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Abstract In the era of antibiotic resistance, in silico prediction of bacterial resistome pro-
files, likely to be associated with inactivation of new potential antibiotics is of utmost impor-
tance. Despite this, to the best of our knowledge, no tool exists for such prediction. Therefore,
under the rationale that drugs with similar structures have similar resistome profiles, we devel-
oped two models, a deterministic model and a stochastic model, to predict the bacterial re-
sistome likely to neutralize uncharacterized but potential chemical structures. The current
version of the tool involves the prediction of a resistome for Escherichia coli and Pseudomonas
aeruginosa. The deterministic model on omitting two diverse but relatively less characterized
drug classes, polyketides and polypeptides showed an accuracy of 87%, a sensitivity of 85%, and
a precision of 89%, whereas the stochastic model predicted antibiotic classes of the test set
compounds with an accuracy of 72%, a sensitivity of 75%, and a precision of 83%. The models
have been implemented in both a standalone package and an online server, uCAREChemSuite-
CLI and uCARE Chem Suite, respectively. In addition to resistome prediction, the online version
of the suite enables the user to visualize the chemical structure, classify compounds in 19 pre-
defined drug classes, perform pairwise alignment, and cluster with database compounds using
a graphical user interface.
Availability: uCARE Chem Suite can be browsed at: https://sauravsaha.shinyapps.io/
ucarechemsuite2/, and uCAREChemSuiteCLI can be installed from:
iats.edu.in (S.B. Saha), vijaifzd@gmail.com (V.K. Gupta), pramod.ramteke@shiats.edu.in (P.W.

f Chongqing Medical University.
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1. CRAN (https://cran.r-project.org/packageZuCAREChemSuiteCLI) and
2. GitHub (https://github.com/sauravbsaha/uCAREChemSuiteCLI).

Copyright ª 2020, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
Introduction

The emergence and spread of antimicrobial resistant
(AMR) bacterial strains pose a serious threat to the current
health care system. To address this crisis, numerous na-
tional and international agencies, such as the Infectious
Diseases Society of America (IDSA), the US Food and Drug
Administration (FDA), the Centers for Disease Control and
Prevention (CDC), the World Health Organization (WHO),
and the European Medicines Agency (EMA), have taken
initiatives to facilitate and incentivize novel antimicrobial
discovery.1 Despite tangible progress in the development
of novel antimicrobials, there is a pressing need to bring
new antimicrobials into the clinical development
process.1,2

The bacterial resistance phenotype can be attributed to
one or a few resistance mechanisms. These strategies
involve mechanisms such as inactivating the drug molecule
through enzymatic degradation or modification of the drug
scaffolds; altering or overexpressing of the drug target,
reducing affinity of a drug towards the target; limiting entry
of a drug inside the cell membrane through altering the
permeability of the plasma membrane; and extrusion of a
drug from the cell by efflux pumps.3 Mechanistic under-
standing of these resistance mechanisms for a specific drug
or drug class is critical for accelerating the novel drug dis-
covery process.4

Drugs with similarities in chemical structure, mechanism
of action, and pharmacological effect are often used
interchangeably (the drug class effect).5 Because cross-
resistance to antibiotics within a class is a frequent phe-
nomenon,6 we propose that the drug class effect is not
limited to pharmacological properties but will also include
the resistome profile, i.e., similar drug molecules will share
a similar resistome profile.

With this rationale, an online suite and a command line R
package, uCARE Chem Suite and uCAREChemSuiteCLI,
respectively, were developed to predict the resistome
profile of E. coli and P. aeruginosa likely to cause resistance
against novel candidate drug(s). Here we introduce and
discuss the architecture, usage, and utilities provided by
the tool.
Materials and methods

uCARE Chem Suite and uCAREChemSuiteCLI were entirely
written in R. Several R packagesdChemmineR for drug(s)
feature extraction and analysis;7 Shiny for uCARE Chem
Suite’s web implementation; devtools for uCAR-
EChemSuiteCLI package building; and roxygen2 for
documentation were also utilized. The workflow of the
present work is presented in Fig. 1.

