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Abstract

Constant neuroregeneration in adult olfactory epithelium maintains olfactory function by basal 

stem cell proliferation and differentiation to replace lost olfactory sensory neurons (OSNs). 

Understanding the mechanisms regulating this process could reveal potential therapeutic targets 

for stimulating adult olfactory neurogenesis under pathological conditions and aging. Ciliary 

neurotrophic factor (CNTF) in astrocytes promotes forebrain neurogenesis but its function in the 

olfactory system is unknown. Here, we show in mouse olfactory epithelium that CNTF is 

expressed in horizontal basal cells, olfactory ensheathing cells (OECs) and a small subpopulation 

of OSNs. CNTF receptor alpha was expressed in Mash1-positive globose basal cells (GBCs) and 

OECs. Thus, CNTF may affect GBCs in a paracrine manner. CNTF−/− mice did not display 

altered GBC proliferation or olfactory function, suggesting that CNTF is not involved in basal 

olfactory renewal or that they developed compensatory mechanisms. Therefore, we tested the 

effect of increased CNTF in wild type mice. Intranasal instillation of a focal adhesion kinase 

(FAK) inhibitor, FAK14, upregulated CNTF expression. FAK14 also promoted GBC proliferation, 

neuronal differentiation and basal stem cell self-renewal but had no effective in CNTF−/− mice, 

suggesting that FAK inhibition promotes olfactory neuroregeneration through CNTF, making them 

potential targets to treat sensorineural anosmia due to OSN loss.
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1. Introduction

The sense of smell is maintained by a robust regeneration in the olfactory epithelium 

throughout life by continuously generating olfactory sensory neurons (OSNs) from basal 

stem cells. OSNs are directly exposed to the external environment and, therefore, are highly 

vulnerable to inspired toxins and chemicals (Jia et al., 2010, 2011) as well as viruses (Lee et 

al., 2014), including SARS-CoV-2 (Bilinska et al., 2020; Butowt and Bilinska, 2020). These 

injuries can lead to hyposmia or anosmia which is restored by stimulating regeneration in the 

olfactory epithelium (Jia et al., 2010, 2011; Schwob et al., 1995). However, the regenerative 

potential is diminished during aging, leading to anosmia in many of the elderly (Attems et 

al., 2015; Doty, 2018). No FDA approved treatments to increase adult olfactory stem cells to 

proliferate and differentiate are currently available but understanding the mechanisms should 

provide novel therapeutic targets. Basal stem cell proliferation and differentiation in the 

olfactory epithelium are tightly regulated by multiple mechanisms in basal stem cell niche, 

which is complex and not fully understood (Schwob, 2002; Schwob et al., 2017).

CNTF is almost exclusively expressed in the nervous system (Stockli et al., 1989). In the 

central nervous system, CNTF is produced by astrocytes (Yang et al., 2008; Stockli et al., 

1991) and increases after injury (Kang et al., 2012; Park et al., 2000). Ischemic stroke 

upregulates CNTF expression which increases neurogenesis in the adult mouse 

subventricular zone of the brain (Stockli et al., 1989; Kang et al., 2012, 2013; Keasey et al., 

2013). Exogenous CNTF enhances adult hippocampal neurogenesis, neuronal plasticity and 

spatial memory in mice (Blanchard et al., 2010; Emsley and Hagg, 2003). Thus, CNTF 

seems to act as an injury-induced paracrine signal to facilitate neural repair. In the olfactory 

epithelium, CNTF is present in the basal layer where olfactory stem cells, including 

horizontal (HBC) and globose (GBC) basal cells reside, and in a small subpopulation of 

OSNs (Buckland and Cunningham, 1999; Langenhan, 2006; Langenhan et al., 2005). 

However, the cell type(s) in the basal layer expressing CNTF has not been identified by co-

localization. CNTF is also expressed in olfactory ensheathing cells (OECs) that wrap OSN 

axons and assist axonal growth (Stockli et al., 1991; Wewetzer et al., 2001; Asan et al., 

2003). CNTF expression in basal stem cells has been reported to persist over three month 

during active repair following bulbectomy-induced olfactory epithelium injury (Buckland 

and Cunningham, 1998), suggesting CNTF could contribute to bulbectomy-induced 

regeneration. In the CNS, the specific CNTF receptor alpha (CNTFRα) is expressed by 

neurons (Hagg et al., 1992; Ip et al., 1991; LaVail et al., 1992; Sendtner et al., 1992) and 

astrocytes (Emsley and Hagg, 2003). In the olfactory epithelium, CNTFRα expression has 

not been documented. However, the other members of the hetero-trimer CNTF receptor, 

leukemia inhibitory factor receptor β (LIFRβ) and gp130, are present in the olfactory 

epithelium (Bauer et al., 2003; Getchell et al., 2002) and LIFRβ is expressed in GBCs and 

OECs (Nan et al., 2001).

We previously discovered that focal adhesion kinase (FAK), a non-receptor tyrosine kinase 

which mediates integrin signaling (Schaller, 2010), represses CNTF expression in 

astroglioma C6 cells (Keasey et al., 2013). Moreover, inhibition of FAK by systemic 

administration of FAK inhibitor, FAK14, enhances neurogenesis in the subventricular zone 
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of adult naïve mice through upregulation of CNTF (Jia et al., 2018). Here, we investigated 

whether this pathway also regulates adult regeneration in the mouse olfactory epithelium.

