
fmicb-09-03352 January 24, 2019 Time: 16:14 # 1

ORIGINAL RESEARCH
published: 28 January 2019

doi: 10.3389/fmicb.2018.03352

Edited by:
Dimitris G. Hatzinikolaou,

National and Kapodistrian University
of Athens, Greece

Reviewed by:
Maria Jose Gosalbes,

Centre for Biomedical Network
Research (CIBER), Spain

John Zaunders,
St Vincent’s Hospital Sydney, Australia

*Correspondence:
Jun Chen

qtchenjun@163.com
Hongzhou Lu

luhongzhou@fudan.edu.cn

†Co-first authors

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 10 October 2018
Accepted: 31 December 2018

Published: 28 January 2019

Citation:
Zhang F, Yang J, Ji Y, Sun M,

Shen J, Sun J, Wang J, Liu L, Shen Y,
Zhang R, Chen J and Lu H (2019) Gut

Microbiota Dysbiosis Is Not
Independently Associated With

Neurocognitive Impairment in People
Living With HIV.

Front. Microbiol. 9:3352.
doi: 10.3389/fmicb.2018.03352

Gut Microbiota Dysbiosis Is Not
Independently Associated With
Neurocognitive Impairment in
People Living With HIV
Fengdi Zhang1†, Junyang Yang1†, Yongjia Ji1, Meiyan Sun1, Jiayin Shen1, Jianjun Sun1,
Jiangrong Wang1, Li Liu1, Yinzhong Shen1, Renfang Zhang1, Jun Chen1* and
Hongzhou Lu1,2,3*

1 Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China, 2 Department
of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China, 3 Department of Internal Medicine, Shanghai
Medical College, Fudan University, Shanghai, China

Gut microbiota dysbiosis, which has been linked to many neurological diseases,
is common in HIV infection. However, its role in the pathogenesis of neurocognitive
impairment is still not established. In this study, a total of 85 HIV infected subjects,
naïve to antiretroviral therapy, were classified into two groups—those with HIV-
associated neurological diseases (HAND) and those without, using the Montreal
Cognitive Assessment (MoCA) test. Fecal samples were collected from all subjects and
microbiota were analyzed by 16S rRNA amplicon sequencing. Subjects with HAND
were older (P < 0.001), with lower levels of education (P = 0.002), lower CD4 T-cell
counts (P = 0.032), and greater heterosexual preference (P < 0.001), than those
without HAND. Gut microbiota from subjects with HAND showed significantly lower
α-diversity compared to gut microbiota from subjects without HAND (Shannon index,
P = 0.003). To exclude confounding bias, 25 subjects from each group, with comparable
age, gender, CD4 T-cell count, educational level and sexual preference were further
analyzed. The two groups showed comparable α-diversity (for SOB index, Shannon
index, Simpson index, ACE index, and Chao index, all with P-value > 0.05) and
β-diversity (ANOSIM statistic = 0.010, P = 0.231). There were no significant differences in
microbiota composition between the two groups after the correction for a false discovery
rate. Consistently, microbiota from the two groups presented similar predictive functional
profiles. Gut microbiota dysbiosis is not independently associated with neurocognitive
impairment in people living with HIV.

Keywords: HIV, cognitive, HIV-associated neurocognitive disorder, gut microbiota, predictive function

INTRODUCTION

The prognosis for HIV-infected patients has improved significantly in the past two decades, as the
incidence of various opportunistic infections decreased substantially due to combined antiretroviral
therapy (cART) (Antiretroviral Therapy Cohort Collaboration, 2017). However, the neurological
symptoms caused by HIV infection are still not well-controlled (Fauci and Marston, 2015). In 2007,
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these neurological symptoms were designated as HIV-associated
neurocognitive disorder (HAND) (Antinori et al., 2007).
A recent study reported that almost half of people living
with HIV/AIDS (PLWHA) naïve to cART, demonstrated
neurocognitive impairment (Robertson et al., 2018). It has been
estimated that approximately 15–55% of PLWHA suffer from
HAND despite effective cART (McArthur et al., 1993; Heaton
et al., 2010). HIV-associated dementia (HAD), the most severe
form of HAND, has been reduced from 20 to 5% as a result
of broader cART coverage, while other milder forms of HAND
such as asymptomatic neurocognitive disorder (ANI) and mild
neurocognitive disorder (MND) remain common (Gates et al.,
2016; Saylor et al., 2016). PLWHA with HAND are less able to
deal with complicated activities, resulting in poor medication
compliance which leads to a shorter life expectancy and a lower
quality of life (Berger and Brew, 2005; Antinori et al., 2007;
Tozzi et al., 2007). However, the pathogenesis of HAND remains
unknown.

