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Abstract: In the present era, enormous factors contribute to causing cancer. So cancer classification cannot rely only on
doctor's thoughts. As a result, intelligent algorithms concerning doctor's help are inevitable. Therefore, the authors are motivated
to suggest a novel algorithm to classify three cancer datasets; colon, ALL-AML, and leukaemia cancers. Their proposed
algorithm is based on the deep neural network and emotional learning process. First of all, by applying the principal component
analysis, they had a feature reduction. Then, they used deep neural as a feature extraction. Then, they implemented different
classifiers; multi-layer perceptron, support vector machine (SVM), decision tree, and Gaussian mixture model. In the end,
because in the real world, especially when working on systems biology, unpredictable events, and uncertainties are undeniable,
the robustness of their model against uncertainties is important. So they added Gaussian noise to the input features of the first
encoder in each dataset, then, they applied the stacked denoising method. Experimental results disclosed that, generally, using
emotional learning increased the accuracy. In addition, the highest accuracy was gained by SVM, 91.66, 92.27, and 96.56% for
colon, ALL-AML, and leukaemia, respectively. However, GMM led to the lowest accuracy. The best accuracy gained by GMM
was 60%.

1 Introduction
According to Uppu et al. [1, 2] due to the high number of features,
classical machine learning algorithms are not applicable in cases
such as cancer classification. In fact, due to the vanishing of the
gradient in the training phase, a multi-layer artificial neural
network [3, 4] cannot be trained by classical approaches [5].
Bioinformatics, which implements machine learning approaches
for solving problems such as cancer classification, is not exempted
from this issue either. Therefore, approaches such as the deep
neural networks (DNNs) [6, 7] are widely used in their different
aspects and, according to Ravi et al. [8], in health informatics. As a
matter of fact, the deep learning structure is the most suitable one
when working on the big data.

One of the most controversial issues in the datasets containing
gene expression features is their low number of samples and a high
number of features. So feature selection methods should be used to
reduce the number of features. Also, these reduced features should
be able to express whole features [9].

Selecting features makes it possible to know which of them are
more involved in a specific disease [10, 11]. However, as it was
claimed in [10], due to a high range of features, the method of
selecting them is one of the most challenging issues in
bioinformatics. Also, analysing some of these papers published
recently reveals that for classifying cancerous and non-cancerous
data, at first, a feature selection method should be used, and then,
different types of classifiers should be applied.

DNN is new in bioinformatics and is a useful tool for selecting
features that are more effective in a matter. In this paper, principal
component analysis (PCA) and DNN are applied as feature
selection methods. We are motivated to use this strategy because
according to Fakoor et al. [11], PCA is a method for selecting
features that without eliminating the significant features, it reduces
the number of features. In addition, deep learning generates
abstractions of features. So at first, PCA is implemented to reduce
the number of features, and then its outputs are fed to the first
encoder of DNN structure. Finally, several classifiers are used to
classify cancerous and non-cancerous data.

In [10], it is mentioned that we should use some other pre-
processing methods to achieve a better result. Although apparently,

those methods increase computational complexity. In this paper, it
will be observed that if we implement the right structure, there will
be no need for those pre-processing methods.

2 Related work
There have been different papers that applied various feature
selection methods. Some of them used datasets similar to these
papers. In [12], the support vector machine (SVM) and the mutual
information (MI) were applied for gene classification and
identifying the informative genes, respectively. Authors in that
paper claimed that MI method makes it possible to define a subset
of genes. That paper used the colon tumour dataset and allocated
61/62 samples to train and 1/62 to test the performance of the
system. This procedure was iterated 62 times to make sure each of
the samples was used for evaluating the performance of the system.
The best mean accuracy rate achieved by the SVM linear classifier
was 67.74%. In [11], the colon dataset is same as ours and for
enhancing cancer diagnosis and classification deep learning was
used. At first, PCA was applied to reduce and eliminate the
irrelevant features. To develop cancer classifiers, the deep learning
method was applied. In that paper, accuracy obtained for the colon
dataset was 83.33%. In [13], the acute lymphoblastic leukaemia -
acute myelogenous leukaemia (ALL-AML) dataset is similar to
this paper, and particle swarm optimisation (PSO) and K-nearest
neighbourhood (K-NN) were implemented as gene selection. In
that work, K has been selected adaptively by running the
programme for ten times. Each time, the number of selected genes
was considered, and the number of K in K-NN was calculated.
Then, K was selected based on the highest test accuracy and the
lowest numbers of genes selected. After selecting the genes and
determining K, the SVM classifier with different kernel functions
including linear, radial basis function (RBF) with sigma = 1,
polynomial with order three and quadratic were applied. The best
result was 97.05888% (33/34) as the test accuracy.