2. Materials and methods

2.1. Mice

A total of 158 mice were used. Our CNTF mouse line has been backcrossed to C57BL/6 

eight times. Heterozygotes were bred to yield CNTF+/+, CNTF+/− and CNTF−/− 

littermates. The CNTF null mice were produced by replacing the first exon of the CNTF 

gene with the bacterial lacZ gene, thus disrupting CNTF transcription while allowing 

expression of β-galactosidase (β-gal) protein which can be used as a reporter for “CNTF” 

expression (Yang et al., 2008; Asan et al., 2003). The CNTF−/− mice have two copies and 

CNTF+/− have one copy of the reporter gene, which can be used to identify cells expressing 

even low levels of CNTF (Yang et al., 2008; Kang et al., 2012; Langenhan et al., 2005; Jia et 

al., 2018). Both male and female CNTF littermate mice at 8–12 weeks old were used in the 

experiments. Adult male C57BL/6 mice (JAX 000664) at 8–10 weeks old were purchased 

from Jackson Laboratory and used in the experiments two weeks later. For Mash1-td-

Tomato reporter mice, floxed td-Tomato mice (B6.Cg-Gt(ROSA) 
26Sortm6(CAG-tdTomato)Hze/J) were crossed with Mash1CreERT2 mice 

(Ascl1tm1.1(Cre/ERT2)Jejo/J) to obtain double heterozygous mice (Rodriguez-Gil et al., 2015). 

To induce td-Tomato expression in Mash1-positive cells, double heterozygous mice at 6–8 

week old were injected with a single dose of 4-hydroxi-tamoxifen (intraperitoneal, i.p., 75 

mg/kg) and the olfactory epithelium tissue was collected 24 h later. Mice were bred and 

maintained in the animal facility at East Tennessee State University. All animal work was 

approved by University Committee on Animal Care and complied with the NIH Guide on 

Care and Use of Animals.

2.2. Intranasal instillation and i.p. Injections

Anesthetized (4% isoflurane) C57BL/6, CNTF+/+ and CNTF−/− mice aspirated a bolus of 

saline (50 µl) or FAK14 (100 µM, 50 µl, #3414, Tocris) placed on the nares once a day for 3 

days (Jia et al., 2013). In order to label proliferating cells, some mice received BrdU 

injections (i.p., 50 mg/kg) 4 h after saline or FAK14. To measure basal cell proliferation, the 

olfactory epithelium tissue was collected at 2 h after last BrdU injection. To measure 

neuronal differentiation and maturation, BrdU was pulse-chased for 9 days or 20 days. To 

measure basal levels of basal stem cell proliferation, CNTF+/+ and CNTF−/− mice were 

injected i.p. with BrdU (50 mg/kg) once a day for 3 days. To measure CNTF-mediated basal 

cell proliferation, C57BL/6 mice aspirated saline or recombinant human CNTF (1 µg/ml or 5 

µg/ml in 50 µl) followed by BrdU injections (i.p., 144 mg/kg) at 18, 20 and 22 h (Jia et al., 

2009) and tissue collection at 24 h.

2.3. Tissue collection and histological analyses

For tissue collection, mice were anesthetized with Avertin (i.p., 400 mg/kg 2,2,2-

tribromoethanol in 20 ml of 2% 2-methyl-2-butanol in saline, T48402, Sigma). For mRNA 

and protein analysis, fresh olfactory epithelium tissue from both sides was dissected, flash 

frozen in liquid nitrogen and stored at −80 °C. For histology, mice were perfused with ice-
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cold phosphate buffered saline followed by 4% paraformaldehyde. The lower jaw and skin 

were removed and then the tissue was post-fixed with 4% paraformaldehyde overnight, 

decalcified in EDTA (0.5 M, PH = 8) for 4–5 days and cryoprotected in 30% sucrose as 

previously described (Jia and Hegg, 2015).

Frozen coronal olfactory epithelium cryostat sections (20 µm) at the level of the second 

palatal ridge in the mouse nasal cavity were collected on glass slides as we have described 

previously (Jia et al., 2013, 2009). Tissue sections were permeabilized with 0.3% triton 

X-100, blocked with 10% normal donkey serum and then incubated with mouse anti-β 
galactosidase (β-gal, 1:500, Z378A, RRID:AB_2313752), mouse anti-CNTF (1:200, 

MAB338, RRID:AB_2083064), goat anti-olfactory marker protein (OMP, 1:1000, #544–

10001, RRID:AB_664696), mouse anti-GAP43 (1:1000, G9264, RRID:AB_477034), rabbit 

anti-CK5 (1:500, ab53121, RRID:AB_869889), rabbit anti-GFAP (1:1000, AB5804, RRID: 

AB_2109645), rabbit anti-brain lipid binding protein (BLBP, 1:1000, AB9558, 

RRID:AB_2314014) or mouse anti-CNTFα (1:500, #558891, RRID:AB_397144) antibody 

overnight at 4 °C. Immunoreactivity was detected by 488- or 594-conjugated donkey anti-

mouse, rabbit or goat immunoglobulin (1:200, Molecular Probes). CNTF is secreted in a 

paracrine mode with a very short half-life (Dittrich et al., 1994). To increase detection of 

CNTF in the cells, a biotinylated secondary antibody and streptavidin were used for signal 

amplification. The nuclei were counterstained with DAPI. Detection of BrdU was described 

previously using rat anti-BrdU antibody (1:100, ab6362, RRID:AB_305426) (Jia et al., 

2009). Immunoreactivity was visualized on a Leica TCS SP8 confocal laser scanning 

microscopy. The specificity of β-gal, CNTF and CNTFRα immunostaining was shown by 

using purified IgG as primary antibody. The specificity of the CNTF antibody was further 

examined using CNTF−/−mice. The immunostaining specificity of p75, CK5, GFAP, OMP, 

and BLBP was checked by omitting the primary antibody or using purified isotype IgG as 

primary antibody. All of these controls showed no staining.

Quantification of BrdU-positive nuclei in the olfactory epithelium was performed as we have 

described previously (Jia et al., 2013). The numbers of BrdU-positive or BrdU-positive/

CK5-positive nuclei or cells in the basal layer, middle layer or all layers of the ecto-turbinate 

2 and endo-turbinate II (Fig. 3A) on three coronal sections in each mouse were counted by a 

researcher blinded to the treatments and genotypes and then normalized to the linear length 

of the ecto-turbinate 2 and endo-turbinate II. The integrated density of β-gal in olfactory 

sensory neurons or the basal layer of the ecto-turbinate 2 was analyzed on three sections in 

each mouse using the threshold method in Image J.

