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Abstract

Diverse applications rely on engineering microbes to carry and express foreign transgenes. This engineered baggage rarely benefits
the microbe and is thus prone to rapid evolutionary loss when the microbe is propagated. For applications where a transgene must be
maintained for extended periods of growth, slowing the rate of transgene evolution is critical and can be achieved by reducing either
the rate of mutation or the strength of selection. Because the benefits realized by changing these quantities will not usually be equal,
it is important to know which will yield the greatest improvement to the evolutionary half-life of the engineering. Here, we provide a
method for jointly estimating the mutation rate of transgene loss and the strength of selection favoring these transgene-free, revertant
individuals. The method requires data from serial transfer experiments in which the frequency of engineered genomes is monitored
periodically. Simple mathematical models are developed that use these estimates to predict the half-life of the engineered transgene
and provide quantitative predictions for how alterations to mutation and selection will influence longevity. The estimation method
and predictive tools have been implemented as an interactive web application, MuSe.
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1. Introduction
It is now commonplace to genetically modify microbial genomes
by introducing foreign genes and other elements that endow the
microbe with properties of industrial, scientific or medical value
but that do not benefit the individual (9, 11, 21, 28, 34, 35,
40–42). From an evolutionary perspective, such genomic addi-
tions are often selectively neutral or deleterious to individual
fitness; in either case, the additionswill be transient over extended
periods of microbial self-propagation unless they rapidly evolve
new function. Although the evolutionary durability of transgenes
may be of little consequence for research that requires an intact
genome for only a single assay, a short engineering half-life will
be anathema to applications that require sustained transgene
expression.

A common means to assess evolutionary stability of engi-
neered genomes is to propagate the microbe in culture and moni-
tor the genome for deletions or diminished expression (1, 8, 14, 17,
19, 25, 29, 32, 35, 39–42). In its most basic implementation, this
method allows stable and highly unstable engineering to be dis-
criminated. However, merely knowing that an engineered genome
is unstable sheds little light on whether and how the stability
might be improved. Unstable engineering is not irrevocable, and
it can potentially be improved by further engineering or evolution
(7, 14, 35, 36, 40–42).

When attempting to improve stability, it may be necessary to
understand the basis of instability. Instability may be caused by
a high mutation rate to engineering loss/inactivation or a high fit-
ness cost of the engineering, and fixing one of those problemsmay
be more important than fixing the other. Thus, when the instabil-
ity was caused by a highmutation rate, changing those sequences
causing the high mutation rate yielded substantial improvements

in longevity (14, 21, 29, 35, 36, 40). In contrast, when the insta-

bility was tied to fitness costs associated with transgene carriage,
a different construction was sometimes able to reduce the cost

(1, 8, 19, 25, 35, 39, 40).
Here we developmathematical models and statistical method-

ologies that allow us to estimate the mutation rate of the trans-
gene and the fitness costs imposed on individuals that carry it.
Estimating fitness effects of mutations has a long and rich his-
tory in evolutionary biology and has advanced to the level of
estimating distributions of fitness effects across entire genomes

(e.g., 24, 43, 45). Our approach here differs by focusing on cases
common for engineered organisms where both mutation and
selection can be large and evolution rapid. This falls outside
the scope of traditional evolutionary biology that routinely uses
approximations of weak selection and weak mutation. The mod-
els presented here are broadly similar to methods developed in

a series of studies to evaluate plasmid stability (4, 5, 22, 26), but
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Figure 1. A schematic of the experimental design, genetic engineering, and evolutionary dynamics assumed by our maximum likelihood method. The
top row depicts four serial transfers of a microbe, with the frequency of the engineered type (red) declining in each passage relative to the revertant
microbe (blue) that has lost the engineering/insert. The lower row plots the densities of engineered and revertant strains. Microbe densities (numbers)
increase over time within a culture, then are diluted precipitously at transfer, but continue growing at the same rate and eventually repopulate the
new culture, only to be diluted again. The increase in frequency of the revertant strain is evident from the gradual rise to dominance of the blue
curves. The transfers may continue indefinitely.

our implementations differ, and the online software we develop is
specific to our methods.

2. Materials and Methods
The contributions of mutation and selection to evolution are
intrinsically quantitative. This section develops a blend of biol-
ogy andmathematics to explain our approach. The Results section
provides the data analysis.