3 Background
To increase the robustness of representation in the DNN, many
variations of autoencoders including denoising autoencoder,
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contractive autoencoder, sparse autoencoder, and stacked
autoencoder have been applied that each of which has its pros and
cons [8]. Here, we briefly introduce variations which were not
implemented in this paper. In addition, emotional leaning and the
reason which motivated us to apply this method will be discussed.

3.1 Sparse autoencoder

Sparse autoencoder leads to a better classification. When the
numbers of neurons in the hidden layer are more than the numbers
of inputs, a constraint should be considered for the learning phase.
This constraint can be sparse. In fact, we consider that a neuron is
inactive for most of the time. We suppose a neuron is active when
its output is one; otherwise, zero. In (1), aj

(2) is the output of the jth
neuron in the hidden layer when x is the input. Here, aj

(2) can be one
or zero and m shows the total number of training data. So ρ^ j is the
average activation of the jth neuron. In (2), ρ is the sparsity
parameter which is usually near to zero. We are willing to achieve
(2). For achieving this goal, we consider a penalty that ρ^ j goes near
the ρ. This is shown in (3)

ρ^ j = 1
m ∑

i = 1

m
aj

(2) x(i) (1)

ρ^ j = ρ (2)

∑
j = 1

n1

KL ρ | | ρ^ j = ∑
j = 1

n1

ρ log ρ
ρ^ j

+ (1 − ρ)log 1 − ρ
1 − ρ^ j

(3)

On the basis of the concept of divergence of Kullback–Leibler, this
penalty is between two Bernoulli random variables with averages
between ρ and ρ^ j. The divergence of Kullback–Leibler is a
standard function for measuring the quantity of two different
distributions. This penalty function has this feature that divergence
of Kullback–Leibler of two distributions is zero when two
distributions are equal. Otherwise, ρ^ j goes near the ρ
monotonically increasing. The new cost function follows as:

Jsparse(W, b) = J(W, b) + β ∑
j = 1

n1

KL ρ | | ρ^ j (4)

where β is the sparsity learning rate of the penalty function J (W,
b) and has been shown in the equation below:

J(W, b) = 1
2e2 (5)

where e is the reconstruction error in the output layer of the DNN
[14].

3.2 Contractive autoencoder

Contractive autoencoder [15] is used for boosting robustness of
representation among small changes in training samples [8]. The
cost function is expressed in the equation below:

JCAE(W, b) = J(W, b) + λ ∑
j = 1

n1

Jf(x) F
2 (6)

where Jf(x) F
2  is Frobenius norm of Jacobean and λ is used for

controlling the strength of regularisation. The sum square of the
partial derivative of extracted features is shown in the equation
below:

Jf(x) F
2 = ∑

i, j

∂hj(x)
∂xi

2

(7)

where hj is the output of the jth neuron and x is the input that is
mapped to the hidden layer by a non-linear function [15].

3.3 Emotional learning

People who have a high emotional intelligence have a better
communication with others and their environment. They try to
obtain emotional experience from other people. As a result, besides
perception of their emotion, they can easily understand others’
emotion. So they will have a better interaction with others. In
addition, these people are more successful in controlling their
emotions. Having high emotional intelligence indicates individual
experiences against negative and positive events. These
experiences are inherent of a human being that will appear by
learning. These people try to apply their experience and others’
experience for enhancing their decision.