2.4. Protein and mRNA measurements

CNTF mRNA and protein in the olfactory epithelium were measured by RT-qPCR and 

western blot as described previously (Jia et al., 2019). Briefly, total RNA was isolated using 

RNeasy Mini kit (Qiagen) and reverse transcribed using MMLV-reverse transcriptase 

(Promega). The qPCR was performed using the following primers (Applied Biosystems), 

mouse GAPDH (4352932E), CNTF (mM00446373_ml) and Ki67 (mM01278608_ml). Data 

were analyzed using 2−ΔΔCt method. The protein portion of olfactory epithelium tissue from 

RNA isolation was suspended by sonication in RIPA buffer supplemented with protease and 
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phosphatase inhibitors. The antibodies used in the western blot included mouse anti-CNTF 

(1:500, MAB338, RRID:AB_2083064), mouse anti-CNTFRα (1:1000, #558891, 

RRID:AB_397144), rabbit anti-β actin (1:2000, #4970, RRID:AB_2223172) and rabbit anti-

GAPDH (1:2000, #5174, RRID:AB_10622025).

2.5. Olfactory function tests

Olfactory function was measured by buried food test and olfactory habituation/

dishabituation test described previously (Jia and Hegg, 2015; Le Pichon et al., 2009).

2.5.1. Buried food test—The latency to find buried food measures the ability to detect 

novel odorants, while latency with presented food is used to control for locomotor ability 

(Jia and Hegg, 2015; Le Pichon et al., 2009). Two trials were included and mice were fasted 

16–18 h prior to each trial. Mice were acclimated for 5 min in a cage filled only with fresh 

bedding twice, and then transferred to a cage with a piece of sugary cereal that was buried 

beneath the bedding (trial 1) or placed on the surface of bedding (trial 2) in a randomly 

selected location. The latency to uncovering and eating the cereal was measured for each 

trial. Trial 1 measures naïve olfactory-mediated finding, while trial 2 assesses locomotor 

ability. Only mice that could find the buried food within 5 min and eat it were chosen for 

data analysis.

2.5.2. Olfactory habituation/dishabituation test—This test measures odor 

discrimination without cognitive or learning-dependent training, nutritional deprivation and 

sensorimotor control (Yang and Crawley, 2009; Sundberg et al., 1982; Linster et al., 2002; 

Lee et al., 2011). The test includes the measurement of novel odorant discrimination or 

dishabituation in the first trial and odorant habituation by exposure to the same odorant. 

Generally, mice spend more time to investigate a novel odorant and less time on a previously 

investigated odorant. Mice were acclimated in the test cage with a clean dry cotton 

applicator inserted through the hole on the cage lid for 30 min to reduce novelty-induced 

exploratory activity. Distilled water (100 µl), almond or peppermint extract (1:100, 100 µl, 

McCormick & Co.) was applied to a cotton applicator inserted through the hole on the cage 

lid. We used a total nine trials, including three trials of distilled water followed by three 

trials of almond and three trials of peppermint. Each trial was run for 2 min with a 30 s delay 

before the next trial began. The investigation time by the mouse during the 2 min odorant 

presentation was recorded by a single observer blinded to genotypes. Investigation time 

differences between repeated exposures to the same odorant assess olfactory habituation, 

while differences between different odorants measure olfactory dishabituation or 

discrimination.

2.6. Statistical analyses

Data are presented as mean + SEM. Significance was set at p < 0.05 and determined by two-

tailed t test (2 groups) or two-way ANOVA followed by Newman-Keuls post hoc tests (more 

than 2 groups). Behavioral data was analyzed by two-way repeated measures (RM) ANOVA 

followed by Newman Keuls post hoc test (GraphPad Prism 6.0). All analyses were done 

blinded to the genotype, sex, or treatment.
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3. Results

3.1. CNTF is expressed in HBCs, OECs, and a small population of OSNs

CNTF expression in the olfactory epithelium was first detected using β-gal antibody in 

CNTF-LacZ reporter mice. Cells with high β-gal expression (Fig. 1A, arrows) resided 

mainly in the basal layer beneath the middle layer of OMP-positive OSNs (Lee et al., 2011). 

Some of β-gal-positive cells (arrowheads) were located in the lamina propria and close to 

OMP-positive olfactory nerve bundles containing the OSN axons (asterisks, Fig. 1A). The 

absence of staining with IgG confirmed the specificity of β-gal antibody (Fig. 1B). β-gal 

immunostaining in some cells in the basal layer was co-localized with the HBC marker, CK5 

(Fig. 1C–D, arrows) (Iwai et al., 2008), which was confirmed by CNTF antibodies (Fig. 1E–

F, arrows) in the olfactory epithelium of C57BL/6 mice. Some of the CK5-positive cells did 

not have CNTF-immunostaining (Fig. 1E, arrowheads), indicating that only a subset of 

HBCs expresses CNTF under physiological conditions. In the basal layer, some β-gal-

positive or CNTF-positive (Fig. 1G–H, arrows) cells resided beneath CK5-positive HBCs 

(arrowheads) and were not co-localized with CK5 immunostaining, suggesting they are not 

HBCs and probably OECs. The specificity of CNTF immunostaining was validated by the 

absence of staining with purified IgG as primary antibody (Fig. 1I) and with CNTF antibody 

in CNTF−/− mice (Fig. 1J). Further, β-gal-positive cells in the basal layer were also double 

labeled for an OEC marker, GFAP (Au et al., 2002; Kawaja et al., 2009), identifying them as 

OECs (Fig. 2A, arrow indicates cell body and arrowheads indicate cell process). These data 

indicate that CNTF is expressed in some HBCs and OECs in the basal layer of the olfactory 

epithelium. Mash1 is a pro-neural transcription factor expressed in a subpopulation of GBCs 

(Krolewski et al., 2012), which are located immediately above the HBCs. There was no co-

localization of CNTF immunostaining with td-Tomato (tdT) expression in Mash1-tdT 

reporter mice (Fig. 2B). Consistent with previous report (Langenhan et al., 2005), CNTF 

measured by β-gal was also expressed in a small subpopulation of OSNs located in the 

middle layer and expressing OMP (Fig. 2C–D). In the lamina propria of CNTF-LacZ 

reporter mice, β-gal-positive cells surrounded OMP-positive OSN axons (Supplement Fig. 