2.1 Modeling evolution in serial transfer
experiments
Our approach relies on a mathematical model that describes the
growth of engineered and revertant strains that are propagated in
culture over time using serial dilution (Figure 1). Themodel distin-
guishes selection from mutation, even though both contribute to
the eventual loss of the engineering. We assume that thewild-type
strain grows at a maximum per capita rate r, whereas the max-
imal per capita growth rate of the engineered strain is reduced
and equal to r(1− s). The parameter s quantifies the strength
of selection acting against the foreign transgene and reflects the
reduction in growth rate attributable to carrying and expressing
the foreign transgene. Mutation acts as a gatekeeper of the evo-
lutionary process, causing the engineered strain to eliminate the
transgene (or its expression) with probability, µ, during replica-
tion. Back mutation is ignored, as transgene function, once lost, is
unlikely to be regained. Once mutation has relieved an individual
of its transgenic burden, selection is free to drive this more rapidly
growing mutant through the population. Finally, we assume that
as population size increases in culture, the growth rate of each
strain decreases due to density dependence, with growth rates
declining to zero as the population size approaches its carrying

Table 1. Parameters and variables used in Equation (1)

Parameter or
variable Description

NE Number of engineered individuals (function of time)
NR Number of revertant individuals, equivalent to wild type

(function of time)
r Per capita growth rate in culture
s Selection coefficient against the engineering
K Carrying capacity (limit on microbial density)
µ Mutation rate to loss of engineering

capacity, K. Together, these assumptions lead to the following sys-
tem of ordinary differential equations describing the change in the
population size of both types over time:

dNE

dt
= r(1− s)NE

(
1−

NE +NR

K

)
(1−µ) (1)

dNR

dt
= rNR

(
1−

NE +NR

K

)
+ r(1− s)NE

(
1−

NE +NR

K

)
(µ),

with notation defined in Table 1. If there is more than one type
of revertant (as regards mutation rate or fitness), an additional
equation is needed for each additional type.

Before population growth ceases due to depletion of resources,
serial passage experiments generally transfer a sample of culture
to fresh media, with these transfers occurring repeatedly and at
regular intervals (Figure 1). We model this process of repeatedly
transferring culture in two ways. In the first, we assume that
the amount of culture transferred is sufficiently large for stochas-
tic effects to be negligible and evolutionary dynamics effectively
deterministic; transfers occur before density-dependent effects
are manifest. This approach is used to develop predictions for
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the half-life of the transgene and to derive a maximum likelihood
estimator. In the second approach, we explicitly model the trans-
fer process using stochastic simulations. This approach is used to
simulate serial transfer experiments and allow the accuracy of our
maximum likelihood method to be evaluated. Although we have
motivated our model with serial passage in culture, in principle
it can also be used for serial passage in multicellular organisms
under some restrictions (see Discussion).

2.2 Predicting the lifespan of engineering
We can use a simplification of Equation (1) to predict the dura-
bility of the engineered phenotype when confronted with muta-
tion and selection. Specifically, we calculate the time until half
of the population has lost or downregulated the foreign trans-
gene. Our approach relies on the population size remaining well
below its carrying capacity, K. In such cases (1) can be approxi-
mated by:

dNE

dt
= r (1− s)(1−µ)NE (2)

dNR

dt
= r

(
NR +µ (1− s) NE

)
.

Applying a change of variables to these approximate equations to
calculate the instantaneous rate of change for the frequency of
the engineered phenotype within the population yields

dp

dt
=−rp [µ+ s (1− p−µ)], (3)

where p= NE
NE+NR

.

2.3 A maximum likelihood approach to
estimating mutation and selection
The full model in (1) is too complex to solve analytically, but the
approximation (3) can be solved to yield a solution for the fre-
quency of the transgene at any time point t or to calculate the
time until the transgene has declined to a specified value. Thus,
as long as population sizes remain sufficiently large for stochastic
effects to be ignored yet well below carrying capacity (i.e. small
enough for the effects of density dependence to be negligible), the
frequency of the transgene at time t is approximately equal to

p(t) =
p0

(
s(1−µ)+µ

)
exp

[
−rt

(
s(1−µ)+µ

)]
µ+ s

[
1−µ− p0

(
1− exp

(
−rt

(
s(1−µ)+µ

)))] , (4)

where p0 is the frequency of the transgene at the start of the
experiment. This solution for transgene frequency can be used
to generate a maximum likelihood estimator for µ and s that is
informed by the counts of engineered and revertant individuals
in samples drawn from the culture at periodic intervals (Figure 1).
Specifically, we assume that at each time ti a sample is drawn
from the culture, the number of engineered and revertant individ-
uals counted, and a fresh culture is inoculated from the sample.
The initial frequency p0 is calculated from a sample of individuals
taken at the start of the culture, t0. It need not be 1, but as will be
noted later, it is best if 1 or close to 1.