Since artificial neural networks have been inspired by real
neural nets in our body, we applied the mentioned concept in our
work. The cost function has been considered based on current and
former errors of the network. This strategy has a more appropriate
effect on the learning process of the network. In fact, using former
error which contains previous information of the network leads to
have a better learning process, increasing the speed of the
convergence to the optimal point, and achieving a higher accuracy.

4 Methodology
4.1 Contributions

This paper proposes a structure for classifying three cancer datasets
to increase the accuracy of results. These three cancer datasets had
not experienced the proposed algorithm before.

Furthermore, because system boogies are at risk of uncertainties
and unpredictable events, we added Gaussian noise to the input
features of the first autoencoder to increase the robustness of our
model. Then, for the first time, by stacked denoising method, we
tried to omit the effect of noise added to the datasets.

In addition, in order to increase the accuracy gained by each
classifier, we proposed emotional learning. In this method,
previous errors or former information of the network is
accomplished in the training phase. This leads to achieving higher
accuracy for each classifier.

4.2 Cancer datasets

Three cancer datasets including colon, ALL-AML, and leukaemia
cancers were retrieved from [16, 17]. All three datasets include
gene expression. We assessed our proposed approach and
methodology through these three datasets. We selected these three
cancer datasets because the range of the features that each dataset
contains is markedly different. The features of the colon cancer
dataset have a wide range of variations. The value of whole
features is between 5.8163 and 20,903. This dataset is considerably
non-linear. Samples in ALL-AML and leukaemia have a more
limited number of features compared with the colon cancer dataset.
The value of features is approximately between −8 and 8.5 in ALL-
AML dataset. Unlike the colon and ALL-AML cancer datasets,
features in leukaemia dataset are discrete, and the value of features
is just −2 or 0.

It is worth mentioning that when the dataset is non-linear, we
should increase the number of features in the first autoencoder.
Doing this increases the diversity of the feasible space for
searching the stable point. This increment is achievable via
determining the weight matrixes in the autoencoder layer.

Table 1 presents the number of samples and their characteristics
in each dataset. It can be clearly seen that these three datasets
contain a high dimension of features. On this occasion, if we use
the conventional neural network, the number of hidden layers will
be increased. As a result, weight matrixes in the first hidden layers,
near the input layer, will not be updated. It is the reason why a
classical neural network cannot be applied. This implies the
necessity of feature reduction and extraction which is done by PCA
and DNN in this paper. 
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4.3 Experimental setup

According to Khodayar and Teshnehlab [5], the autoencoder is
known as a non-linear method that is suitable for highly non-linear
datasets. Fig. 1 shows the strategy that is considered in this paper.
It illustrates that PCA reduces the number of features from X to X^ .
Then, DNN extracts features from X^  features and generates X′
features. After, different classifiers (MLP, SVM, DT [18], and
GMM) are applied in order to classify X′ features. In [10], it was
claimed that in some datasets there are some problems such as data
imbalance or datum shift; therefore, pre-processing steps are
required. However, in this paper, regardless of how a dataset is
balanced or imbalanced the proposed method can be applied, and
there is no need for those pre-processing steps. Consequently,
computational complexity will be reduced. However, it is subject
to choosing the appropriate structure for DNN. Here, we used a
similar structure (Fig. 1) for all the datasets. 

Fig. 2 depicts the dimension of weight matrix (W) or the
number of neurons in the hidden layer (250, 180, 150, 120, 100,
75, 25, and 15). Also, these values demonstrate numbers of
extracted features from each autoencoder layer. Since ALL-AML
and leukaemia datasets are not as non-linear as the colon cancer
dataset, there is no need to increase the number of features in the
first encoder layer. It is the reason why we just increase the number
of features in the first encoder layer in the colon cancer dataset
(Fig. 2). To choose the number of autoencoders and the number of
extracted features, each time, the number of neurons in the
autoencoder layer is considered randomly. Then, the error is

calculated. After that, we choose the numbers of neurons that lead
to the lowest error. Finally, different classifiers are applied. 

