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Abstract

Robust optimization of intensity-modulated proton therapy (IMPT) takes uncertain-

ties into account during spot weight optimization and leads to dose distributions

that are resilient to uncertainties. Previous studies demonstrated benefits of linear

programming (LP) for IMPT in terms of delivery efficiency by considerably reducing

the number of spots required for the same quality of plans. However, a reduction in

the number of spots may lead to loss of robustness. The purpose of this study was

to evaluate and compare the performance in terms of plan quality and robustness

of two robust optimization approaches using LP and nonlinear programming (NLP)

models. The so-called “worst case dose” and “minmax” robust optimization

approaches and conventional planning target volume (PTV)-based optimization

approach were applied to designing IMPT plans for five patients: two with prostate

cancer, one with skull-based cancer, and two with head and neck cancer. For each

approach, both LP and NLP models were used. Thus, for each case, six sets of IMPT

plans were generated and assessed: LP-PTV-based, NLP-PTV-based, LP-worst case

dose, NLP-worst case dose, LP-minmax, and NLP-minmax. The four robust optimiza-

tion methods behaved differently from patient to patient, and no method emerged

as superior to the others in terms of nominal plan quality and robustness against

uncertainties. The plans generated using LP-based robust optimization were more

robust regarding patient setup and range uncertainties than were those generated

using NLP-based robust optimization for the prostate cancer patients. However, the

robustness of plans generated using NLP-based methods was superior for the skull-

based and head and neck cancer patients. Overall, LP-based methods were suitable

for the less challenging cancer cases in which all uncertainty scenarios were able to

satisfy tight dose constraints, while NLP performed better in more difficult cases in

which most uncertainty scenarios were hard to meet tight dose limits. For robust

optimization, the worst case dose approach was less sensitive to uncertainties than

was the minmax approach for the prostate and skull-based cancer patients, whereas

the minmax approach was superior for the head and neck cancer patients. The

robustness of the IMPT plans was remarkably better after robust optimization than
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after PTV-based optimization, and the NLP-PTV-based optimization outperformed

the LP-PTV-based optimization regarding robustness of clinical target volume cover-

age. In addition, plans generated using LP-based methods had notably fewer scan-

ning spots than did those generated using NLP-based methods.
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1 | INTRODUCTION

Intensity-modulated proton therapy (IMPT) is potentially one of the

most effective ways to treat cancer because it can deliver highly

conformal and homogenous dose distributions to a target with a

complex shape while maximally sparing adjacent healthy tissues.1 It

is delivered using thin scanning beams (beamlets) of protons with a

sequence of discrete energies. For a given energy, the dose from a

proton beam or beamlet increases as a function of depth of penetra-

tion in the patient until it reaches a peak (the Bragg peak) and then

falls sharply to near zero. The high potential of IMPT owes to the

fact that protons have a finite range and a sharp dose falloff at the

end of the range and that IMPT can control the range (energy) and

intensity of individual beamlets. For IMPT to be effective, a high

degree of precision and accuracy in delivery is required so that the

dose distribution that is actually delivered is a good approximation

of the dose distribution in the treatment plan.2–7

Unfortunately, the characteristics of protons that make them

suitable for radiotherapy also make them sensitive to various types

of uncertainty. The two most important sources of uncertainty in

IMPT are the beam range and patient setup uncertainties. These

uncertainties can result in deviation of the delivered IMPT dose dis-

tribution from the planned distribution, which may lead to subopti-

mal treatment decisions and unforeseen outcomes. Therefore, these

uncertainties must be considered during IMPT plan optimization.

In photon therapy, the conventional approach to handling patient

setup uncertainties and organ motion is to expand the clinical target

volume (CTV) by an empirically determined margin to form a plan-

ning target volume (PTV). The underlying assumption in the determi-

nation of the CTV-to-PTV margin is that the CTV will be sufficiently

covered with high probability (e.g., 95%) in the face of uncertainties.

This approach works well for photon therapy because the variations

in photon dose distributions when patient anatomy changes are rela-

tively small.7,8 However, for IMPT, uncertainties can cause substan-

tial perturbations in the dose distributions not only in the CTV-to-

PTV margins but also within the CTV as well as in regions distal and

proximal to the target al.ong the beam paths. Dose distributions in

normal tissues lateral to the CTV also may be substantially per-

turbed, especially when protons pass through complex hetero-

geneities. Thus, simply applying the concept of PTV to proton

therapy cannot efficiently mitigate the impact of uncertainties, so

alternative approaches to PTV-based optimization are required.9

One such approach is robust optimization, which aims to pro-

duce optimal, resilient IMPT plans in the face of uncertainties.