Denoting the number of individuals sampled at each time by n
and the number of engineered individuals (carrying transgene) by
x, the likelihood of observing the counts across the entire temporal

Table 2. Model parameters and values used in simulations

Parameter Description Values used*

r Per capita growth rate in culture 0.05, 0.1, 0.15
K Carrying capacity 2 000 000
T Time between transfers 24, 72 (hours)
n Number of individuals assayed at

transfer (e.g., colonies and plaques)
25, 100

β Bottleneck size at transfer 10 000
R Number of replicates 1, 3

*If multiple values are listed, bold indicates the defaults

sequence of samples is given by:

L=
∏
t∈τ

(
n

x

)
p(t)x[1− p(t)]n−x (5)

where p(t) is given by Equation (4) evaluated at each time ti in the
set of sampling times τ = {t0, t1, . . ., tJ}. Minimizing the negative
log of L with respect to µ and s yields the maximum likelihood
estimate for these parameters given the time-series counts data.
Numerical solutions are straightforward.

We evaluated the performance of our maximum likelihood
estimator using simulated data. The data were generated using
stochastic simulations of Equation (1). The Gillespie algorithm
was used for these simulations with a version of the Tau Leap-
ing approximation to increase speed (15; 16). The bulk of our
simulations began by assuming the initial culture was pure and
composed of only individuals carrying and expressing the foreign
transgene. We did, however, run an additional set of simula-
tions that relaxed this assumption by including between 5 and 50
wild-type individuals (out of 10 000) in the initial culture.

From an initial population, simulations tracked numbers
within the culture using Equation (1) until the first transfer time
in the experiment. At the end of this culture’s growth period, a
random sample of β individuals was taken from the simulated
culture and used to start the next culture (Figure 1). Of these β

individuals, a subset of individuals (n) was analyzed to determine
how many carry/express the foreign transgene (x). This process
was repeated until the simulated experiment had run for 3600h,
150days. When simulating data, it is necessary to apply specific
values for parameters such as growth rate, transfer interval and
bottleneck size at transfer. We have focused our simulations on
the scenarios and parameter combinations motivated by empir-
ical studies with genetically engineered cytomegalovirus (Chan
and Redwood, unpublished) and shown in Table 2. Experiments
with bacteria, yeast or other types of virus would have different
values for some or all of these parameters, but as long as the
basic assumptions of themethod are satisfied, the accuracy of the
method should not be affected by these specifics.

For various combinations of background parameters given in
Table 2, we generated 50 simulated data sets where µ and s had
been selected at random. Specifically, swas drawn from a uniform
distributionwith values ranging from 0.005 to 0.2 andµwas drawn
at random from a Gamma distribution with mode 1.5R × 10−5 and
shape 10.0, where themode gradually increased across the 50 sim-
ulation runs to guarantee a broad range of possible values. (The
exponent ‘R’ started at 1 andwas incremented by 1with each trial,
ultimately spanning values from 1 to 50.) Each of the 50 simu-
lated data sets was then analyzed using our maximum likelihood
approach, and the estimates for µ and s recorded and com-
pared to their true values. We studied 800 such simulated data
sets.
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Figure 2. Contour plots showing how decreasing mutation rates and selection against a transgene influence the longevity of the engineering. For each
panel, the starting values of mutation (µ∗) and selection (s∗) yield the half-life value indicated (t50

∗). The value of t50
∗ given in the figure applies to the

lower left corner, a color value of 1 in the key at the right. As the value of mutation or selection is decreased by the factor given on the respective axis
(e.g. mutation is µ∗/kµ and selection is s∗/ks), the t50 value increases (the engineering persists longer) by the factor indicated in the key. Panels show a
nearly 10-fold increase in longevity in the upper right corner, but the separate effects of kµ and ks vary across panels as indicated by the contour lines
being vertical or horizontal.