To train the autoencoders, (8) should be considered in this
methodology. Equations (9)–(12) show the forward neural network
equations. In addition, (10) and (12) show that tangent sigmoid and
linear functions are considered the activation functions in the
autoencoder and decoder layers, respectively. Then, an
optimisation method should be considered for updating the weight
matrix that connects neurons in the hidden layer to the output layer
W2. Here, the gradient descent has been applied. To do this, as it is
shown in Fig. 1, the output of each encoder should be compared
with its target. The targets are same as the inputs of the encoder
layer (unsupervised learning). Then, the error will be calculated
(13). J index in (13) refers to the jth error. Then, sum square error
is defined as the cost function (14a). Additionally, in order to
increase the performance of the training phase, we applied
emotional learning. The cost function for this learning algorithm is
defined by (14b), where k1 and k2 are coefficients that determine the
effect of current and former errors. Here, we considered 1 and 0.5
for k1 and k2, respectively. Next, the calculated error will be back
propagated to update W2 through a chain rule [(15a) and (15b)].
After updating W2, we should transpose this matrix, and substitute
it with W1 which connects input layer to neurons in the hidden
layer.

The first step is the feed-forward algorithm, which is illustrated
in the equations below:

W2 = W; W1 = WT (8)

net1(k) = WT(k)X^ (k) (9)

The outputs of autoencoder layers are calculated through the
equation below:

O1(k) = tansig net1(k) (10)

net2(k) = W(k)O1(k) (11)

The outputs of decoder layers are determined by a linear function
in the equation below:

O2(k) = net2(k) (12)

The second step is the learning phase presented by (13)–(15a) and
(15b)

ej(k) = Xd j(k) − O2(k) = Xd j(k) − (W(k) O1(k)) (13)

Moreover, (14a) and (14b) are considered as the cost functions

E1(k) = 1
2 ∑

j = 1

p
ej

2(k) (14a)

E2(k) = 1
2 ∑

j = 1

p
rj

2(k) = 1
2 ∑

j = 1

p
k1ej(k) + k2ė j(k) 2

= 1
2 ∑

j = 1

p
k1 + k2 ej(k) − k2ej(k − 1) 2

(14b)

Classical back propagation (see (15a)) .
Emotional back propagation

ΔW(k) = − η ∂E2(k)
∂W(k) = − ∂E2(k)

∂r(k)
∂r(k)
∂e(k)

∂e(k)
∂O2(k)

∂O2(k)
∂W(k)

= η k1 + k2 r(k)O1(k)
(15b)

where η is the learning rate that should be 0 < η ≤ 1 for keeping
the learning process stable.

Table 1 Number of whole samples and number of samples
in each class for different cancer datasets
Dataset Number of

samples
Number of
features

Number of samples
in each dataset

colon cancer
[16]

62 2000 40 (tumour) and 22
(normal)

ALL-AML [17] 72 7129 47 (ALL) and 25 (AML)
leukaemia [17] 72 7070 47 (−1)25 (1)

 

Fig. 1  General overview of autoencoder and decoder structures in DNN
 

Fig. 2  Number of features selected in each autoencoder. This structure is
fixed for all three cancer datasets that are used here. Only the number of
whole features (x) will be different for each dataset
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After updating weight matrixes in each autoencoder, extracted
features will be considered as the input features of each classifier.
In each classifier, we divide the samples into two groups: the train
samples and the test samples (unseen data). The number of train
samples and test samples for each cancer dataset are in Table 2.
Here, we use a supervised learning algorithm to classify features
because the actual classification for each dataset is available. 