Researchers have conducted several probabilistic and scenario-based

studies to incorporate uncertainties into IMPT plan optimization.2–9

In a probabilistic approach, the expectation value of the random

objective function is optimized.5,6 Three scenario-based approaches

have been proposed, that is, the “worst case dose”,10 “minmax,”9 and

“composite objective” 11 robust optimization. In reality, they are all

worst case approaches. The first is based on the worst case dose in

each voxel. The second considers the worst case value of the objec-

tive function for the dose distribution as a whole. The third takes

the worst case value of the objective function for the dose distribu-

tion in each structure. All of these scenario-based approaches can

work with a linear programming12 or nonlinear programming (NLP)7

model. Some groups have proposed a worst case dose robust opti-

mization approach using an LP model to consider range uncertain-

ties,5,13 whereas Pflugfelder et al. proposed a worst case dose

distribution-based robust optimization approach using a nonlinear

quadratic objective function.4 This approach also can be used with

linear objective functions. Motivated by Pflugfelder and colleagues,4

Liu et al. developed a modified nonlinear worst case dose distribu-

tion-based robust optimization approach that additionally penalized

hot spots within the target for better target dose homogeneity.7

Fredriksson et al. first proposed minmax robust optimization.

This nonlinear constrained model does not assume a probability dis-

tribution for uncertainties.9 Chen et al. also reported on a multicrite-

ria minmax optimization approach using a piecewise-linear convex

constrained model similar to that proposed by Fredriksson and col-

leagues.8

To date, only a handful of studies have compared different IMPT

robust optimization approaches. Fredriksson generalized a class of

robust optimization methods, including expected value and minmax

optimization.14 He studied and compared special cases and found

that the minmax approach had advantages over other methods in

controlling hot spots within the target and sparing the organs at risk

(OARs). More recently, Fredriksson and Bokrantz compared three

approaches to NLP-based worst case dose optimization.11 However,

they did not identify a dominant broadly applicable approach. They
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observed identical behavior of plan quality and robustness in all

three approaches without any conflicting planning criteria but clear

differences in the presence of conflicting criteria.

In all of these studies, researchers investigated robust optimiza-

tion techniques for IMPT using either an LP or NLP model. However,

a comparison of the performance of LP and NLP models with one or

more robust optimization approaches has yet to be reported. There-

fore, we performed this study to identify and outline differences in

the behavior of various LP- and NLP-based approaches and models

for IMPT robust optimization. To that end, we developed and evalu-

ated worst case dose (voxel-wise) and minmax methods for both LP

and NLP formalism models. To better understand the influence of

LP- and NLP-based models on robust optimization results, we also

performed PTV-based conventional optimization with both LP and

NLP objective functions. Thus, we compared six optimization meth-

ods: LP-PTV-based, NLP-PTV-based, LP-worst case dose, NLP-worst

case dose, LP-minmax, and NLP-minmax. Specifically, we compared

the plan optimality and robustness and number of scanning spots

(surrogate of plan efficiency) for the plans created with each of the

six methods. Although Fredriksson and Bokrantz previously com-

pared quadratic worst case dose and minmax approaches to account

for setup uncertainties for two patients with prostate cancer, the

performance of different methods may depend on the treatment

site.11 Therefore, in our study, we compared the six methods for

two patients with prostate cancer, a patient with a skull base tumor,

and two patients with head and neck cancer. In addition, we consid-

ered both beam range and patient setup uncertainties.

2 | MATERIALS AND METHODS

2.A | Patient data, beam configurations, and
uncertainty scenarios

The relative performance of various robust optimization approaches

was evaluated by regenerating treatment plans for two patients with

prostate cancer, one with skull base cancer, and two with head and

neck cancer, all of whom had undergone proton therapy at our insti-

tution. Two lateral fields were used for prostate cancer cases,

whereas three fields were used for the other three cases. For each

patient, eight uncertainty scenarios were assumed: two setup uncer-

tainty scenarios (�5 mm for prostate cancer and �3 mm for the

other cancers) in the x, y, and z directions and two range uncertainty

scenarios (�3.5% of the nominal range of the beams). For each

patient, the six optimization methods described above and below

were used to account for range and setup uncertainties. The PTV

was chosen as the target for the conventional optimization approach

and, appropriately, the CTV was used as the target for the robust

optimization approaches.7,9 The prescribed doses, target volumes,

beam angles, dose grid resolutions, and margins used for the robust

optimization approaches are listed in Table 1. All beams were copla-

nar (couch angle, 0 °).

2.B | Optimization methods

For each patient, three optimization approaches were evaluated:

conventional PTV-based, worst case dose robust, and minmax robust

optimization. For each approach, LP- and NLP-based optimization

models were developed.

2.B.1 | Conventional PTV-based optimization

In conventional optimization, uncertainties were accounted for by

expanding the CTV to a PTV via margins and treating the PTV as

the target. The PTV was formed via isotropic expansion of 5 mm for

prostate cancer and 3 mm for the other types of cancer to account

for setup uncertainties. Cao et al. described details of the LP-based

optimization model, and Liu et al. described details of the NLP-based

optimization model.7,12 Note that we consider only 3D IMPT tech-

nique in this study and scanning spots from all irradiation beams are

simultaneously optimized.