Development of prediction models

Dataset retrieval and preprocessing
Escherichia coli and Pseudomonas aeruginosa were chosen
because of the availability of data and their critical effects
on human health.8 A keyword search on literature data-
bases, including PubMed and PubMed Central and other
meta search engines, such as Google, was carried out to
create a database of drugs that have become ineffective
due to antimicrobial resistance and of the genes involved in
their resistance for both of the microorganisms. The key-
words used were “antibiotic resistance in Escherichia coli/
E. coli”, “multiple drug resistance in Escherichia coli/E.
coli”, and “drug resistance genes in Escherichia coli/E.
coli” for E. coli and “antibiotic resistance in Pseudomonas
aeruginosa/P. aeruginosa”, “multiple drug resistance in
Pseudomonas aeruginosa/P. aeruginosa”, and “drug resis-
tance genes in Pseudomonas aeruginosa/P. aeruginosa” for
P. aeruginosa. The articles were manually and exhaustively
read to generate a database of drug specific resistome
profiles for each of the two pathogens (Tables S1 and S2).
This was followed by segregating the drugs according to
their drug classes, as derived from PubChem and DrugBank
annotations (Table 1). Drugs without well-defined class la-
bels such as acriflavine, florfenicol were marked a separate
class.

Based on the assumption that drugs with a similar
structure (drug class) will have a similar resistome, the goal
of the study was to predict the class of a candidate drug
structure and to subsequently extract and assign
resistance-associated genes from the database to the pre-
dicted drug class. Therefore, to determine the class of an
unknown candidate drug, two algorithms, a deterministic
model and a stochastic model, were developed.

Building the deterministic model
The goal of developing the deterministic model was to pin
down structural and chemical features that are unique and
specific to a drug family either through published biomed-
ical literature or by using simple statistical parameters,
such as the central tendency of different atoms. For
example, any compound with a b-lactam ring, i.e., any
four-membered aliphatic ring with 3 carbon atoms and 1
nitrogen atom, is likely to be a b-lactam drug.9 In this way,
drug classes were manually and exhaustively studied, and
statistical parameters were evaluated to formulate a set of
evidence-based rules (Table S3) nested in various if-else
conditions (Fig. 2) to characterize drug class of an

https://cran.r-project.org/package=uCAREChemSuiteCLI
https://github.com/sauravbsaha/uCAREChemSuiteCLI
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 The workflow of the present work.

Table 1 Classes of the database drugs derived from
PubChem and DrugBank annotations.

Drug class names

Acriflavinea Florfenicola

Aminocoumarinsb Fluoroquinolonesb

Aminoglycosidesb Nitrofuransb

Aminoquinonesb Peptide drugsb

Anisolesb Polyketidesb

Anthracyclinesb Pyridopyrimidinesb

Benzalkoniuma Quinolonesb

Beta lactamsb Rhodaminea

Chloramphenicola Sulfonamidesb

Drug cocktailc Thiolactomycina

a Drug.
b Drug class.
c Drug group.
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unknown compound. The diversity in chemical structures in
the class “drug cocktails” is huge, so finding class-specific
features was not feasible for this present work. There-
fore, the drug cocktail class was omitted when developing
the deterministic model.

Bias in the prediction model due to underrepresentation
of drugs in few drug classes (Tables S1 and S2) led to the
development of a stochastic model.

Building the stochastic model
The stochastic model we developed facilitated and pro-
vided a good fit for the prediction of drug classes that were
either not well characterized or marginally represented in
the database. To predict the drug class, we utilized the k-
nearest neighbor algorithm, in which the distance between
neighbors was determined by the Tanimoto similarity scores
between the query compound and the database com-
pounds. The Tanimoto index was chosen because of its
simplicity and credibility as a coefficient of choice for



Figure 2 Algorithm based on an evidence-based deterministic model to predict the drug class of the chemical compound.
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computing molecular similarities.10 The Tanimoto coeffi-
cient as a similarity score for compound A and B can be
defined as:

Tanimoto coefficient, SA,B Z c/[a þ b þc],

The variable c is the number of atom pairs common to
both compounds, while a and b are the numbers of their
unique atom pairs.