Growing evidence indicates that many neurological diseases,
including Parkinson’s disease, Alzheimer’s disease, and multiple
sclerosis, are linked to gut microbiota dysbiosis (Hindson,
2017; Wu et al., 2017; Qian et al., 2018). Abnormalities
in gut microbiota may affect brain function through several
mechanisms, including the modulation of the signaling pathways
of the microbiota-gut-brain axis and the regulation of both the
production and absorption of neurotransmitters and neurotoxic
products (e.g., kynurenine downstream products) (Vecsei et al.,
2013).

In HIV-infection, leaky gut and an increased plasma level of
microbiota products contribute to immune activation, which has
been linked to HAND (Eden et al., 2007; Sandler and Douek,
2012; Yilmaz et al., 2013; Eden et al., 2016). Furthermore, gut
microbiota dysbiosis is common in HIV-infection, especially in
those with low CD4 T-cell counts (Tincati et al., 2016; Ribeiro
et al., 2017; Hamad et al., 2018; Williams et al., 2018). Whether gut
microbiota play a role in the pathogenesis of HAND, currently
remains unclear. Herein, we studied the gut microbiome of
PLWHA with and without HAND to determine whether HAND
is associated with differences in gut microbiota.

MATERIALS AND METHODS

Study Settings and Design
We enrolled PLWHA at the Shanghai Public Health Clinical
Center (SHPCC), Shanghai, China from September 2015 to
July 2016. All PLWHA older than 18 years and naïve to
cART were eligible to participate. The exclusion criteria
included antibiotic/probiotic administration within 4 weeks
prior to enrollment; complications including cardiopulmonary
diseases, hematological diseases, malignant tumor, opportunistic
infections, chronic hepatitis virus B and C infection, and syphilis;
history of inflammatory bowel disease; history of central nervous
system diseases or mental illness prior to HIV diagnosis; as well
as pregnant women. This study was approved by the Ethics
Committee of SPHCC. All subjects provided written informed
consent in accordance with the Declaration of Helsinki.

Enrolled PLWHA were allocated using the Montreal Cognitive
Assessment (MoCA) test (Pendlebury et al., 2012). PLWHA with
scores less than 26/30 points were assigned to the HAND group,
while subjects that scored greater than 26/30 points were placed
in the non-HAND group.

Sample Collection and DNA Extraction
At the time of recruitment, fecal and blood samples were collected
from all subjects. The fecal samples were collected in disposable
plastic sterile dung cups and properly handled. After collection,
they were stored at −80◦C until DNA extraction was performed
using the QIAamp DNA Stool Mini Kit (Qiagen, Düsseldorf,
Germany).

HIV RNA and CD4 T-cell counts were performed routinely
at the clinical laboratory of the SPHCC, using Roche COBAS R©

AmpliPrep/COBAS R© TaqMan R© HIV-1 test, version 2.0
(CAP/CTM v2.0; Roche, Basel, Switzerland) and CytomicsTM FC
500 (Beckman Coulter, Brea, CA, United States) flow cytometry,
respectively.