2.B.2 | Worst case dose robust optimization

For a voxel inside the target, the minimum dose of the voxel of all

dose distributions corresponding to different uncertainty scenarios

was selected. For any voxel outside the target, the maximum dose

of the voxel was selected. This formed the worst case dose distribu-

tion as follows:2,3

Di ¼ min
r

X
j

drij � xj; 8i 2 Target

( )
;

Di ¼ max
r

X
j

drij � xj; 8i 62 Target

( )
;

Where drij is the influence matrix, which denotes the dose con-

tributed by the Jth beamlet per unit weight, and is received by voxel

i under scenario r.

TAB L E 1 Dose and beam configurations and uncertainty scenarios for the robust optimization approaches used to generate treatment plans
for each patient in our study. RBE denotes relative biological effectiveness.

Case
Prescribed dose
(Gy [RBE])

Target
volume (cm3)

Gantry
angles (°)

Dose grid
resolution (mm)

Range
uncertainty (%)

Setup
error (mm)

1.Prostate cancer 76 43.44 90, 270 2.5 �3.5 �5

2.Prostate cancer 78 69.82 90, 270 2.5 �3.5 �5

3.Skull base cancer (chordoma) 74 20.90 75, 270, 300 2.5 �3.5 �3

4.Head and neck cancer (chordoma) 34 45.77 60, 290, 320 2.5 �3.5 �3

5.Head and neck cancer (nasopharynx) 70 20.12 70, 285, 290 2.5 �3.5 �3
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Robust optimization was performed by substituting the worst

case dose distribution for the nominal dose distribution in each iter-

ation. The decision variable xj was the intensity of beamlet j. The

optimization models applied to both CTV and OARs were as fol-

lows:

LP :min
x

f Dið Þ ¼
X
i

kijDi � Dpres
i jjLBi �Di �UBi

( )
;

NLP :min
x

f Dið Þ ¼
X
i

ki Di � Dpres
i

� �2( )
;

Where ki is the penalty weight, and Dpres
i is the prescription dose for

each voxel. In linear programming, hard constraints are imposed on

dose to each voxel, that is, ensuring that all constraints have to be

satisfied otherwise no solution exists. LBi and UBi are lower and

upper reference bounds on dose to each voxel. However, in nonlin-

ear programming, only soft constraints are imposed. This means

that the model penalizes deviations between delivered and pre-

scribed doses, but does not require each voxel to meet certain dose

limits.

2.B.3 | Minmax robust optimization

An alternative approach to worst case dose robust optimization is

the minmax method described by Fredriksson et al.9 This method is

designed to minimize the penalty of the worst case dose distribution

scenario. Specifically, the objective function is evaluated under a

number of treatment scenarios, and the worst calculated objective

function is selected. In contrast with the worst case dose distribu-

tion, only physically realizable scenarios are considered. For this opti-

mization approach, the dose distribution was calculated as

Dr
i ¼

P
j d

r
ij � xj; 8i.

LP : min
x

max
r

f Dr
i

� � ¼ X
i

kijDr
i � Dpres

i j
���LBi �Di �UBi

( )( )

NLP : min
x

max
r

f Dr
i

� � ¼ X
i

ki D
r
i �Dpres

i

� �2( )( )

Both CTV and OARs are incorporated in the optimization model.

Relative strengths of the minmax and voxel-wise robust optimization

methods are described in the literature.9,11

2.C | Plan generation and comparison

Six IMPT plans were generated using the six optimization methods

and compared in terms of plan quality and robustness and delivery

efficiency. Only dose constraints (hard constraints for LP-based mod-

els and soft constraints for NLP-based models) were used in plan

optimization. Both dose and dose-volume constraints of nominal and

worst case dose distributions were reviewed after optimization. If an

optimized plan failed to meet such constraints, the plan could be re-

optimized by adjusting objective weights or dose constraints until all

constraints were satisfied. Some of the key criteria for plan quality

we used are listed below.

Prostate cancer:

1. Rectum: volume receiving a dose of 70 Gy (V70; relative biologi-

cal effectiveness [RBE]) no greater than 20%.

2. Bladder: volumes receiving doses of 65 Gy (V65; RBE) and

40 Gy (V40; RBE) no greater than 25% and 50%, respectively.

Skull base and head and neck cancer:

1. Brainstem: maximum dose no greater than 60 Gy (RBE).

2. Spinal cord: maximum dose no greater than 45 Gy (RBE).

3. Oral cavity: mean dose no greater than 35 Gy (RBE).

4. Temporal lobe: volume receiving a dose of 60 Gy (V60; RBE) no

greater than 1%.