3. Results
3.1 The time to loss of engineering
To illustrate how the lifespan of the engineered phenotype
depends onmutation and selection, we solved Equation (3) for the
time it takes to go from a pure culture until half of the population
has lost or downregulated the foreign transgene. Results derived
using the Mathematica software package show that this time (t50)
is

t50 =
loge

(
µ(1−s)

µ(1−s)+s(1−µ)+µ

)
−r [s(1−µ)+µ]

. (6)

In most cases, the goal will be to maximize this quantity, consis-
tent with maintaining expression of the engineered phenotype for
as long as possible. If there is no fitness cost to the engineering
(i.e., s=0), result (6) shows that t50 reduces to 0.7/(rµ). Thus, if
rµ is high, say 0.01, t50 will be 70h or around 3days. With every
10-fold decrease in mutation rate (holding r constant), t50 will
increase 10-fold. When carrying the foreign transgene imposes a
fitness cost, both mutation and selection must be quite low for t50
to exceed a couple days, except in the case that µ is extremely low.

In addition to facilitating an intuitive and quantitative under-
standing of how mutation and selection influence the durability
of a transgene, Equation (6) provides a framework for evaluating

how small changes to the engineering will influence durability.
Specifically, calculating the ratio of t50 for current values of µ

and s relative to the value of t50 for values of µ∗ and s∗ that have
been reduced by the factors kµ and ks respectively, clarifies when
re-engineering should focus on mutation, selection, or both to

maximize gains in transgene durability (Figure 2). In these plots,

the initial parameters, shown in white, apply to the lower left cor-
ner of the panel, and the t50 increases asmutation and/or selection
are decreased by the factor given on the respective axis. The top
right panel reveals that the major effect is from decreasing selec-
tion formuch of the space shown (because the isoclines are largely
horizontal), whereas the lower left panel shows that the major
effect is from decreasing mutation rate (because the isoclines are

largely vertical).
The information provided by these estimates is only the first

step in improving the half-life of the engineering. The practical-
ity of reducing the mutation rate or selection will depend on the
application. Understanding the gains from each will no doubt
influence the effort expended to change the half-life.

Synthetic Biology, 2021, Vol. 6, No. 1
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Figure 3. Comparisons of parameter estimates with true values using simulated data: effect of carrying capacity. The first row shows cases with
transfers every 24h, for which the population was always well below carrying capacity. On average, the estimates closely match the true values, with
a best fit equation of µestimate = 0.00017+ 0.96µtrue for mutation and sestimate = 0.0027+ 0.87strue for selection. The second row analyzes cases where
transfers occur every 72h, for which the population is mostly growing non-exponentially because of its approach to carrying capacity. The estimates
are now substantially biased downward, with a best fit equation of µestimate = 0.00027+ 0.77µtrue for mutation and sestimate = −0.0005+ 0.70strue for
selection. The red line indicates the 1:1 fit expected if the maximum likelihood method worked perfectly, whereas the blue line is the realized fit, with
its 95% confidence interval in gray.

3.2 Estimating mutation and selection using
maximum likelihood with simulated data
Applying our maximum likelihood method to the simulated data
demonstrated that themethod is capable of accurately estimating
both mutation and selection over a broad range of values. These
simulations used Equation (1) and parameter values in Table 2;
sample output data are shown in Supplementary Figure S5. There
is no limit to the number of different parameter states that might
be tested by simulation, but we consider the illustrations below to
capture the main features of the problems investigated.

The estimator performs well in the ideal case, but culture
duration matters. Estimations should perform best when the
assumptions used in estimation match those used to generate
the data. This outcome was found. Assuming the true r was
known and that transfers were conducted every 24h (hence with

essentially no effect of carrying capacity), the estimated values
align closely with true values (Figure 3, top row). As the trans-
fer interval was increased to 72h, however, the accuracy of the
method fell: values of both µ and s were slightly but consistently
underestimated (Figure 3, bottom row). The decrease in accuracy
occurs because the 72-h population had saturated (for the value
of r used), and its growth slowed. Reducing population growth also
reduces the rate of evolution. This result emphasizes the impor-
tance of transferring the culture frequently enough for growth to
remain approximately exponential.