16S rRNA Gene Sequencing and Analysis
The targeted V3-V4 region of the bacterial 16S rRNA gene from
extracted DNA, was PCR-amplified with the universal primers
341F (5′-AGA GTT TGA TCM TGG CTC AG-3′) and 805R
(5′-GAC TGG AGT TCC TTG GCA CCC GAG AAT TCC A-3′)
(Sakamoto et al., 2000; Chakravorty et al., 2007; Nossa et al., 2010;
Haas et al., 2011). The 16S rRNA gene sequencing was performed
on an Illumina MiSeq instrument (Illumina, San Diego,
United States) at Sangon Biotech Co., Ltd. (Shanghai, China).
All reads were demultiplexed, preprocessed, and subsequently
analyzed with the Quantitative Insights into Microbial Ecology
(QIIME) software package (Caporaso et al., 2010). Operational
taxonomic unit (OTU) clustering was performed at a 97%
similarity threshold using the QIIME pipeline. The relative
abundance of the taxa at the phylum and genus levels were
calculated. Alpha diversity analysis was implemented to measure
the diversity of species in each sample and to calculate species
diversity indices such as the SOB (the observed richness), ACE
(abundance based coverage estimated), Chao, Shannon, and
Simpson (Sun et al., 2016). Beta diversity was measured by
unweighted and weighted UniFrac metrics and the distances
were visualized by principal coordinates analysis (PCoA)
(Ji et al., 2018). The OTU abundance was standardized
by PICRUSt (phylogenetic investigation of communities by
reconstruction of unobserved states) to conduct the 16S
predictive functional analysis, that is, to remove the influence
of the number of copies of the 16S marker gene in the genome
of the species (Tang et al., 2018). The PICRUSt software stores
the Kyoto encyclopedia of genes and genomes (KEGG) ortholog
information corresponding to the greengene ID. The greengene
ID obtains KEGG ortholog (KO) information corresponding to
the OTU.

Statistical Analysis
Data analysis was conducted using IBM SPSS version 20.0
software (IBM SPSS, Inc., Armonk, NY, United States) and
GraphPad Prism version 5.0 (GraphPad Software, La Jolla,
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CA, United States). Continuous variables were described using
mean and standard deviation (SD), while categorical variables
were described by numbers and percentages. For characteristics
analyses and diversity indices between groups, differences were
estimated by the Student’s t-test, the Mann–Whitney U-test,
or the chi-square test, where appropriate. All tests were two-sided
and P < 0.05 was considered statistically significant. P-values
were corrected to control the false discovery rate (FDR) < 0.05
using the Benjamini–Hochberg method.

RESULTS

Demographic Characteristics of the
PLWHA
A total of 85 subjects were enrolled in this study. Among these
85 PLWHA, 39 were assigned to the HAND group and 46 were
classified as non-HAND. PLWHA in the HAND group were
older, with lower education levels, lower CD4 T-cell counts, and
greater heterosexual preference than those in the non-HAND
group (Table 1). As PLWHA in the HAND group had lower CD4
T-cell counts and greater heterosexual preference compared with
those in the non-HAND group, the gut microbiota in the HAND
group also showed significantly lower α-diversity when compared
with that in the non-HAND group, as expected (Figure 1).

To limit confounding bias, we matched the two groups for
age, gender, immunological stage, education level, and sexual
preference in 50 subjects that underwent further analysis, with
25 subjects in each group. A flowchart describing the recruitment
and grouping methods of all PLWHA is shown in Figure 2.

The demographic characteristics of these subgroups are shown
in Table 2. All 50 PLWHA were male, aged 33.5 (28.5–38), with 15
(12–16) years of education. The majority (86%) of the group had
a homosexual preference and modest immunosuppression [CD4
T-cell counts 254 (196–353) cells/mm3] (Table 2). The MoCA
scores in the HAND and non-HAND groups were 24 (23–25) and
28 (26.5–28.5), respectively.

Gut Microbiota Diversity Index
We compared the α-diversity by SOB, Shannon, Simpson,
ACE, and Chao indices, respectively, between the two groups.
The species α-diversity of gut microbiota was not significantly

different between the HAND and non-HAND groups [SOB index
(median 112.0 vs. 127.0, P = 0.290), Shannon index (median 2.044
vs. 2.356, P = 0.190), Simpson index (median 0.236 vs. 0.200,
P = 0.467), ACE index (median 151.2 vs. 146.4, P = 0.884), and
Chao index (median 143.6 vs. 144.0, P = 0.266) Figures 3A–E].