1A). Although β-gal expression was not co-localize with an OEC marker, BLBP 

(Supplement Fig. 1B) (Rodriguez-Gil and Greer, 2008), many of them expressed OEC 

marker, the NGF receptor p75 (Supplement Fig. 1C, D) (Franceschini and Barnett, 1996). 

CNTF and p75 staining also overlapped (Supplement Fig. 1E, F). Some of these cells also 

expressed GFAP (Supplement Fig. 1G, H), another OEC marker (Au et al., 2002; Kawaja et 

al., 2009). These data confirm by double-immunostaining previous reports that HBCs and 

OECs express CNTF.

3.2. CNTFRα is expressed in GBCs and OECs in the lamina propria

CNTFRα protein was detected in olfactory epithelium tissue of C57BL/6 mice, as shown by 

western blot (Fig. 3A). A prominent band between 50 and 75 kDa was detected, which is 

consistent with previous reports of 60 kDa of CNTFRα in various types of tissue (Lin et al., 

2009; Tripathi and McTigue, 2008; Zvonic et al., 2003). A weaker band at 75 kDa was also 

seen in the blot, which is very similar to the CNTFRα in brain tissue and may be a 

differentially glycosylated form of CNTFRα (Zvonic et al., 2003). CNTFRα 
immunostaining was located mainly in the basal layer and lamina propria (Fig. 3B). In the 
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basal layer, CNTFRα immunostaining was surrounding td-Tomato (tdT)-positive nuclei in 

Mash1-tdT reporter mice (Fig. 3B–C), indicating CNTFRα is expressed in the cell 

membrane of Mash1-positive GBCs. In the lamina propria, CNTFRα immunostaining was 

among OMP-positive axon bundles and did not co-localized with OMP (Fig. 3D–E). 

CNTFRα expression was co-localized with p75 (Fig, 3F–G), indicating that OECs express 

CNTFRα. The lack of staining with IgG as primary antibody validated the specificity of 

CNTFRα staining (Fig. 3H). Collectively, these data suggest that CNTF produced by HBCs 

and OECs in the basal layer might affect GBC function.

3.3. Deletion of CNTF does not affect GBC proliferation and olfactory function

GBC proliferation is responsible for regeneration at physiological condition (Caggiano et al., 

1994; Leung et al., 2007). To determine whether CNTF is involved, CNTF+/+ and CNTF−/− 

mice received 3 daily of i.p. injections of BrdU (50 mg/kg) to label proliferating cells. Two 

hours after the last injection, BrdU-incorporated nuclei in the endoturbinate II and 

ectoturbinate 2 (Fig. 4A) were quantified. BrdU-positive nuclei were distributed in all layers 

of olfactory epithelium in both CNTF+/+ and CNTF−/− mice (Fig. 4B), but most of the 

BrdU-positive nuclei were located in the basal layer (96% in CNTF+/+ and 98% in CNTF−/

− mice, data not shown). The few BrdU-positive nuclei in the middle and apical layer could 

be Bowman’s gland ducts cells and sustentacular cells, respectively. The numbers of BrdU-

positive nuclei in the basal layer, as an indicator of GBC proliferation, were comparable 

between CNTF+/+ and CNTF−/− mice (Fig. 4C), suggesting that CNTF does not affect 

rapid GBC proliferation under normal conditions. To determine whether CNTF has a role in 

odorant detection, we tested CNTF+/+ and CNTF−/− mice in the buried food test. CNTF−/− 

mice exhibited comparable latencies with CNTF+/+ mice in both trials (Fig. 4D). Next, we 

used an olfactory habituation/dishabituation test that examines spontaneous odorant 

discrimination. CNTF+/+ and CNTF−/− mice displayed similar habituation to water, almond 

and peppermint, and dishabituation from almond to peppermint (Fig. 4E). Collectively, both 

behavioral tests suggest that deletion of CNTF does not affect olfactory function.

3.4. Inhibition of FAK increases CNTF expression which promotes GBC proliferation

To determine whether FAK regulates CNTF and neurogenesis in the olfactory epithelium, 

saline or FAK inhibitor, FAK14 (100 µM, 50 µl), was intranasally instilled into both nares of 

C57BL/6 and CNTF-LacZ reporter mice once a day for 3 days. Two hours after the last 

aspiration, FAK14 significantly increased CNTF mRNA (Fig. 5A) and protein (Fig. 5B–C) 

by 28% and 65%, respectively, compared to saline control in C57BL/6 mice. Thus, FAK 

inhibition increases CNTF like it does in the subventricular zone (Keasey et al., 2013; Jia et 

al., 2018). FAK14 also increased the cell proliferation marker Ki67 mRNA expression (Fig. 

5A) by 56% above saline control in C57BL/6 mice. To measure FAK14-induced increases of 

CNTF expression in different cell types, β-gal integrated density in OSNs or the basal layer 

including HBCs and OECs (as shown in 1C-K) were quantified in CNTF-LacZ reporter 

mice (Jia et al., 2018). FAK14 increased β-gal expression by more than two fold in the basal 

layer (Fig. 5D–E), while it did not alter expression in OSNs (Fig. 5D, F, 78 and 186 neurons 

were measured in saline and FAK14, respectively), suggesting FAK inhibition increases 

CNTF expression in HBCs and/or OECs, but not OSNs.
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To count proliferating cells, C57BL/6, CNTF+/+ and CNTF−/− received intranasal 

instillation of saline or FAK14 followed by BrdU injections (i.p., 50 mg/kg) 4 h later, for 3 

days. Two hours after the last BrdU injection, BrdU-positive nuclei in the basal layer of 

olfactory epithelium were increased 109% and 73% in FAK14-treated groups compared to 

saline controls in C57BL/6 (Fig. 6A–B) and CNTF+/+ mice (Fig. 6C), respectively. In 

CNTF−/− mice, FAK14 treatment did not affect the level of BrdU-positive basal nuclei (Fig. 