Small samples can be used. In contrast to the importance of
transferring before carrying capacity is approached, our results
suggest amoderately small number of individuals can be sampled
at each transfer without a substantial loss in performance. Specif-
ically, sampling only 25 individuals as opposed to 100 individuals
at each transfer has no perceptible influence on the accuracy of
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parameter estimates when three replicates are used (Supplemen-
tary Figure S1). Likewise, the number of independent replicate
transfer experiments used appears to matter little, with the preci-
sion of estimates slightly reduced for cases where only a single
replicate is used with a sampling of 100 individuals at trans-
fer (Supplementary Figure S1). The demonstration that relatively
small sample sizes can be used increases the feasibility of employ-
ing our method when the state of engineering must be assayed
using molecular methods rather than visually.

The assigned value of r matters. Although the ideal scenario
for application of our approach entails the independent and accu-
rate estimation of r, this will not always be possible. Only ballpark
estimates of rmay be available (e.g. transfer experiments inside an
organism). To evaluate the performance of our approach in such
cases, we repeated the analyses of the previous paragraph with
simulated data sets for which r was equal to either 0.05 or 0.15
but where the method assumed r=0.1. The method often gener-
ated biased estimates for both µ and s (Supplementary Figure S2).
In general, when the assumed r was larger than its true value, it
underestimated the true values of µ and s. If, instead, the method
assumed r was smaller than its true value the values of µ and s
were commonly overestimates.

Impure initial cultures have a small effect. Trials thus far
assumed the initial culture at t0 was purely transgenic. To evaluate
the importance of this assumption, simulations were performed
in which the initial culture was not pure but instead included
between 5 and 50 individuals lacking the transgene (a frequency of
0.0005–0.005). These numbers were chosen so that the revertant
would be present initially but at a low enough frequency that it
would not usually be detected in a sample of 100 individuals—
the value of n used in these simulations. Analyses similar to
those reported in the previous subsections revealed these initial
impurities had only a modest impact on method performance
(Supplementary Figure S3). The primary impact of starting with
impure cultures was to underestimate the strength of selection.
This problem can be minimized by substantially increasing the
number of individuals assayed in the starting culture. If resources
for conducting transfers are limiting, this result suggests it will be
better to focus efforts on genotyping a larger number of individu-
als early in the experiment at the expense of intensive sampling
later on.

Serial passage duration can be truncated. Finally, we explored
method accuracy when varying the duration of the serial transfer
experiment. Reducing the duration of an experiment provides an
obvious economy of resources, but only if accuracy is not compro-
mised. Method performancewas evaluatedwhen serial transfer of
an experiment was terminated when the frequency of the trans-
gene reached 75%, 50% or 25%within the sample taken at transfer.
Truncating replicates before the transgene is no longer detectable
invariably reduces the accuracy of the estimates for mutation and
selection (Supplementary Figure S4). However, provided transfers
are continued until transgene frequency has reached or dipped
below 25%, reductions in accuracy are slight. Earlier terminations
compromise estimation.

3.3 An empirical application: plasmid
maintenance
A simple but useful form of engineering is to add a plasmid to a
bacterium. Maintenance of the plasmid is fundamentally (dynam-
ically) the same process as maintenance of engineering in an

Table 3. Evolutionary estimates of plasmid loss parameters

Generations of
coevolution

Estimated muta-
tion rate (loss of
plasmid)¹

Estimated
selection
coefficient

Estimated
t50 (hours)

0 0.015
(0.0078–0.023)

0.057
(0.036–0.078)

87

300 0.0009
(0.00004–0.0018)

0.040
(0.032–0.049)

325

400 0.003
(0.00045–0.0055)

0.043
(0.032–0.054)

216

1Ranges in parentheses represent approximate 95% confidence intervals

asexual genome, where loss of the plasmid through segregation is
equivalent tomutation, and faster growth of plasmid-free bacteria
is equivalent to selection.

For illustration, we use part of the study of Hughes et al. (20):
plasmids from one bacterial species were introduced into a dif-
ferent species and selected for maintenance with antibiotics over
hundreds of generations. At various times, samples of the co-
evolved cultures were propagated without the antibiotic and were
then measured for plasmid absence based on whether the cell
retained or lost drug resistance. The raw data were provided by
E. Top (personal communication), and we applied our maximum
likelihood method here to a subset of those data (estimates of
mutation and selection are given in Table 3; the full data are in our
Supplementary file). With cultures diluted 1000-fold every 24h,
we assumed a constant per-hour growth rate of r=0.2878.