For the sake of comparison, all plans were renormalized to cover

at least 99% of the CTV by the prescribed dose in the nominal dose

distribution. Dose-volume histogram (DVH) indices (Dv and Vd) were

used to evaluate the quality of the plans. Dv denotes the amount of

the dose received by more than v percent of the organ, and Vd

denotes the percent volume of the organ receiving more than d Gy

(RBE). Dv is proportional to the target coverage, whereas Vd is inver-

sely proportional to OAR sparing. To illustrate differences in nominal

plan quality and robustness among the six optimization methods, we

selected several critical DVH indices for comparison for each cases.

Those comparisons are discussed in the Results section.

To compare the robustness of the IMPT plans generated using

the different methods, families of DVHs corresponding to different

uncertainty scenarios were plotted along with the nominal DVHs.

The resulting envelopes were used to assess the sensitivity of the

plans under the uncertainty scenarios.15 The DVH-family bandwidth

method was also used to evaluate and compare the robustness of

the different methods.16 The width of the DVH band (D) is inversely

proportional to the robustness of the method. D(Dv) denotes the

width of the DVH band at volume v, and D(Vd) denotes the width of

the DVH band at dose d. This robustness evaluation technique

effectively determined the robustness of the IMPT plans in the face

of setup and range uncertainties. Next, to estimate the delivery effi-

ciency of the plans, the resulting number of scanning spots with pos-

itive intensity generated using each method was assessed. Note that

we used the same base scanning spot placement (e.g., same spot

and layer spacing) for all optimization methods.

3 | RESULTS

We compared the plan quality and robustness of the six optimization

strategies in terms of DVH indices for nominal doses and DVH band

widths for uncertain scenario doses for five cancer patients. In addi-

tion, we compared the numbers of scanning spots after performing

the six methods. Figure 1 displays the DVHs corresponding to the

nominal dose distributions along with the DVH bands for one of the

patients with prostate cancer (patient 1). In this representative case,

CTV coverage with plans generated using the conventional PTV-

18 | ZAGHIAN ET AL.
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F I G . 1 . DVH bands for dose distributions covering all setup and range uncertainties for patient 1 (with prostate cancer) for the clinical target
volume (CTV; left column), rectum (middle column), and bladder (right column), resulting from each of the six IMPT plan optimization methods.
The width of the DVH band is inversely proportional to the robustness of the method. The solid lines indicate DVHs for the nominal dose
distribution (i.e., without consideration of uncertainties).
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based optimization methods (Fig. 1, first two rows) was notably less

robust than that with plans generated using other methods. Specifi-

cally, the DVH bands for the CTV were wider for PTV-based opti-

mization methods than for robust optimization methods, indicating

that the plans generated using robust optimization were more robust

regarding setup and range uncertainties than were those generated

using conventional PTV-based methods. Among the PTV-based opti-

mization methods, the NLP-PTV-based method outperformed the

LP-PTV-based method in terms of robustness of CTV coverage. Fur-

thermore, comparison of the robustness of the plans created using

robust optimization (Fig. 1, bottom four rows) demonstrated that the

worst case dose methods outperformed the corresponding minmax

methods in covering the CTV. However, the robustness of normal

tissue sparing was similar for all of the methods.

To further evaluate plan robustness, we compared the DVH-

family band widths at key dose-volume indices for the six methods

for patient 1 (Fig. 2). For robust optimization, the LP-based methods

covered the CTV D95 slightly more robustly than did the corre-

sponding NLP-based methods. Using four robust optimization meth-

ods (LP-worst case dose, NLP-worst case dose, LP-minmax, and

NLP-minmax), the NLP-minmax plan was less robust for CTV D95

than were the other methods. However, the robustness for the rec-

tum V70 and bladder V65 did not differ markedly among the four

methods. In addition, the bladder V65 in nominal plans for the PTV-

based optimization methods was consistently improved by robust

optimization.

DVH indices for nominal doses and DVH-family band widths for

patient 2 (the other prostate cancer patient) are shown in Fig. 3. The

results of plan quality and robustness evaluation for this patient

were consistent with those for the other prostate cancer patient.

The robustness of CTV coverage for the PTV-based optimization

methods was inferior to that for the robust optimization methods.

Among the PTV-based optimization methods, NLP-PTV-based opti-

mization was superior to the LP-PTV-based method in robustness of

CTV coverage. Using four robust optimization methods, robustness

of CTV D95 for the NLP-minmax optimized plan was outperformed

by other three robust optimization methods. We found no marked

variations in the robustness of OAR (rectum and bladder) sparing

among the different robust optimization methods. However, the rec-

tum and bladder sparing with the NLP-based methods was inferior

to that with the LP-based methods. Also, the robustness of CTV

coverage for the worst case dose robust optimization methods was

superior to that for the minmax methods. When comparing LP- and

NLP-based robust optimization methods, we observed that the CTV

D95 robustness for the NLP-based methods was inferior to that for

similar LP-based methods.