6C). These data collectively indicate that intranasal instillation of FAK14 promotes basal 

cell proliferation through CNTF. The number of BrdU-positive basal nuclei in saline-treated 

CNTF+/+ vs. CNTF−/− mice was the same (Fig. 6C) and comparable to the BrdU data in 

Fig. 4C. In order to estimate the percentage of BrdU-positive GBCs among the basal cells, 

double immunostaining of BrdU with OMP or CK5 was performed. BrdU-positive nuclei in 

the basal layer resided immediately above CK5-positive HBCs (Fig, 6D) and barely reached 

the middle OMP-positive OSN layer (Fig. 6E), suggesting they are GBCs. In saline- and 

FAK14-treated C57BL/6 mice, only 1.16% and 1.27% of total BrdU-positive basal nuclei 

were in the layer of CK5-positive HBCs or co-localized with CK5 (data not shown), 

suggesting that FAK inhibition induces GBC proliferation. To measure whether CNTF can 

directly alter GBC proliferation, saline or CNTF (1 or 5 µg/ml in 50 µl) was intranasally 

instilled into C57BL/6 mice and BrdU-labeled proliferating cells were quantified at 24 h. 

Compared to saline, CNTF at 5 µg/ml significantly enhanced the number of BrdU-positive 

nuclei by 36% (Fig. 6F).

3.5. FAK inhibition promotes GBC proliferation and neurogenesis

In the subventricular zone and dentate gyrus, CNTF regulates progenitor proliferation 

without affecting normal neuronal differentiation (Kang et al., 2013; Blanchard et al., 2010). 

To determine whether FAK inhibition-induced CNTF affects neuronal differentiation, the 

FAK14 and BrdU treatments were followed (pulse-chase method) by 9 and 20 days before 

analyses. This extended period allows for basal stem cells to proliferate and differentiate into 

mature OSNs, a process that takes 10–20 days (Schwob et al., 1995; Jia et al., 2009; Liberia 

et al., 2019). To analyze the fate of FAK14-induced GBC proliferation, BrdU-positive nuclei 

in the total olfactory epithelium, middle OSN layer and basal stem cell layer were counted. 

Compared to saline controls, BrdU-positive nuclei in the total olfactory epithelium of 

C57BL/6 treated with FAK14 were increased 89% and 85% by 9 days (Fig. 7A–B) and 20 

days (Fig. 7C–D), respectively. There was no change in BrdU incorporation in saline-treated 

mice between 9 and 20 days (9.3 ± 1.3 vs.13.0 ± 3.2, N = 5 mice/group, two-tailed t test). At 

9 days post-treatment, BrdU-positive nuclei were found slightly above the basal layer and 

co-localized with immature OSNs expressing GAP43 (Fig. 7A). At 20 days post-treatment, 

most of BrdU-positive nuclei were present in the middle neuronal layer and co-localized 

with mature OSNs expressing OMP (Fig. 7C, arrowhead). A small population of BrdU-

positive nuclei still remained in the basal layer (Fig. 7C, arrows), indicating GBC self-

renewal or slowly dividing GBCs that serve as quiescent stem cells (Jang et al., 2014). 

Additionally, in both basal layer and middle OSN layer, FAK14 increased the numbers of 

BrdU-positive nuclei 20 days post-intranasal instillation by 2.6- and 2-fold of saline, 

respectively (Fig. 7E). Together, this suggests that FAK inhibition promotes GBC self-

renewal and/or proliferation but does not interfere with subsequent normal neuronal 

differentiation or migration, consistent with the effects of increased CNTF in the SVZ (Kang 
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et al., 2013). Finally, intranasal instillation of FAK14 increased BrdU incorporation in the 

total olfactory epithelium, the basal layer and middle neuronal layer of CNTF+/+ mice at 20 

days post-treatment but failed in CNTF−/− mice (Fig. 7F–G), suggesting that FAK inhibition 

enhances GBC self-renewal and/or proliferation through CNTF.

4. Discussion

This study shows in adult mice that local treatment with a FAK inhibitor can increase 

synthesis of CNTF in the olfactory epithelium which promotes neurogenesis, while 

identifying the CNTF-expressing and responsive cell types by double-immunostaining. 

OECs are known to produce CNTF in vitro (Wewetzer et al., 2001) and in the rodent 

olfactory system (Stockli et al., 1991; Asan et al., 2003). Here, we showed co-localization 

with their markers p75 NGF receptor and GFAP. CNTF is reportedly expressed in basal cells 

that are morphologically similar to HBCs in rodent olfactory epithelium (Buckland and 

Cunningham, 1999). Here, we showed that CNTF was expressed in a subset of HBCs, 

identified by co-localization of their marker CK5. We do not know whether the CNTF-

positive and CNTF-negative cells represent permanently different populations or are related 

to the physiological state of the HBCs. CNTF has no effect on HBC proliferation in vitro 

(Satoh and Yoshida, 1997), suggesting that HBCs are a resource of CNTF for other cells. 

Consistent with a previous study (Langenhan et al., 2005), CNTF was also expressed in a 

small subpopulation of OSNs. The expression of CNTFRα is mostly restricted to nerve 

tissues and is detected in neurons and astrocytes of the central nervous system (Emsley and 

Hagg, 2003; Hagg et al., 1992; Ip et al., 1991; LaVail et al., 1992; Sendtner et al., 1992). 

CNTF binding to its specific CNTFRα induces the formation of three-component receptor 

complex, including LIFRβ and gp130, and promotes neurogenesis and axonal regeneration 

in the injured nervous system (Kang et al., 2013; Hagg et al., 1992; Askvig et al., 2012; 

Guthrie et al., 1997; Hagg and Varon, 1993). LIFRβ and gp130 are present in GBCs and 

OECs in rodent olfactory epithelium (Bauer et al., 2003; Getchell et al., 2002; Nan et al., 

2001). We identified for the first time that CNTFRα is expressed in Mash1-positive GBCs in 

mouse olfactory epithelium. Thus, CNTF produced by HBCs likely plays a paracrine role in 

promoting proliferation of neighboring GBCs. Consistent with previous in vitro studies 

(Wewetzer et al., 2001; Lipson et al., 2003), both CNTF and CNTFRα were detected in 

OECs of the lamina propria. In vitro, CNTF does not stimulate proliferation of OECs 

(Wewetzer et al., 2001), suggesting that their CNTF exerts paracrine effect on neighboring 

GBCs in vivo.