Generation 0 represents plasmid stability in the absence of any
co-evolution of the plasmid with its new host. Generations 300
and 400 represent approximately 30 and 40days of co-evolution.
It is thus expected that the plasmid at the latter generations will
have evolved to become more stable, either through a lower loss
rate (here expressed as mutation) and/or through less costly car-
riage (selection). The estimates support these expectations. The
estimated loss rate dropped at least 5-fold, and the cost of car-
riage dropped by at least 1.3-fold. The estimates for Generations
300 and 400 mostly fall within confidence limits of each other
so are likely not different, but estimates of Generation 0 never
lie within confidence intervals of gen-300 or gen-400 so are sta-
tistically different. The observations of changes in both plasmid
stability (mutation) and fitness effect are fully compatible with
the later sequence and biochemical characterizations of evolved
plasmids by Yano et al. (44), suggesting multiple mechanisms
underlying the evolutionary response. Using software described in
the following section, the model fit provided for the Generation 0
data show that the data are compatible with the model-generated
curve (Figure 4).

3.4 Software implementation
Our maximum-likelihood method is implemented in R in a
web application that can be used to estimate the mutation
rate and strength of selection from serial transfer experi-
ments (http://plwa.ibest.uidaho.edu/shiny/muse); this platform
was used to generate Table 3 and Figure 4. In addition to report-
ing the maximum likelihood estimates, this application provides
plots of the likelihood surface, the fit of data simulated using the
maximum likelihood estimates to the real data, and of the t50 sur-
face predicting how changes in the mutation rate or strength of
selection would influence the longevity of the engineering.

The assumptions of the growth model presented above may
not always be matched by the experimental design, especially

Synthetic Biology, 2021, Vol. 6, No. 1
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Figure 4. Graphical output of analysis software MuSe for the model fit to the data. Data are shown as colored dots; the blue curve is the model curve;
the gray region represents the 95% confidence interval for replicate transgene frequency measurements at each time point assuming the maximum
likelihood estimates are true. Data used for this figure are the Generation 0 frequencies from (20) provided by E. Top (given in our Supplementary file).

the assumption of continual exponential growth at the same rate
r. Our software platform thus also allows an option to estimate
mutation and selection on a per-culture basis (as derived in the
Supplementary data). Estimates using this discrete-time model
have not been validated as exhaustively as the continuous-time
model, however.

4. Discussion
Evolution threatens the maintenance of engineered genomes by
reversing or modifying the engineering over extended periods of
propagation. This evolutionary challenge is greatest when the goal
of the engineering requires the addition of foreign genes that pro-
vide no benefit to the parent genome or that may even be costly.
Evolutionary instability results when mutation rids an individual
of its transgenic cargo and selection then favors its descendants
over the non-mutants. Although bothmutation and selection con-
tribute to evolutionary instability, their impacts on the half-life
of genetic engineering differ, as do the methods used to adjust
their magnitudes. We have developed a versatile computational
method for estimating mutation and selection simultaneously
using data from samples of microbial culture propagated over an
extended period of serial transfers. The empirical foundation of
our method is merely a standard competition assay but one in
which the superior type arises through native mutation rather
than by experimental addition of known mutants (6, 10, 33, 43).
Our maximum likelihood estimation is suited to the simplicity of
our underlying model, but the estimation could be expanded to
considerable model complexity by using Approximate Bayesian
Computation (ABC), albeit that the ABC approach may involve
considerablymore empirical analysis and computational trial and
error (e.g., 2). We also acknowledge that similar but alternative
approaches have been developed, specifically tailored to the prob-
lem of plasmidmaintenance (4, 5, 22, 26). Our approach is broader
in scope and suitable when the transgene experiences strong
selection with a high mutation rate to loss.