Evaluation of the models
To evaluate the models, a test set of data was generated by
downloading the top 100 SDF (structure-data file) struc-
tures from PubChem with the keyword “antibiotic”. The
classes of these drugs were then determined through Pub-
Chem and Drugbank annotations. Of these 100 drugs, 24
were omitted due to lack of their drug class information.
Furthermore, accuracy, sensitivity, and precision were
calculated to evaluate the drug classification quality of the
models. These measures of assessment were defined with
the following formulas:

Accuracy Z (TP þ TN)/(TP þ TN þ FP þ FN)

Recall (Sensitivity) Z TP/(TP þ FN)

Precision Z TP/(TP þ FP)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.11
User interface for the prediction algorithms

uCARE Chem Suite
uCARE Chem Suite is a cross-platform online tool with a
user-friendly graphical user interface for researchers
without any previous programming experience. The dash-
board of the tool has two console columns, a sidebar al-
gorithm console and a visualization console (Fig. 3).

The sidebar algorithm console comprises sections for
uploading the input file, menus for selecting the study or-
ganism and prediction algorithm, and other clickable menus
for optimizing the prediction models. The home console
hosts the home page, which briefly describes the tool, links
to frequently asked questions (FAQ), and links to contact
information.

The input needed for the tool is a file with atoms,
bonds, connectivity, and coordinates of the candidate drug
molecule in the SDF format. uCARE Chem Suite’s interface,
once the input file is submitted, is divided into three
sections: (a) visualization, (b) resistome prediction by
deterministic model, and (c) resistome prediction by sto-
chastic model.

a. Visualization

The visualization section provides annotations about the
drug structure via three tabs, “Chemical Properties”,
“Atomic Properties”, and “Bond Attributes”.

The Chemical Properties tab links to information
such as chemical formula, molecular weight, and



Figure 3 Home page of uCARE Chem Suite.
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structural formula; the Atomic Properties tab links to
Atom block [Specifies the atomic symbol and any mass
difference, charge, stereochemistry, and associated
hydrogens for each atom] and Bond block [Specifies the
two atoms connected by the bond, the bond type, and
any bond stereochemistry and topology (chain or ring
properties) for each bond] information12; ring attri-
butes, such as the total number of rings, ring type, ring
structure, and bond matrix can be accessed from the
Bond Attributes tab.

b. Resistome prediction by the deterministic model

When selecting resistome prediction using the deter-
ministic model, the user is provided with the class of drug
molecule predicted by the exhaustive rule-based deter-
ministic model via the Drug Classification tab, a list of
database drugs from the same family via the Nearest Drug/s
tab, and the resistome profile via the Resistance Gene List
tab. The user also has the ability to collate and download
the results via the Export/Downloads tab.

c. Resistome prediction by stochastic model

Resistome prediction by the stochastic model provides
the following tabs: (i) Drug Classification, (ii) Database
Query Search, (iii) Query-DB Clustering, and (iv) Database.

The Drug Classification tab provides the drug class pre-
dicted by the stochastic model. The Database Query Search
tab provides a report of aligment between the query
compound structure and all the database compound
structures. The alignment report consist of database drug
compounds ranked in descending order by their Tanimoto
similarity scores. The Query-DB Clustering tab allows the
clustering of a query compound with database compounds
either by atom pair descriptor similarity or by fingerprint
similarity scores; and allows plotting of clustering results in
tree or circular plots. The Database tab provides access to
the complete resistome database for E. coli and P. aeru-
ginosa by selecting either Escherichia coli or Pseudomonas
aeruginosa in the Pathogen name section of the sidebar
console. Furthermore, the determination of a resistome in
the stochastic model can be carried out by submitting an
antibiotic-class name into the metasearch box provided in
the Database tab (Fig. 4).

uCAREChemSuiteCLI
uCAREChemSuiteCLI is a command line R package and can
be easily installed from an R terminal. It has been devel-
oped and distributed with an MIT license so that the re-
searchers can use, reuse, modify, and integrate the
package into their own software. The package consists of
four functions, viz., drug.class.deterministic() and drug.-
class.stochastic() for drug class prediction, whereas dru-
g.resistome.deterministic() and drug.resistome.
stochastic() can be utilized for resistome prediction.