The robustness of CTV coverage for the PTV-based methods

was inferior to that for the robust optimization methods for patient

3 (the skull base cancer patient) (Fig. 4). In this case, CTV coverage

robustness provided by the NLP-based optimization methods was

superior to that provided by the corresponding LP-based methods.

Moreover, worst case dose robust optimization methods generated

plans with better CTV coverage robustness than did minmax meth-

ods. However, the robustness for the brainstem and temporal lobes

in terms of variations in V50 and V60 was comparable for all opti-

mization methods. The LP-worst case dose method provided inferior

CTV Rectum Bladder

F I G . 2 . Dose statistics for nominal and uncertainty scenario dose distributions for patient 1 (with prostate cancer). The gray bars indicate
the nominal doses. The red crosses indicate doses under different uncertainty scenarios. The blue lines show the band widths (i.e., Δ(Dv), Δ(Vd))
for different dose-volume indices in DVH families under uncertainty scenarios.

CTV Rectum Bladder

F I G . 3 . Dose statistics for nominal and uncertainty scenario dose distributions for patient 2 (a prostate cancer patient). The gray bars are
based on the nominal doses. The red crosses are based on doses under different uncertainty scenarios. The blue lines show the band widths
(i.e., Δ(Dv), Δ(Vd)) for different dose-volume indices in DVH families under uncertainty scenarios.
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brainstem sparing in terms of the V50 than did the other three

robust optimization methods, whereas the NLP-minmax method cre-

ated a plan with superior temporal lobe sparing in terms of the

V50.

For patient 4 (with head and neck cancer), the NLP-based opti-

mization methods were more robust in covering the CTV than were

the LP-based methods as shown in Fig. 5. The robustness of sparing

critical structures was comparable for all robust optimization meth-

ods. Also, the PTV-based methods clearly could not generate plans

as robust in target coverage as those generated by the robust opti-

mization methods.

Figure 6 shows the dose statistics for patient 5 (a head and neck

cancer patient). All of the robust optimization methods improved the

plan robustness in CTV coverage and OAR (brainstem, spinal cord

and oral cavity) sparing over that of the conventional PTV-based

optimization methods. With all PTV-based, worst case dose, and

minmax optimization approaches, the NLP-based model outper-

formed the LP-based model in providing robust CTV coverage. In

terms of OAR sparing, no robust optimization method was consis-

tently better than the others. The LP-based model with conventional

PTV-based optimization provided brainstem and spinal cord sparing

robustness in terms of the V25 inferior to that provided by the NLP-

PTV-based model, but we found no marked variations in the robust-

ness of OAR sparing among the different robust optimization meth-

ods.

In addition, we compared the PTV coverage for the six optimiza-

tion methods. Table 2 lists the PTV D95 of optimized plans based

on different methods for all five patient cases. It shows that both

PTV-based conventional and robust optimization methods were able

to produce comparable PTV coverage.

Next, we determined the resulting number of spots (i.e., spots

with positive intensity) for each optimization method. Figure 7

CTV Brainstem

Left temporal lobe Right temporal lobe

F I G . 5 . Dose statistics for nominal and uncertainty scenario dose
distributions for patient 4 (with a head and neck tumor). The gray
bars are based on the nominal doses. The red crosses are based on
doses under different uncertainty scenarios. The blue lines show the
band widths (i.e., Δ(Dv), Δ(Vd)) for different dose-volume indices in
DVH families under uncertainty scenarios.

CTV Temporal lobes

Brainstem Brainstem

F I G . 4 . Dose statistics for nominal and uncertainty scenario dose
distributions for patient 3 (with a skull base tumor). The gray bars
are based on the nominal doses. The red crosses are based on doses
under different uncertainty scenarios. The blue lines show the band
widths (i.e., Δ(Dv), Δ(Vd)) for different dose-volume indices in DVH
families under uncertainty scenarios.

CTV Brainstem

Spinal cord Oral cavity

F I G . 6 . Dose statistics for nominal and uncertainty scenario dose
distributions for patient 5 (with a head and neck tumor). The gray
bars are based on the nominal doses. The red crosses are based on
the doses under different uncertainty scenarios. The blue lines show
the band widths (i.e., Δ(Dv), Δ(Vd)) for different dose-volume indices
in DVH families under uncertainty scenarios.
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shows the number of spots for the optimal solution for the six meth-

ods. For each patient, the bar on the far right in Fig. 7 indicates the

total number of spots in the initial spot arrangement. This number

was reduced to a smaller number after optimization. In other words,

some of the spots were turned off during optimization. We observed

many more spots with NLP-based methods than with LP-based

methods (Table 3).