5 Simulation results and discussion
We obtained the experimental results by running the simulation
programmes ten times with ten different initial values of weight
matrixes. Then, the average of the results was reported in Tables 3–
5. Since the number of test samples assigned to each dataset is not
the same, the titles of these tables were reported regarding the
number of test samples. In all tables, E1 and E2 refer to (14a) and
(14b). At first glance, it can be clearly seen that SVM [19] has the
highest accuracy in all of the three cancer datasets. In the second
column, it can be observed that the GMM classifier gives the
highest variance among other classifiers. The SVM classifier, on
the other hand, gives the lowest variance. Reporting the variance of
the results should be taken into account, for it somehow presents
the reliability of results obtained in each simulation. For example,
if the variation in results is ignorable, the accuracy obtained in one
simulation can be sufficient for our decisions. Moreover, there will
be no need for running the programme several times. In fact, we
know that in another programme running, the accuracy will not be
significantly different. Nevertheless, the previous papers that
worked on these datasets did not report the variation of results.
Some of those papers, also, did not report the number of times that
programmes were simulated. Here, in contrast, we report the
variance of results in a ten-time simulation. Hereby, we can claim
that if we run the programme several times (as in this paper); we

can reduce the effect of some parameters that are selected
randomly such as the initial value of weight matrixes. In the last
column of these tables, the highest number of true answers is
illustrated. It can be observed that the SVM classifier can classify
all test samples without any errors at least in one programme
running. Furthermore, MLP can classify the leukaemia cancer
dataset with the highest accuracy and colon cancer with the lowest
accuracy. In addition, DT and GMM classify leukaemia better than
other datasets. Generally, we cannot discuss the performance of
GMM because of the high variability of results obtained by this
classifier.

Overall, according to the experimental results, the more datasets
are non-linear and include a wider range of features, the better to
apply SVM. In addition, GMM classifier can lead to a good
performance if the distribution of data is normal. However, our
datasets do not have normal distributions. Therefore,
implementation of this classifier cannot have a good performance,
and it is not suitable. In all of the three cancer datasets, the SVM
classifier leads to a higher accuracy than MLP, because MLP is
based on tests or experience. However, SVM minimises structure
risk [20]. This classifier determines boundaries that have the
longest distance to samples in each category. Therefore, what it
takes into consideration is minimising of the risks in the structure.
In addition, SVM classifies samples faster than MLP.

Since the existence of unpredictable events such as noise is
undeniable, we should increase the robustness of our method
against those events. Therefore, in the last section of this paper, we
consider the stacked denoising method. Moreover, we compare the
obtained results when the input features are pure and when the
Gaussian noise is added to them. Tables 6–8 disclose the results
and accuracy achieved by applying different classifiers using the
stacked denoising method. In general, the stacked denoising
method is more successful when SVM classifier is applied in ALL-

ΔW(k) = − η ∂E1(k)
∂W(k) = − ∂E1(k)

∂e(k)
∂e(k)

∂O2(k)
∂O2(k)
∂W(k) = − η(e(k))( − 1)O1(k)

= ηe(k)O1(k)
(15a)

Table 2 Number of training and testing samples in each dataset
Dataset Number of samples for training Number of samples for testing
colon cancer 44 18
ALL-AML 55 22
leukaemia 55 22

 

Table 3 Results of classifying colon cancer dataset with 18 test samples
Classifier Mean of results (E1) E2 Variance of results (E1) E2 Best result (E1) E2
MLP 64.45%(12) 67.78%(12) 3.3778 2.1778 15 15
SVM 89.44%(16) 91.66%(16) 0.77 0.72 17 18
DT 70.56%(13) 73.34%(13) 5.79 3.73 16 16
GMM 47.78%(9) 54.44%(10) 17.6 16.18 13 17
 

Table 4 Results of classifying ALL-AML cancer dataset with 22 test samples
Classifier Mean of results (E1) E2 Variance of results (E1) E2 Best result (E1) E2
MLP 64.54%(14) 65.45%(14) 7.0667 3.8222 18 17
SVM 88.63%(19) 92.27%(20) 2.9444 0.9 21 22
DT 72.27%(16) 74.09%(16) 6.5444 6.0111 19 21
GMM 26.82%(6) 29.09%(6) 15.8778 12.0444 13 11
 

