy of a quasi 2D model. For typical 
experimental parameters, we have found that the change in the dimer energy is at most 20% . Therefore, it can 
be concluded that the effects of considering a quasi-two dimensional model do not change our main findings.

Conclusions
We used the diffusion Monte Carlo method to study the ground-state properties of few-body bound states of 
dipolar bosons in a two-dimensional bilayer setup. We have studied clusters composed by up to six particles, for 
different values of the interlayer distance, as candidates for quantum halo states.

In the case of dimers, we find that for values of the interlayer separation larger than h/r0 = 0.45 the clusters 
are halo states and they follow a universal scaling law. In the cases of trimers up to hexamers, we find two very 
different halo structures. For large values of the interlayer separation the halo structures are almost radially 
symmetric and the distances between dipoles are all of the same scale. In contrast, in the vicinity of the thresh-
old for unbinding, the clusters are elongated and highly anisotropic. To our knowledge halo states have been 
experimentally observed for up to four particles2,14,42–44. The addition of particles to a two or three body halo 

(6)VAB (RE,N , h) =
2

N(N − 1)
BN .

Table 1.   Interlayer distances h/r0 and classical turning points RE,2/r0 for a two-body system in a dipolar 
bilayer.

h/r0 RE,2/r0

0.4 0.3874

0.6 0.6924

0.8 1.0364

1.0 1.3776

1.2 1.6890

1.4 1.9789

1.6 2.2627
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states typically makes them shrink towards a more compact liquid structure. Importantly, our results prove the 
existence of stable halo states composed by atoms with dipolar interactions and containing up to six particles. 
As commented before, there are reasons to believe that our system is experimentally viable with current tech-
nology as compared to other theoretical predictions, where zero- and finite-range interactions are used23,24. We 
conclude that the bilayer geometry is advantageous for the observation of halo states in future experiments. We 
hope that these results will stimulate experimental activity in this setup, composed by atoms with dominant 
dipolar interaction, to bring evidence of these quantum halo states.

In outlook, our results can stimulate further theoretical and experimental research of halo states in ultra-
cold gases. It could be interesting to understand how the possibility of tunneling between the layers affects the 
stability of the halo states. An interesting new path of research could be to study halo states in a bilayer system 
of fermionic dipoles51,52.

Method
To investigate the structural properties of the dipolar clusters, we use a second-order DMC method38 with pure 
estimators39. This method allows for an exact estimation of the ground-state energy, as well as other properties, 
within controllable statistical errors. The DMC stochastically solves the imaginary-time Schrödinger equation,

where τ = it/� is a imaginary time, Es is an energy shift and the walker ρ = (ρ1, . . . , ρN ) is a vector containing 
positions of N particles. Importance sampling is used to reduce the statistical noise of the calculation, which 
consists on rewritten the Schrödinger equation, Eq. (7), for the mixed distribution �(ρ, τ) = �(ρ, τ)ψ(ρ) . We 
use a trial wave function ψ of the form

which is suitable for describing systems with short-range correlations and as well as long-range asymptotic 
behavior.

The trial wave function for intraspecies correlations is built from the zero-energy two-body scattering solution

K0(ρ) being the modified Bessel function and C0 a constant. The interspecies interactions are described by the 
dimer wave function f A B (ρ) up to R0 . From the variational distance R0 on we took the free scattering solution 
f A B (ρ) = CK0(

√
−mE A B ρ/�) . We impose continuity of the logarithmic derivative at the matching point R0 , 

yielding the following equality

In a DMC calculation, the expectation value of an observable Ô is obtained for long enough imaginary time 
propagation

with �0 the ground-state wave function. The last equation is known as the mixed estimator. Equation (11) gives 
the exact expectation value for the Hamiltonian and for observables that commute with it. In the case of opera-
tors that do not commute with Ĥ , the result obtained from Eq. (11) can be biased by ψ . In this case, it is possible 
to obtain exact expectation values using the pure estimators technique39. In the present study, pure estimators 
are used for the calculation of the pair distribution functions, the spatial distribution functions, and the size of 
the clusters.

(7)−∂�(ρ, τ)

∂τ
= (H − Es)�(ρ, τ),
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,

Table 2.   Classical turning points RE,2 , RB,N and Rpot,N , defined by Eqs. (4–6) in N-body system in a dipolar 
bilayer with h/r0 = 1.2.

N RE,2/r0 RE,N /r0 Rpot,N /r0

2 1.6889 1.6889 1.6055

3 1.6889 1.6941 1.6454

4 1.6889 1.6943 1.6431

5 1.6889 1.6952 1.6625

6 1.6889 1.6954 1.6634
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