4 | DISCUSSION

The inclusion of plan robustness (resilience in the face of uncertain-

ties) in optimization of dose distributions is widely recognized as

essential for IMPT. Researchers have developed different planning

strategies to account for uncertainties in IMPT planning. In this

study, we assessed and compared two mathematical models (LP-

and NLP-based) and two robust optimization approaches (worst case

dose and minmax) as well as the conventional PTV-based optimiza-

tion approach. Our results demonstrated that the robust optimiza-

tion methods created more robust IMPT plans in terms of target

coverage and OAR sparing than did the PTV-based method. How-

ever, the robust optimization methods behaved differently from site

to site, and no method emerged as superior to the others under any

circumstance.

We performed IMPT planning studies to identify circumstances

under which the LP- and NLP-based robust optimization methods

behaved differently. It is important to note that the LP-based mod-

els used in this study have hard constraints on dose limits,

whereas the NLP-based models do not. The constrained LP models

require model-specific parameters such as lower and upper dose

reference bounds for various organs. These parameters are critical

to controlling the outcome of optimization.17 However, constrained

models have a limitation in the selection of proper values for

parameters because if a model is overly constrained (or tightened),

it will fail to find a solution that satisfies all user-defined con-

straints on organs of interest. Thus, if there is no feasible solution

existing for strict model parameter, relaxed parameters must be

specified. However, using overly relaxed parameters with a con-

strained LP-based model may prevent the model from effectively

generating quality treatment plans. We observed that the two LP-

based methods outperformed the two NLP-based methods in

robustness of CTV coverage for patients 1 and 2 (the two prostate

cancer cases). We did not observe this difference between the LP-

and NLP-based methods for the other three patients. A possible

reason for this behavior is that NLP imposes a quadratic penalty

on deviations from the desired doses. As a result, NLP-based mod-

els focus more on penalizing large deviations, that is, constraints

hard to satisfy or infeasible for LP-based models, than minor devia-

tions. However, LP-based models impose a linear penalty on all

deviations and focus more on minimizing average overall

TAB L E 2 PTV D95 (Gy) for the six optimization approaches: LP-
and NLP-PTV, LP- and NLP-WC, and LP- and NLP-MM.

Model

PTV D95 (Gy)

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

LP-PTV 76.0 77.7 73.9 33.9 69.5

NLP-PTV 76.0 77.5 73.7 33.7 69.7

LP-WC 75.9 77.5 73.6 33.6 69.4

NLP-WC 75.6 77.5 73.4 33.5 69.5

LP-MM 75.7 77.5 73.5 33.4 69.3

NLP-MM 75.6 77.4 73.6 33.5 69.4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Pa�ent 1 Pa�ent 2 Pa�ent 3 Pa�ent 4 Pa�ent 5

N
um

be
r o

f s
po

ts

LP - PTV-based

LP - worst case dose

LP - minmax

NLP - PTV-based

NLP - worst case dose

NLP - minmax

Total number of spots

F I G . 7 . Optimal number of spots
resulting from each of the six optimization
methods for each patient. Each color
represents one method, and the bar on the
far right for each patient illustrates the
total number of spots in the initial spot
arrangement before spot-intensity
optimization.

TAB L E 3 Percentages of the total number of spots selected using
LP- and NLP-based models averaged for the PTV-based, worst case
dose, and minmax approaches.

Model

Percentage of spots selected

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

LP-based 50 20 12 24 38

NLP-based 68 89 81 99 75
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deviations. In OAR sparing, the performance of both methods was

comparable for the first two patients.

Moreover, an optimal dose distribution from a constrained model

such as an LP-based one (see section 2.2) must satisfy all dose-limit

constraints under all possible scenarios. This can be a burden under

some scenarios and may result in wider DVH-family bands than

those for an unconstrained model. If a cancer case is not challenging

and all scenarios are favorable for finding a feasible solution using

constrained LP, the resulting DVH will exhibit better control of plan

robustness than that from an unconstrained model, especially for tar-

get coverage, as we observed for the two typical prostate cancer

cases (see example of CTV coverage and OAR sparing using robust

methods for patient 2 in Fig. 3). In comparison, if a cancer case is

challenging and some scenarios prevent LP with tight constraints

finding a feasible solution, loose upper and lower dose bounds must

be used with an LP-based model and the DVH variations may be

large. The complexity of the treatment site and use of very different

scenarios are less prominent with an NLP-based model because NLP

does not have hard constraints and the quadratic penalty on the

deviation from the target value results in DVH exhibiting less varia-

tion than that with LP, which occurred for the skull base and head

and neck cancer patients in our study (see examples of CTV cover-

age with robust methods for patient 5 in Fig. 8), for whom the NLP-

based methods produced more robust plans than did the LP-based

methods.