Furthermore, the species β-diversity of fecal microbiota was
also not significantly different between the HAND and non-
HAND groups (Figure 3F). We evaluated β-diversity based on
the unweighted (qualitative, ANOSIM statistic = 0.031, P = 0.062)
and the weighted (quantitative, ANOSIM statistic = 0.010,
P = 0.231) UniFrac distance matrix of the differences between
groups in the fecal microbial communities.

No Differences in Gut Microbiota
Composition Between the HAND and
Non-HAND Groups
At the phylum level, species abundance of actinobacteria was
higher in the HAND group than in the non-HAND group (4.459
vs. 2.108%; P = 0.042; Figure 4A). However, this difference
disappeared after FDR correction (adjusted P = 0.541). At
the genus level, lower abundances of Faecalibacterium (8.304
vs. 12.23%; P = 0.028), Catenibacterium (0.552 vs. 2.877%;
P = 0.040), and Ruminococcaceae (0.7261 vs. 1.138%; P = 0.009)
were detected in the HAND group in contrast to the non-
HAND group (Figure 4B). After for FDR correction, the
differences in the abundance of Faecalibacterium (adjusted
P = 0.625), Catenibacterium (adjusted P = 0.625), and
Ruminococcaceae (adjusted P = 0.625) were not significant
between the aforementioned two groups.

Predictive Function Profile of the Gut
Microbiota
Predictive functional profiling using the KEGG pathway showed
that gut microbiota in the HAND group were associated with
higher abundances in the cellular processes compared to the
non-HAND groups (mean 344019 vs. 277003; P = 0.027).
As microbiota function in cellular processes mainly include
cell growth and death, motility, transport, and catabolism, we
conducted a level 2 analysis of the KEGG pathways. After FDR
correction, no statistical differences were detected between the
two groups (Figure 5).

TABLE 1 | Demographics and clinical characteristics of the total participants.

Over all (n = 85) HAND (n = 39) Non-HAND (n = 46) P-valuea

Age (IQR, Year) 33 (27–41) 38 (31–53) 30 (26–34) <0.001b

Gender (male, %) 80 (94.1%) 35 (89.7%) 45 (97.8%) 0.115c

Years of education (IQR) 15 (12–16) 12 (12–16) 16 (15–16) 0.002c

Marital status (Married or cohabiting, %) 31 (36.5%) 22 (56.4%) 9 (19.6%) <0.001c

Sexual preference (homosexual, %) 68 (80%) 25 (64.1%) 43 (93.5%) <0.001c

CD4 T cell counts (IQR, cells/mm3) 295 (199–404) 258 (187–370) 328 (228–423) 0.033d

HIV-RNA (IQR, Log10 copies/ mL) 4.6 (3.8–5.0) 4.5 (3.6–5.1) 4.6 (4.0–4.9) 0.148c

MoCA score (IQR) 26 (24–28) 24 (21–25) 28 (27–28) <0.001b

IQR, Interquartile range; NA, Not applicable. aCompared between HAND group and non-HAND group. bAnalyzed by Mann–Whitney U-test. cAnalyzed by chi-square test.
dAnalyzed by t-test.
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FIGURE 1 | Significantly lower α-diversity of gut microbiota from HAND group compared with that from non-HAND group. (A) Shannon index: t-test; (B) Simpson
index: Mann–Whitney test; (C) ACE index: Mann–Whitney test; (D) Chao index: t-test.

FIGURE 2 | Flowchart of recruitment and grouping method.
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TABLE 2 | Demographics and clinical characteristics of participants in the subgroup analysis.