The package can either be installed from the CRAN or
the GitHub repositories. A package manual, README.md,
has been provided in the GitHub repository to instruct the
user in step-by-step package installation, usage de-
scriptions, and examples of specific functions.
Results and discussion

Resistome databases

The aim of the current work was to establish the relation-
ship between drug chemical structures and resistance-
associated genes by analyzing previously reported drug-



Figure 4 Meta search box of Database tab.
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specific resistome profiles. A literature search of biomed-
ical literature databases resulted in two distinct resistome
datasets, a dataset for Escherichia coli with 152 data points
from 37 articles (Table S1) and a dataset for Pseudomonas
aeruginosa with 122 data points from 29 articles (Table S2).
Further manual annotation of the resistome profile infor-
mation from the literature in DrugBank and PubChem
generated two distinct databases for individual organisms,
each of which contained 6 fields: drug name, drug class,
drug PubChem ID, resistance gene class, resistance genes
involved, and bibliography (PMID).

The E. coli database consisted of 56 antibiotics, 18
characterized antibiotic classes, 12 resistance mechanism/
gene classes, and 64 unique genes/mutations associated
with E. coli antibiotic resistance [Fig. S1-S4]; the P. aeru-
ginosa database contained 48 antibiotics, 11 characterized
antibiotic classes, 8 resistance mechanism/gene classes,
and 37 unique genes/mutations associated with P. aerugi-
nosa antibiotic resistance [Fig. S5-S8].

Tetracycline and trimethoprim were the two most
frequently reported antibiotics in the E. coli database,
whereas imipenem and meropenem were the most frequent
antibiotics in the P. aeruginosa database. Although they are
a last resort for many other Gram-negative bacterial in-
fections, antibiotics such as imipenem and meropenem in
the carbapenem class of antibiotics are considered the first
line of defense against P. aeruginosa infections.13 Multiple
reports of carbapenems in the non-redundant resistome
profile database are indicative of an alarming development
of multiple mechanisms of resistance against carbapenems
in P. aeruginosa.

In addition to these drugs, which were highly repre-
sented, the database also contained drugs with scarce
data. As many as 22 drugs from E. coli and 26 drugs from P.
aeruginosa had only one gene report in the database, which
indicates substrate specificity of genes towards drugs.

Since Fleming’s landmark discovery of penicillin, the
most common antibiotic class prescribed against bacterial
infections globally remains the b-lactams, and their global
sales account for billions of US dollars.14e16 Despite the
huge representation of tetracycline and trimethoprim in
the E. coli database, the b-lactam class was found to be the
most frequent class in both databases. The ubiquitous
presence of b-lactams in the database is likely a reflection
of the fact that they are the preferred prescription against
bacterial infections.

Outer membrane proteins and efflux pumps in the
database constituted more than 50% of the P. aeruginosa
resistance-associated gene data, indicating the significance
of these mechanisms in the antibiotic resistance of P. aer-
uginosa.17,18 New Delhi Metallo-b-lactamase (NDM) was the
most prominent gene in the E. coli resistance gene data-
base and was represented in 25% of the data in the entire
database. The voluminous NDM data in the database most
likely can be attributed to the rapid dissemination of this
gene across the globe.19e23 It is worth noting that, since the
emergence of NDM, the majority of NDM gene detection
studies have been limited to bacterial strains in the
Enterobacteriaceae family.