In the mature olfactory epithelium, basal stem cells proliferate to replace dying OSNs 

(Farbman, 1990; Graziadei and Graziadei, 1979). GBCs proliferate actively, with 1 division 

per day (Rodriguez-Gil et al., 2015; Gordon et al., 1995; Beites et al., 2005), while HBCs 

divide every 30–50 days (Carter et al., 2004). Thus, our proliferation labeling protocol 

mostly labeled GBCs. Lineage studies indicate that GBCs produce new OSNs (Schwob et 

al., 1995, 1994; Caggiano et al., 1994; Leung et al., 2007; Chen et al., 2004; Calof and 

Chikaraishi, 1989; Schwartz Levey et al., 1991). Under basal conditions, proliferation in the 

basal layer of the olfactory epithelium was not different between CNTF+/+ and CNTF−/− 

mice, suggesting that CNTF does not affect neurogenesis in the naïve olfactory epithelium 

or that these mice developed compensatory mechanisms. LIF+/+ and LIF−/− mice also have 
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similar levels of GBC proliferation (Bauer et al., 2003). However, after bulbectomy LIF is 

upregulated and promotes GBC proliferation through LIF (Bauer et al., 2003). Therefore, it 

is conceivable that pharmacologically increasing CNTF above baseline levels would also 

promote neurogenesis. In the subventricular zone, ischemic stroke injury upregulates CNTF 

expression which promotes neurogenesis (Yang et al., 2008; Kang et al., 2013). In the 

subventricular zone, integrin-FAK signaling represses CNTF expression and its inhibition 

upregulates CNTF expression and neurogenesis (Keasey et al., 2013; Jia et al., 2018). Here, 

FAK inhibition promoted GBC proliferation and olfactory neurogenesis. FAK is 

ubiquitously expressed in different cell types (Schaller, 2010). Our study suggests that FAK 

in HBCs or OECs regulates CNTF expression because of the increased β-gal CNTF-reporter 

expression in the basal layer of the olfactory epithelium, but not OSNs, in the middle layer 

of the olfactory epithelium after FAK14 treatment. These results also confirmed the qPCR 

measurements of CNTF expression. Chronic inflammation reduces olfactory neurogenesis 

and gene annotation enrichment analysis shows that focal adhesion signal is significantly 

upregulated in HBCs following chronic inflammation (Chen et al., 2019), perhaps reducing 

CNTF. It remains to be determined whether inhibition of focal adhesion signaling by FAK 

inhibitors may rescue neurogenesis through CNTF following chronic inflammation.

Neurogenesis in the olfactory epithelium is tightly regulated, including basal cell 

proliferation and neuronal differentiation. Intranasal instillation of FAK14 increased basal 

cell proliferation measured by BrdU-incorporation in the basal layer. FAK inhibition-

induced BrdU-positive nuclei in the basal layer were not co-localized with HBC marker, 

CK5, indicating that FAK inhibition promotes GBC proliferation. FAK14 did not affect 

proliferation in CNTF−/− mice, suggesting that FAK inhibition-induced GBC proliferation 

is mediated by CNTF. We used BrdU pulse-chase analysis to assess the locations of BrdU-

positive nuclei in either the basal layer (indicative of GBC self-renewal) or neuronal layer 

(indicative of neuroregeneration). FAK14 significantly increased newly proliferating cells in 

both layers 20 days post-treatment but not in CNTF−/− mice, suggesting that FAK inhibition 

promotes neuroregeneration and GBC self-renewal through CNTF. Thus, CNTF seems to act 

on GBC progenitors to promote neuroblast formation like it does on the C-cells in the 

subventricular zone (Kang et al., 2013), while also stimulating self-renewal, perhaps like LIF 

does (Bauer and Patterson, 2006). The dual roles of CNTF on GBCs in the olfactory 

epithelium could be due to a heterogeneous property of GBCs (Beites et al., 2005). GBCs 

expressing Mash1 are immediate precursor cells to OSNs (Gordon et al., 1995), while GBCs 

expressing p27Kip1, a member of the Kip/Cip family of cyclin-dependent kinase inhibitors, 

are slowly dividing stem cells (Jang et al., 2014). The direct role of CNTF in promoting 

GBC proliferation is supported by the intranasal instillation of CNTF having a similar effect 

as the FAK inhibitor. Clearly, the inexpensive small molecule inhibitor has superior 

pharmacological properties than CNTF protein. FAK14 most likely penetrates the olfactory 

epithelium much easier that the CNTF protein. Growth factors such as IGF-1 can enter the 

brain after intranasal delivery (Lioutas et al., 2015; Nowrangi et al., 2019) but the 

mechanism of CNTF transport from the apical surface to the basal layer of the olfactory 

epithelium to reach the GBCs is not fully understood. Intranasal CNTF most likely was 

through the paracellular pathway between the cells, e.g., due to OSNs regeneration resulting 
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in decreased intercellular barrier function (Ruigrok and de Lange, 2015) and not through 

endocytosis of nerve endings or the sustentacular cells (Illum, 2002).

CNTF promotes progenitor C-cell proliferation in the subventricular zone through fibroblast 

growth factor-2 (FGF2) signaling (Kang et al., 2013). FGF2 and its mitogenic effect are seen 

in the mouse olfactory epithelium in response to purinergic receptor activation (Jia et al., 

2011). It remains to be determined whether CNTF acts via FGF2 signaling. There were no 

differences in total numbers of BrdU-positive nuclei at 6 h compared to 9 days and 20 days 

post-treatment of FAK14. This suggests that the early effects of FAK inhibition on GBC 

proliferation are maintained and does not interfere with normal neuronal differentiation and 

migration. Increased CNTF does not interfere with normal neuronal differentiation in the 

subventricular zone either (Kang et al., 2013). Thus, no further cell death analysis was 

pursued in the present study. In the subventricular zone, FAK represses CNTF expression 

through JNK, whereas FAK or JNK inhibition upregulates CNTF expression and 

neurogenesis (Keasey et al., 2013; Jia et al., 2018). In the olfactory epithelium, activation of 

JNK signaling in OSNs is associated with injury and inflammation-induced cell death (Chen 

et al., 2017; Gangadhar et al., 2008; Victores et al., 2018). It remains to be determined 

whether intranasal instillation of FAK inhibitors may also be beneficial on neuroprotection 

via inhibition of JNK signaling under pathological conditions.