When comparing worst case dose and minmax methods using

either LP or NLP, we found that in the prostate and skull base cancer

patients, the worst case dose methods outperformed the minmax

methods in terms of robustness of CTV coverage. However, we

observed no distinction in the two methods’ robustness in OAR spar-

ing. For the worst case dose methods (voxel-by-voxel; see section

2.2.2), the worst case dose of each voxel was calculated indepen-

dently among all uncertainty scenarios considered. Thus, if one vox-

el’s dose were the worst in one uncertainty scenario, another voxel’s

dose might be the worst in a different scenario. In other words, all

scenarios were used in calculating the objective function value in

optimization. However, the minmax methods select one scenario that

is the worst case among all scenarios in terms of its objective value;

the remaining “easy” scenarios are discarded in the optimization

model.11 Our results were consistent with those reported by Fre-

driksson and Bokrantz11 for the two typical prostate cancer cases

with the same beam arrangement (two lateral opposed beams) and

the skull base cancer case, in which the worst case dose methods

provided more robust target coverage than did the minmax methods.

We observed a clear difference between the LP- and NLP-based

models in terms of the number of spots included in the optimized

plans (Table 3). One of the most important features of linear opti-

mization is that the optimal solutions are sparser than those with

nonlinear optimization.18 As described by Cao et al., LP-based mod-

els can create better dose distributions than NLP-based models can

with only a fraction of the number of prearranged spots required for

delivery.19 Thus, LP may save IMPT delivery time by reducing the

number of scanning spots and, particularly, the number of energy

layers.19–21 It should be noted that we did not see pronounced

reduction of energy layers due to the reduction of scanning spots in

those test cases in this study. The reduction actual delivery time is

therefore only marginal. This indicates that one may have to incor-

porate specific objective for minimizing the number energy layers in

the optimization model in order to reduce delivery time even for LP

methods. In addition, LP-based methods resulted in higher spot

intensities (surrogates of monitor units) than did NLP-based methods

as reported by Cao et al.21 Therefore, errors in dose calculation

Worst case dose Minmax

L
P

N
L

P 

F I G . 8 . Clinical target volume (CTV)
dose-volume histogram (DVH) bands for
dose distributions covering all uncertainties
resulting from the use of the four robust
optimization methods in patient 5 (with
head and neck cancer). The width of the
DVH band is inversely proportional to the
robustness of the optimization method.
The solid lines indicate DVHs for the
nominal dose distribution (i.e., without
consideration of uncertainties in dose
contributions).
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resulting from truncation of monitor units to meet the minimum

monitor unit constraint can be greatly avoided using LP-based

models.21

We also observed that LP-PTV-based optimization was outper-

formed by NLP-PTV-based optimization in terms of robustness of

CTV coverage in all five cases. The robustness of sparing critical

structures for NLP-PTV-based optimization was either superior to

or comparable with that for LP-PTV-based optimization. This may

have resulted from the fact that the plans generated using the LP-

based methods were sparser than the plans created using the NLP-

based methods. A sparse solution, in which few spots are selected

or have positive intensities, is naturally sensitive to uncertainty if

plan robustness is not considered in optimization. However, we did

not observe a correlation between the reduction in the number of

spots caused by LP-based robust optimization and loss of robust-

ness. LP-based robust optimization created considerably more

robust plans than did PTV-based optimization (either LP or NLP) in

all cases. It also outperformed NLP-based robust optimization in

plan robustness for the two prostate cancer cases. Overall, plan

robustness is primarily determined by whether uncertainty is taken

into account in optimization, not by the choice of LP or NLP. Fur-

thermore, whether LP- or NLP-based robust optimization outper-

forms each other in terms of resulting plan robustness can vary

case by case.

A limitation of the robust optimization approaches evaluated in

this study was the limited set of predefined uncertainty scenarios.

These scenarios accounted only for setup uncertainties along the x,

y, and z axes and range uncertainties. We did not consider move-

ments in other directions, nonrigid patient movements, changes in

patient anatomy, or other sources of uncertainties. However, incor-

porating more error scenarios requires more time to solve problems,

which may not be practical. Some studies have used a larger number

of scenarios.22,23 However, evaluation of robustness on the basis of

a limited number of setup uncertainties is a common practice and

considered to be predictive of both robust optimization and robust-

ness evaluation in IMPT planning.22

5 | CONCLUSION

The findings of this study reiterate the importance of implementing

robust optimization for IMPT. Our results also demonstrate that the

robust optimization method ideally should be chosen on a site-by-

site basis. None of the robust optimization methods (consisting of

worst case dose and minmax methods with both LP- and NLP-based

models) consistently outperformed the others in terms of either

nominal plan quality or plan robustness against uncertainties. The

LP-based methods provided more robust target coverage than did

the NLP-based methods where all uncertainty scenarios were able to

meet tight dose constraints, as shown for prostate cancer cases.

However, the robustness of the plans created using the LP-based

methods was inferior in more challenging cases, such as head and

neck cancer cases, in which some scenarios prevented LP with

relatively tighter constraints from finding a feasible solution. In addi-

tion, the LP-based methods resulted in significantly fewer scanning

spots than did the NLP-based methods for the same quality and

robustness. With conventional PTV-based optimization, NLP-based

method outperformed LP-based method regarding robustness of

CTV coverage.