Despite the identification of NDM-containing P. aerugi-
nosa strains in Serbia, France, India, Singapore, and North
America, no direct NDM-associated carbapenem resistance
has been reported in P. aeruginosa.24e28 In addition to the
rarity of the NDM-containing P. aeruginosa reports,29 the
study by Shanthi et al (2014) found that NDM-1 was not a
major mechanism of carbapenem resistance in P.
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aeruginosa.26 However, recently Ding et al (2018) demon-
strated an increase of meropenem minimum inhibitory
concentration (MIC) in an NDM-acquired P. aeruginosa
strain.13 The therapeutic options against P. aeruginosa are
already limited. It will be no less than an “antibiotic
apocalypse” if NDM genes further evolve in P. aeruginosa.
Assessment of the deterministic model

The goal behind developing a deterministic model was to
determine the physiochemical properties unique to each
class. However, it is evident from our results that gener-
alization is not possible when classes as diverse as poly-
ketides and polypeptides are underrepresented in the
database.

Therefore, by omitting these classes, the assessment
measures drastically improved from a complete set accu-
racy of 47%, a sensitivity of 42%, and a precision of 54% to
an accuracy of 87%, a sensitivity of 85%, and a precision of
89% (Fig. 5).
Assessment of the stochastic model

Iterative predictions were carried out with different pa-
rameters, i.e., nearest neighbor values of 1 and 3 and
threshold similarity scores of 0.2, 0.25, 0.3, 0.35, and 0.4,
to evaluate the quality of the stochastic model using
different parameters. Assessment of the stochastic model
showed a nearest neighbor value of 3 with a threshold
similarity score of 0.3 to be our optimal parameter set for
drug class prediction. The model predicted classes of test
set drug molecules with an accuracy of 72%, a precision of
83%, and a sensitivity of 75% (Fig. 6).
Figure 5 Accuracy, precision, and sensitivity of a deterministi
compounds, a test set without polyketide compounds, and a test s
Application, limitations, and future developments

Application
The motivation behind the present work was to develop a
platform to facilitate collaborative research among re-
searchers from various fields of science and to contribute a
tool that could be used against the menace of antimicrobial
drug resistance. Though the current version of the tool
addresses the need for computational chemistry for
experimental researchers working on microbiological as-
pects, it also opens avenues for bioinformaticians with
expertise in structural modeling and pathway biology. Two
of the research directions that the current tool will aid are
described below.

Prediction of the resistome for candidate compounds
In a study, siderophore sulfactam BAL30072 was proposed
to have antimicrobial properties against Gram-negative
bacteria. Antimicrobial activity of this compound was
compared with many other drugs, and its activity was
checked against different resistance-associated genes,
specifically b-lactamases and two component systems.30

Prediction of the resistome will broaden the under-
standing of the bacterial response to novel candidate
compounds by providing a comprehensive list of genes that
are likely to cause resistance. In addition, it will provide an
opportunity for bioinformaticians with expertise in pathway
biology to deduce the dynamics of bacterial response ho-
listically, enabling them to develop and analyze pathway
models of bacterial resistomes.

Antimicrobial resistance surveillance system
Reports of NDM in P. aeruginosa are scarce. However, Ding
et al (2018) demonstrated that the alarming spread of NDM
in P. aeruginosa is not in the distant future.13 As the back-
c model for a complete test set, a test set without peptide
et without polyketide and peptide compounds.
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1 and 3 and threshold similarity scores of 0.2, 0.25, 0.3, 0.35, and 0.4.
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end database is regularly updated, epidemiologists can
utilize the database to carry out AMR-associated epidemi-
ological studies.

Limitations and future development
The caveat for the current work was the low accuracy of
the classifiers, causing a generalization error. This was
mainly due to unbalanced data. Therefore, the immediate
focus of tool development will be to address the general-
ization error. In addition, steps will be taken to increase the
applicability of the tool by augmenting the back-end
database, incorporating pathway information, embedding
docking and virtual screening tools, and developing graphic
user interface (GUI)-based standalone software.
Conclusion

We believe that implementing efficacy tests of compounds
against their resistome space in the early phases of the
traditional clinical trial pipeline will significantly curtail the
cost and time of the drug discovery process. The present
version of uCARE Chem Suite and uCAREChemSuiteCLI
represents an attempt to utilize the relationship between
drug chemistry and the resistome (chemical resistomics) to
predict the E. coli and P. aeruginosa resistome. We expect
that this tool will facilitate the pumping of potential novel
drug compounds into clinical trial pipelines.
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