Over all (n = 50) HAND (n = 25) Non-HAND (n = 25) P-valuea

Age (IQR, Y) 34 (29–38) 34 (30–42) 31 (27–37) 0.236b

Gender (male, %) 50 (100%) 25 (100%) 25 (100%) NA

Years of education (IQR) 15 (12–16) 15 (12–16) 15 (15–16) 0.333c

Marital status (married or cohabiting, %) 20 (40%) 12 (48%) 8 (32%) 0.248c

Sexual preference (homosexual, %) 43 (86%) 20 (80%) 23 (92%) 0.221c

CD4 T cell counts (IQR, cells/mm3) 254 (196–353) 258 (211–363) 249 (189–358) 0.782d

HIV-RNA (IQR, Log10 copies/ mL) 4.6 (3.8–5.0) 4.4 (3.6–4.9) 4.7 (4.5–5.1) 0.747c

MoCA score (IQR) 25.5 (24–28) 24 (23–25) 28 (26.5–28.5) <0.001b

IQR, Interquartile range; NA, Not applicable. aCompared between HAND group and non-HAND group. bAnalyzed by Mann–Whitney U-test. cAnalyzed by chi-square test.
dAnalyzed by t-test.

FIGURE 3 | Differences in species α-diversity of gut microbiota between HAND and non-HAND groups in subgroup analysis. (A) SOBs index, Mann–Whitney test;
(B) Shannon index, t-test; (C) Simpson index, Mann–Whitney test; (D) ACE index, Mann-Whitney test; (E) Chao index, t-test. (F) Unweighted and weighted analyses
of similarities(ANOSIMs) and principal coordinates analysis(PCOA) based on the distance matrix of UniFrac dissimilarity of the fecal microbial communities in HAND
group and non-HAND groups. Each symbol represented a sample, HAND group (red circle), non-HAND group (blue triangle). ANOSIM statistic showed the
community variation between the compared groups, and P-values were indicated.

DISCUSSION

Gut microbiota dysbiosis has been linked to neurocognitive
disorders in the HIV-negative population (Miklossy, 2011; Poole
et al., 2013; Yang et al., 2016; Zhan et al., 2016; Noble et al., 2017).
Nevertheless, an understanding of its role in the pathogenesis of
HAND is still lacking to date. In the current study, we showed
that gut microbiota dysbiosis is not independently associated
with HAND. To the best of our knowledge, this is the first

study to explore the association between gut microbiota and
HAND.

We reported, along with others, that gut microbiota dysbiosis
in PLWHA is common (Nowak et al., 2015; Carding et al.,
2017; Desai and Landay, 2018; Lu et al., 2018; Missailidis
et al., 2018). Gut microbiota from PLWHA showed significantly
lower α-diversity compared with that from HIV-uninfected
controls (Sun et al., 2016; Hamad et al., 2018). In this study,
we found that microbiota in the HAND group also displayed
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FIGURE 4 | Difference in gut microbiota composition between the HAND group and the non-HAND group. (A) Wilcoxon rank-sum test bar plot on Phylum level.
(B) Wilcoxon rank-sum test bar plot on Genus level. Each color represented a group, HAND group (red), non-HAND group (blue). ∗P < 0.05 and ∗∗P < 0.001.
Confidence intervals were estimated using a percentile bootstrapping method.

significantly lower α-diversity than that in the non-HAND group,
indicating associations between gut microbiota and HAND.
Consistent with these results, a recent pilot study showed
that supplementation with a probiotic containing Streptococcus
salivarius, S. thermophilus, Bifidobacteria, Lactobacillus spp.,
and S. faecium improved neuropsychological performance in
PLWHA (Ceccarelli et al., 2017). However, in our subgroup
analysis adjusting for gender, age, education level, and CD4 T-cell
count, all of which has been linked to HAND, the diversity and
composition of the gut microbiota was comparable between the
two groups in the current study (Wang et al., 2013). Moreover,

no significant differences in the predictive function of the gut
microbiota was found between the HAND and non-HAND
groups. It is known that confounders such as age, gender, CD4
T-cell counts, and sexual preference also have significant effects
on gut microbiota (Nowak et al., 2015; Ji et al., 2018). We and
others have recently demonstrated that low CD4 T-cell counts,
rather than HIV serostatus, predict the presence and recovery
of gut dysbiosis in HIV-infected subjects (Guillen et al., 2018;
Ji et al., 2018; Zhou et al., 2018). Furthermore, other studies found
that MSM (men who have sex with men) had a significantly richer
and more diverse fecal microbiota than non-MSM individuals,
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FIGURE 5 | Functional predictions for the fecal microbiome of the HAND and non-HAND groups by KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways.
(A) KEGG pathways at level 1, t-test. (B) KEGG pathways at level 2, t-test.