5. Conclusions

This study establishes that CNTF is expressed in HBCs and OECs and provide the first 

evidence that CNTFRα is expressed in GBCs of mouse olfactory epithelium, suggesting that 

CNTF may act as a paracrine signaling to modulate proliferation of neighboring GBCs. The 

finding that GBC proliferation is not affected in CNTF−/− mice but that increasing CNTF 

expression promotes olfactory neurogenesis raises the possibility that CNTF plays a role 

only under injury conditions. This study advances our understanding of olfactory stem cell 

lineage and cytokine signaling responsible for olfactory stem cell proliferation and self-

renewal in the mouse olfactory epithelium. It points to opportunities to investigate whether 

FAK and CNTF signaling could be potential therapeutic targets for sensorineural anosmia 

due to loss of OSNs, such as in post-viral olfactory disorder, post-head trauma anosmia or 

presbyosmia.
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Abbreviations:

BrdU 5-bromo-2′-deoxyuridine

CK5 cytokeratin 5

CNTF ciliary neurotrophic factor

CNTFRα ciliary neurotrophic factor receptor alpha

FAK focal adhesion kinase

FGF2 fibroblast growth factor-2

GAP43 growth associated protein 43

GBC globose basal cell

HBC horizontal basal cell

LIFRβ leukemia inhibitory factor receptor beta

Mash1 mammalian achaete scute homolog-1

OEC olfactory ensheathing cell

OMP olfactory marker protein

OSN olfactory sensory neuron
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Fig. 1. 
CNTF is expressed in HBCs in adult mouse olfactory epithelium. A) CNTF was expressed 

in basal stem cells (arrows) located in the basal layer (BL) below OMP-positive OSNs in the 

middle layer (ML), as shown by β-gal immunostaining in CNTF-LacZ reporter mice at 10–

12 weeks old. Some β-gal-positive cells (arrowheads) were detected in the lamina propria 

and were around OMP-positive OSN axons (asterisks). Dashed line = basement membrane. 

AL: apical layer where supporting cells are. B) No staining was present using purified 

isotype IgG as primary antibody, confirming β-gal immunostaining specificity. C) β-gal 

expression in the basal layer was co-localized with HBC marker, CK5. D) The co-

localization of β-gal with CK5 is shown in a 0.67 µm thick confocal image. E) CNTF 

immunoreactivity was detected in CK5-positive HBCs in the olfactory epithelium of 

C57BL/6 mice. Arrows indicate a CK5-positive HBC with CNTF immunostaining. 

Arrowheads indicate CK5-positive HBCs without CNTF. Dashed line = basement 
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membrane. F) A 0.67 µm thick confocal image showing the co-localization of CNTF with 

CK5 immunostaining. In the basal layer, some β-gal-positive G) or CNTF-positive H) cells, 

possibly OECs, resided beneath CK5-positive HBCs. Arrows indicate CK5-positive HBCs, 

while arrowheads indicate β-gal or CNTF-positive cells. Inserts show arrow-indicated areas 

with high magnification. CNTF immunostaining specificity was validated by using purified 

IgG as primary antibody I) and using CNTF−/− mice J).
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Fig. 2. 
CNTF is expressed in OECs in the basal layer and some OSNs in adult mouse olfactory 

epithelium. A) β-gal-positive cells in the basal layer expressed OEC marker, GFAP. Arrow 

points to cell body and arrowheads indicate cell process. Inserts show arrow-indicated areas 

with high magnification. B) CNTF was not expressed in GBCs, as shown CNTF 

immunostaining was not co-localized with nuclear td-Tomato (tdT) in Mash1-tdT reporter 

mice. Inserts are higher magnification of areas indicated by arrows. C) A small 

subpopulation of β-gal-positive cells were located in the middle layer of olfactory 

epithelium in CNTF+/− mice and expressed OSN marker, OMP. Dashed line = basement 

membrane. D) A 0.67 µm thick confocal image showing the co-localization of β-gal with 

OMP.

Jia et al. Page 19

Stem Cell Res. Author manuscript; available in PMC 2021 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
CNTFRα is expressed in GBCs and OECs in the lamina propria. A) CNTFRα protein was 

expressed in the olfactory epithelium tissue of C57BL/6 mice at 10–12 weeks old, as shown 

by the expected 60 kDa band in a western blot. The 75 kDa band may be glycosylated 

CNTFRα as seen in the brain. B) CNTFRα immunostaining was expressed in the cell 

membrane of GBCs identified by nuclear tdT in Mash1-tdT reporter mice. C) A 0.67 µm 

confocal image showing the co-localization of CNTFRα with tdT-marked GBCs. D–E) In 

the lamina propria of the olfactory epithelium, CNTFRα was expressed among axon bundles 

of OSNs, but did not co-localized with OMP. F–G) CNTFRα immunostaining was co-

localized with p75. H) No staining with purified IgG as primary antibody validated the 

specificity of CNTFRα immunostaining. Dashed line = basal basement membrane.
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Fig. 4. 
CNTF−/− mice have normal basal cell proliferation and olfactory function. A) A schematic 

image of a coronal section of the left mouse olfactory epithelium (modified from (Jia et al., 

2011). The endoturbinates II–III and ectoturbinates 1–3 are numbered. Dashed square marks 

the area corresponding to images shown for BrdU incorporation in subsequent figures. B) 

Representative images of BrdU-positive nuclei in the ectoturbinate 2 of olfactory epithelium 

in CNTF+/+ and CNTF−/− mice. A higher magnification image of the area in the dashed 

rectangle is shown in the right. Arrows indicate BrdU-positive nuclei in the basal layer, 

where counts were performed. C) The levels of BrdU-positive nuclei in the basal layer of the 

olfactory epithelium were comparable between CNTF+/+ and CNTF−/− mice (N = 5 mice at 

10–12 weeks old/group, p = 0.42, two-tailed t test). D) The latencies to find a buried cereal 

in a buried food test were not different between CNTF+/+ and CNTF−/− mice. The latency 

to find a visible cereal was used as a locomotor control. N = 18,19 mice at 8–12 weeks old, p 

= 0.83 and 0.60 (two-tailed t test). E) CNTF+/+ and CNTF−/− mice had similar habituation 

and dishabituation profiles in an olfactory discrimination test. Differences between trial 1 vs. 