ACKNOWLEDGMENTS

We are very grateful to Donald Norwood for editorial assistance in

improving the manuscript. The research described in this paper was

supported by grant number U19 CA021239 from the National Can-

cer Institute.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

1. Lomax AJ. Intensity modulation methods for proton radiotherapy.

Phys Med Biol. 1999;44:185–205.

2. Lomax AJ. Intensity modulated proton therapy and its sensitivity to

treatment uncertainties 1: the potential effects of calculational

uncertainties. Phys Med Biol. 2008;53:1027–1042.

3. Lomax AJ. Intensity modulated proton therapy and its sensitivity to

treatment uncertainties 2: the potential effects of inter-fraction and

interfiled motions. Phys Med Biol. 2008;53:1043–1056.

4. Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization: a

method to account for uncertainties in the optimization of intensity

modulated proton therapy. Phys Med Biol. 2008;53:1689–1700.

5. Unkelbach J, Chan TC, Bortfeld T. Accounting for range uncertainties

in the optimization of intensity modulated proton therapy. Phys Med

Biol. 2007;52:2755–2773.

6. Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitiv-

ity of IMPT treatment plans to setup errors and range uncertainties via

probabilistic treatment planning.Med Phys. 2009;36:149–163.

7. Liu W, Zhang X, Li Y, Mohan R. Robust optimization in intensity-

modulated proton therapy. Med Phys. 2012;39:1079–1091.

8. Chen W, Unkelbach J, Trofimov A, et al. Including robustness in mul-

ti-criteria optimization for intensity-modulated proton therapy. Phys

Med Biol. 2012;57:591–608.

9. Fredriksson A, Forsgren A, Hardemark B. Minimax optimization for

handling range and setup uncertainties in proton therapy. Med Phys.

2011;38:1672–1684.

10. Lomax AJ, Pedroni E, Rutz H, Goitein G. The clinical potential of

intensity modulated proton therapy. Z Med Phys. 2004;14:147–152.

11. Fredriksson A, Bokrantz R. A critical evaluation of worst case opti-

mization methods for robust intensity-modulated proton therapy

planning. Med Phys. 2014;41:081701.

12. Cao W, Lim G, Lee A, et al. Uncertainty incorporated beam angle

optimization for IMPT treatment planning. Med Phys. 2012;39:5248–

5256.

13. Chan TC. Optimization under uncertainty in radiation therapy, Ph.D.

Thesis, Operations Research Center, Sloan School of Management,

MIT, June 2007.

14. Fredriksson A. A characterization of robust radiation therapy treat-

ment planning methods-from 14. expected value to worst case opti-

mization. Med Phys. 2012;39:5169–5181.

24 | ZAGHIAN ET AL.



15. Trofimov A, Kang J, Unkelbach J, et al. Evaluation of dosimetric gain

and uncertainties in proton therapy delivery with scanned pencil

beam in treatment of base-of-skull and spinal tumors. Int J Radiat

Oncol Biol Phys. 2010;78:S133–S134.

16. Trofimov A, Unkelbach J, DeLaney TF, Bortfeld T. Visualization of a

variety of possible dosimetric outcomes in radiation therapy using

dose-volume histogram bands. Pract Radiat Oncol. 2012;2:164–171.

17. Zaghian M, Lim G, Liu W, Mohan R. An automatic approach for sat-

isfying dose-volume constraints in linear fluence map optimization

for IMPT. J Cancer Ther. 2014;5:198–207.

18. Cand�es E, Wakin M, Boyd S. Enhancing sparsity by reweighted l1

minimization. J Fourier Anal Appl. 2008;14:877–905.

19. Cao W, Lim G, Li X, Li Y, Zhu R, Zhang X. Incorporating

deliverable monitor unit constraints into spot intensity

optimization in IMPT treatment planning. Phys Med Biol. 2013;58:

5113–5125.

20. Kang JH, Wilkens JJ, Oelfke U. Non-uniform depth scanning for pro-

ton therapy systems employing active energy variation. Phys Med

Biol. 2008;53:N149.

21. Cao W, Lim G, Liao L, et al. Proton energy optimization and reduc-

tion for intensity-modulated proton therapy. Phys Med Biol.

2014;59:6341–6354.

22. Casiraghi M, Albertini F, Lomax AJ. Advantages and limitations of

the ‘worst case scenario’ approach in IMPT treatment planning. Phys

Med Biol. 2013;58:1323.

23. Liu W, Frank SJ, Li X, Li Y, Zhu RX, Mohan R. PTV-based IMPT opti-

mization incorporating planning risk volumes vs robust optimization.

Med Phys. 2013;40:021709.

ZAGHIAN ET AL. | 25