Table 5 Results of classifying leukaemia cancer dataset with 22 test samples
Classifier Mean of results (E1) E2 Variance of results (E1) E2 Best result (E1) E2
MLP 86.36%(19) 87.22%(19) 2.011 1.12 21 21
SVM 95.45%(21) 96.56%(21) 1.8222 0.84 22 22
DT 81.82%(18) 83.18%(18) 2.011 5.57 21 22
GMM 50.09%(13) 51.82%(11) 12.2667 19.38 16 18
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AML and leukaemia cancer datasets. It means the mean accuracies
obtained by this classifier are not different a lot before and after
adding noise and applying stacked denoising method. For the colon
cancer dataset, the variation of results obtained by MLP classifier,
before and after adding noise and using the stacked denoising
method, decreases. Also, for ALL-AML cancer dataset, MLP,
SVM, and GMM lead to a lower variance. In ALL-AML and
leukaemia cancer datasets, applying the SVM classifier leads to a
lower variance of results when noise is added and the stacked
denoising method is applied.

In all classifiers and cancer datasets when we consider
emotional learning, higher accuracy of results is achievable. It is
due to the fact that emotional learning applies former information
for training the network.

6 Conclusion
Dealing with big data is challenging, especially while we are
working on low numbers of samples and a high number of features.
Cancers datasets including gene expression profiles are the
examples. In these cases, classical machine learning algorithms are
not applicable due to the existence of any problems such as
vanishing of the gradient descent. DNN makes it possible to
overcome these problems.

In this paper, we proposed a novel approach for cancer
classification via PCA and DNN as the feature reduction and
feature extraction. Then, we applied four types of classifiers –MLP,
SVM, DT, and GMM – to categorise the extracted features. In the
next stage, we used three cancer datasets; colon, ALL-AML, and
leukaemia to assess our method through them. The proposed
method had a fixed structure, which means that the number of
extracted features by DNN was the same in all cancer datasets. We
selected these three datasets because the features they carry have
different ranges of variations. The colon cancer dataset includes
features with the highest number of variations. However, the
features in ALL-AML cancer dataset contain a limited value of
variations. The features in the last cancer dataset – leukaemia –
consist of only −2 or 0. Then, in order to increase the robustness of
our method against uncertainties, we added Gaussian noise to the
input features of the first autoencoder and used the stacked
denoising method, which was not used in the previous papers with
the same datasets used here. Moreover, in parallel with the steps
mentioned above, we proposed emotional learning. In this learning
algorithm, former and current errors are accomplished to form the
cost function. Therefore, in the training phase, the network uses the
past and current information to be trained. As a result, the network
will learn the pattern better, the speed of convergence to the

optimal point will be increased, and higher accuracy will be
obtained. Overall, among all classifiers, SVM led to the highest
accuracy, and GMM resulted in the lowest one.

For future work, an interpretable state-of-the-art algorithm for
the DNN can be proposed. The DNN algorithm used here is
derived from neural network, which is a black-box structure. The
novel approach can be such as a grey box rather than a black one.
This will be achievable by the combination of deep learning
structures and interpretable machine learning algorithms.
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SVM 86.67%(16) 90%(16) 3.16 2.4 18 18
DT 72.22%(13) 76.67%(14) 6.0444 2.84 16 16
GMM 44.44%(8) 53.89%(10) 17.3889 25.34 15 17

 

Table 7 Results of classifying ALL-AML cancer dataset by stacked denoising method with 22 test samples
Classifier Mean of results (E1) E2 Variance of results (E1) E2 Best result (E1) E2
MLP 60.00%(13) 64.55%(14) 0.6222 3.0667 14 17
SVM 88.18%(19) 92.27%(20) 0.9333 1.1222 21 22
DT 65.91%(14) 74.09%(16) 1.8333 7.7889 20 20
GMM 35%(8) 35.05%(8) 16.2333 8.2667 15 12

 

Table 8 Results of classifying leukaemia cancer dataset by stacked denoising method with 22 test samples
Classifier Mean of results (E1) E2 Variance of results (E1) E2 Best result (E1) E2
MLP 81.82%(18) 86%(19) 3.4333 3.21 21 22
SVM 94.1%(21) 94.54%(21) 1.12 0.62 22 22
DT 77.27%(17) 83.63%(18) 3.5111 2.27 21 21
GMM 54.45%(10) 60%(13) 10.9444 8.84 15 20
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