independent of HIV infection (Noguera-Julian et al., 2016; Kelley
et al., 2017). Therefore, our results do not preclude the role of
intestinal dysbiosis in the pathogenesis of HAND. However, our
data do show that gut microbiota dysbiosis is not independently
associated with HAND. Moreover, we do not know whether the
compositions of the virome and fungal microbiome in the gut
may contribute to HAND, which warrants further investigation.

Gut microbiota may contribute to neurological diseases by
regulating both the production and absorption of neurotoxic
products. Stimulation of the kynurenine pathway has been closely
linked to the pathogenesis of HAND (Heyes et al., 2001; Smith
et al., 2001; Valle et al., 2004; Vamos et al., 2009; Davies et al.,
2010; Kandanearatchi and Brew, 2012; Vecsei et al., 2013; Myint
and Kim, 2014). Indeed, even long-term ART in PLWHA did
not normalize the overactivated kynurenine pathway (Chen et al.,
2014, 2018). The levels of Lactobacilli and Proteobacteria in
the gut have been correlated with kynurenine pathway activity
and disease progression, respectively (Vujkovic-Cvijin et al.,
2013; Zelante et al., 2013). Therefore, they might contribute to
the development of HAND. However, no significant differences
in these bacteria (Lactobacilli 0.044 vs. 0.046%, P = 0.710;
Proteobacteria 12.94 vs. 7.79%, P = 0.684) were observed in our
study.

Gut microbial dysbiosis has been associated with HIV
pathogenesis (Vyboh et al., 2015; Dillon et al., 2016).
Indeed, gut microbial dysbiosis is associated with many
immunological parameters including T-cell activation and
plasma lipopolysaccharide and soluble CD14 levels, all of which
have been linked to disease progression (Dillon et al., 2014;
Dinh et al., 2015; Nowak et al., 2015; Vazquez-Castellanos
et al., 2015; Monaco et al., 2016; Noguera-Julian et al., 2016;
Serrano-Villar et al., 2017; Vazquez-Castellanos et al., 2018).
Moreover, interventions that modulate alterations in gut
microbiota improved these markers in some clinical trials (Irvine
et al., 2010; Gori et al., 2011; Kristoff et al., 2014). However, few
studies have deciphered the association between microbiota and
clinical diseases in HIV infection. Recently, altered microbiota
dysbiosis has been linked to coronary heart disease, type 2
diabetes, and poor CD4 T-cell recovery (Hoel et al., 2018;

Kehrmann et al., 2018; Lu et al., 2018). Unfortunately, these
studies involved relatively small sample sizes and did not take
into account other factors that significantly effects gut microbiota
(e.g., CD4 T-cell count and sexual preference), which might
bias their results. Interestingly, a landmark study recently
showed no effect of experimental gut microbiota dysbiosis on
disease progression in an SIV infection model, indicating that
the associations we observed in PLWHA may result from the
confounders (Ortiz et al., 2018). Therefore, we suggest that
future microbiome studies on HIV infection should take these
confounders into consideration (Noguera-Julian et al., 2016;
Tincati et al., 2016; Ribeiro et al., 2017; Hamad et al., 2018; Klatt
and Manuzak, 2018; Williams et al., 2018).

There are some limitations in our study that should be
addressed. Firstly, the relatively small sample size might generate
bias in our results. Secondly, in using MoCA as a reference
for grouping, PLWHA exhibited a narrow score distribution
interval, leading to a lack of HAD subjects. A recent study showed
that the intestinal microbiota of people living with HAD was
highly specific (Pérez-Santiago et al., 2017). Finally, all subjects
we enrolled were ART naïve. Therefore, our results cannot be
extended to PLWHA who have already been treated.

CONCLUSION

In conclusion, our research shows that gut microbiota dysbiosis
is not independently associated with neurocognitive impairment
in PLWHA.
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