3 in water, almond and peppermint indicate olfactory habituation, while differences between 

trial 3 in water vs trial 1 in almond and trial 3 in almond vs. trial 1 in peppermint show 

olfactory discrimination. N = 18,19 mice at 8–12 weeks old, *,**,**** p < 0.05, 0.01, 

0.0001 in CNTF+/+ mice, #,## p < 0.05, 0.01 in CNTF−/− mice (two-way RM ANOVA 

followed by Newman-Keuls multiple comparisons test).
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Fig. 5. 
Local inhibition of FAK increases CNTF expression and cell proliferation in the olfactory 

epithelium. Adult C57BL/6 or CNTF+/− mice at 10–12 weeks old received intranasal 

instillation of saline or FAK inhibitor, FAK14, for 3 days. The olfactory epithelium tissue 

was collected 2 h after the last instillation. Compared to saline control, FAK14 increased 

CNTF mRNA A) and protein B-C) expression. FAK14 also increased mRNA expression of 

the cell proliferation marker Ki67 A), suggesting that it upregulates cell proliferation in the 

olfactory epithelium. N = 5 mice/group. ** p = 0.003, * p = 0.01 for CNTF and Ki67 mRNA 

and p = 0.03 for CNTF protein (two-tailed t test). In CNTF+/− mice, FAK14 increased β-gal 

integrated density in the basal layer of the olfactory epithelium D–E), but did not alter it 

OSNs D, F), suggesting FAK14 enhances CNTF expression in HBCs and OECs, but not 

ONSs. Arrow indicates β-gal positive OSNs. Dashed line = basement membrane, N = 3 and 

4 mice/group. * p = 0.03 (two-tailed t test).
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Fig. 6. 
FAK inhibition promotes GBC proliferation through CNTF. Mice at 10–12 weeks old 

received intranasal instillation of saline or FAK14 followed by BrdU injection 4 h later every 

24 h for 3 days. A) Representative images of BrdU-positive nuclei in the ectoturbinate 2 of 

the olfactory epithelium in saline- and FAK14-instilled C57BL/6 mice. The area in the 

dashed rectangle is shown at higher magnification in the right and arrows indicate BrdU-

positive nuclei in the basal layer. B) Quantification of BrdU-positive nuclei in the basal layer 

showed that FAK14 increased basal cell proliferation by two fold of saline control in 

C57BL/6 mice (N = 6 mice/group, *** p = 0.0006, two-tailed t test). C) FAK14 also 

increased BrdU incorporation in the basal layer in CNTF+/+ but not CNTF−/− mice (N = 

3,3,3,5 mice, ** p < 0.01, two-way ANOVA followed by Newman Keuls multiple 

comparisons test). D) At 2 h post-instillation, BrdU-positive nuclei in the basal layer resided 

immediately above HBC and were barely co-localized with CK5, suggesting these BrdU-

positive nuclei are proliferating GBCs. E) At 2 h post-instillation, BrdU-positive cells in the 

basal layer did not express OSN marker, OMP. F) Intranasal instillation of CNTF at 5 µg/ml, 

but not at 1 µg/ml, increased the number of BrdU-labeled proliferating cells in the olfactory 

epithelium of C57BL/6 mice at 24 h (N = 4,3,3 mice, * p < 0.05, one-way ANOVA followed 

by Bonferroni multiple comparisons test).
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Fig. 7. 
FAK inhibition promotes neurogenesis and GBC self-renewal through CNTF. Mice at 10–12 

weeks old received intranasal instillation of saline or FAK14 followed by BrdU injection 4 h 

later every 24 h for 3 days. BrdU-positive nuclei in the total olfactory epithelium, basal layer 

and middle neuronal layer were quantified 9 days or 20 days after the last BrdU injection. A) 

At 9 days, BrdU-positive nuclei were present above the basement membrane (dashed line) 

and co-localized with the immature OSN marker, GAP43 (arrows), indicating neuronal 

differentiation. Inserts show a BrdU-positive nucleus in a GAP43-positive OSN. B) FAK14 

increased the number of BrdU-positive nuclei in the total olfactory epithelium of C57BL/6 

mice at 9 days (N = 5 mice/group, * p = 0.016, two-tailed t test). C) At 20 days, BrdU-

positive nuclei were present in the middle layer and co-localized with mature OSN marker 

OMP (arrowhead), indicating neuronal maturation. In addition, a small population of BrdU-

positive nuclei (arrows) remained in the basal layer, indicating slowly dividing GBCs or 

GBC self-renewal. Inserts show a BrdU-positive nucleus in an OMP-positive OSN. D) 
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FAK14 increased the number of BrdU-positive nuclei in the total olfactory epithelium of 

C57BL/6 mice at 20 days (N = 5 mice/group, * p = 0.036, two-tailed t test). E) FAK14 

increased the number of BrdU-positive nuclei in the basal and middle layer of the olfactory 

epithelium at 20 days (N = 5 mice/group, * p = 0.028, ** p = 0.004, two-tailed t test). F,G) 

FAK14 also increased the numbers of BrdU-positive nuclei in the total olfactory epithelium, 

basal layer and middle layer of CNTF+/+, but not CNTF−/− mice (N = 3,3,3,4 mice, * p < 

0.05, ** p < 0.01, two-way ANOVA followed by Newman Keuls multiple comparisons test).
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