4.1 What can be done with the estimates?
Understanding the magnitudes of these evolutionary processes
facilitates effective and robust engineering in several ways. First,

reliable estimates for the mutation rate and strength of selection
allow the duration of the engineering to be predicted—whether
effective for hours, days, weeks or even months. It is, of course,
sometimes possible to estimate the duration of per-nucleotide
empirically, but this requires potentially extended serial prop-
agation that is practical only when engineering is short-lived.
Second, estimates for mutation and selection help identify where
improvements can be most easily made to increase the half-
life of the engineering. For instance, finding that the rate at
which mutation inactivates the transgene is marginally greater
than the baseline per-nucleotide mutation rate for the genome
as a whole suggests little scope for further improvement. In
such a case, increasing the lifespan of the engineering must
focus on reducing the selective cost of carrying the transgene,
perhaps by using a functionally similar but less costly vari-
ant or by coevolving the microbe and transgene for a period
of time under conditions where the transgene cannot be elim-
inated. In other cases, however, the finding may be the oppo-
site and demonstrate a rate of mutation far in excess of the
baseline rate but only a weak selective cost of carrying the
transgene.

There are precedents formodifications to improve the longevity
of engineered genomes. Sleight et al. (35) engineered a 2-fold
increase in the evolutionary ‘half-life’ of a bacterial genetic cir-
cuit merely by removing identical terminators that had enabled
recombination-mediated deletions. Similarly, the mutation rate
of poliovirus was reduced by evolving the virus in a highly muta-
genic environment so that its polymerase became less error-
prone (37; 38). Other types of modifications may reduce fitness
costs. For example, transgene stability was found to depend on
the promoters expressing the transgene, presumably affecting
selection based on the timing of expression (39). Kenney et al.
(23) took an extreme approach to discovering keys to (atten-
uated) vaccine stability by engineering radically different vac-
cine designs and studying their persistence by serial transfer.
There are many cases in which evolutionary instability of engi-
neered genomes has been mitigated (see Introduction for a small
sample of references), and future technical improvements in
engineering platforms are only likely to make the amelioration
easier.
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4.2 Limitations
Perhaps the most serious limitation of our method is the restric-
tion of evolution to a single mutant type. Microbial cultures com-
monly experience the ascent of multiple mutations, especially in
the long term. When one mutation arises early and has a much
larger effect than the others (e.g. a deletion of the transgene), it
will dominate the estimates, an outcome that will be satisfactory
for many purposes. Restricting the analysis to the early transfers
may help avoid confounding secondary and tertiary mutations,
but the later mutations may be the most important ones from the
perspective of engineering.

Our methodology enables detecting some extreme model vio-
lations by comparing the actual data to the simulated data. Thus,
if the real transgene decay data fall outside the 95% range of the
simulated decay data (using the maximum likelihood estimates
derived by our method), the possibility of multiple mutations
must be entertained and the estimates treated with caution or
abandoned. The online implementation of our method, MuSe,
allows the model fit to be easily assessed in this way. Primar-
ily because of the restriction to single mutations, we view the
method developed here as a first step in the eventual development
of models capable of disentangling more complex evolutionary
pathways. Thesemore sophisticated approaches could potentially
integrate sequence datawith phenotypic data to identifymutation
rates and selection strengths for individual mutations. Whether
these extensions will ever be practical for more than a couple of
mutations is yet to be determined.

Our approach relies on simple models of microbial growth in
culture with transfers sufficiently often to maintain exponential
microbial growth. For bacteria and yeast this may be achieved by
transferring culture before the population nears carrying capacity.
Maintaining exponential growth of viral cultures is more difficult,
however, because viral life cycles have phases in which there is
no reproduction immediately after infection followed by episodic
reproduction. Satisfying the model assumptions under these
life histories requires transfer of a sample of the entire culture
(e.g. infected cells plus free virus), timed to occur long before
culture saturation (3). Constant exponential growth is not sat-
isfied until a ‘stable age-of-infection’ distribution is attained, at
which the fractions of the population in different life history
stages is unchanging. Even when growth is not strictly exponen-
tial, however, our results suggest our method continues to provide
reasonably good estimates for the magnitude of selection and
mutation.

The estimation methods here assume that the time of transfer
is known. For transfers done at regular intervals, the transfer is
done based on time and use of the estimator is trivial (whether
the method assumes continuous time or discrete time—the lat-
ter being addressed in the Supplementary). Some protocols may
instead base transfer on the culture having reached a threshold
density. Provided that the times of transfer are recorded, these
latter protocolsmay also be analyzed with themethods developed
here.

In cases where growth in culture deviates markedly from
the simple exponential models used here, it may be neces-
sary to use either more sophisticated models tuned to the biol-
ogy of the specific system or to use models that ignore the
within-culture details such as growth rate. Toward this end,
our online software platform includes a per-transfer estima-
tor that can be applied when the within-culture processes are
unknown but consistent among cultures; no assumption about
growth rate is required so long as transfer times are consistent.

Estimated values ofmutation and selection from the twomethods
(discrete and continuous time) will differ and should not be com-
pared. Indeed, the estimates from the continuous time method
depend on r, are per-hour, and the model assumes that all muta-
tion and selection stops when r=0; no such constraint applies
to the discrete model case. However, we do expect the rela-
tive magnitudes of mutation and selection within each model to
be similar across models. If the two sets of estimates are not
in broad agreement, further work will be required to reconcile
them.

As suggested above, modifications of our approach will be
needed in the next generation of estimation models. For exam-
ple, we noted that the models should accommodate multiple
mutational pathways to different degrees of transgene inactiva-
tion (21, 29, 35, 40–42). Related to this is the possibility (also
neglected by our model) that microbes with little prior history
in culture may undergo substantial adaptive evolution, indepen-
dent of the engineering. Culture adaptation leads to competing
evolution that may confound our method’s ability to estimate
the mutation rate and selective cost of the transgene. A simple
solution to this latter problem, but not necessarily one com-
mensurate with the engineering goals, is to engineer microbial
strains already well adapted to growth in culture. Finally, a useful
and perhaps easy extension of our method will be to accom-
modate the full model in (1) so that a carrying capacity can
be applied. That extension will not lend itself to an analytical
solution for pt as a function of p0, rather it will likely require
numerical iteration of the dynamical equations to establish that
relationship.

4.3 Serial transfer between organisms
Although we developed our method within the context of serial
passage experiments of engineered organisms in cultures, some
real-world applications require growth in an organism—a plant or
animal. For example, some recombinant vaccines carry a trans-
gene and are designed to grow within the host (12, 13, 18); rapid
loss of the transgene would be inimical to eliciting immunity. In
this case, the relevant growth environment is the multicellular
host rather than a batch of cultured cells. In principle, the same
estimation methods can be applied to an engineered microbe
grown in plants or animals as to growth in artificial culture. Each
animal or plant host individual becomes the equivalent of a single
culture. One challenge of applying our approach in this context, of
course, is that the environment inside of a multicellular organism
introduces considerable tissue heterogeneity that can give rise to
different dynamics and evolution in different parts of the organ-
ism (27, 30, 31). An additional challenge for our continuous-time
estimation lies in ourmodel’s assumption that the selective cost of
the transgene is tied to microbial growth rate. For example, when
a microbe is grown in an organism, an observed growth rate (r)
is confounded with clearance rate (equivalent to death). In the
absence of modifications to our likelihood model, a microbe with
both a high actual growth rate and a high clearance rate will be
estimated as one with a low growth rate, in turn overestimating
selection andmutation. The overall within-host process should be
measured appropriately despite this error, but the combinations
of µ, s and r will be systematically shifted from their true values.
Systematic errors of this type need not generally affect the cal-
culated t50 or fail to infer the relative contributions of mutation
and selection. However, if an overestimation of the mutation rate
is large, it may give an impression that attaining a lower rate is
feasible when it is not.
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4.4 Conclusions
Genetic engineering of microbial genomes is becoming increas-
ingly routine and underpins many emerging technologies, includ-
ing the development of recombinant vector vaccines and bacteria
designed to deliver gene therapies. In cases where the success of
the technology rests on sustainedmicrobial replication, evolution-
ary instability of the engineering may undermine the objective.
Presently, evolution of engineered microbial genomes appears
largely idiosyncratic and difficult to generalize. By developing
methods that allow the causes of evolutionary instability to be
quantified, we grow closer to identifying general principles and
frameworks that allow us to tune the evolutionary stability of
engineered microbial genomes as well as to compete engineering
techniques and approaches against each other using measurable
indicators of performance.

Supplementary data
Supplementary data are available at SYNBIO Online.

Data availability
The methods developed in this paper have been implemented
as an online resource that provides estimates from one’s own
serial transfer data (http://plwa.ibest.uidaho.edu/shiny/muse).
This online resource was developed in the R Shiny environment
and the R script is available for download at (https://github.com/
snuismer/MuSe).
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