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Abstract: Robot localization, particularly multirobot localization, is an important task for multirobot
teams. In this paper, a decentralized cooperative localization (DCL) algorithm with fault detection
and isolation is proposed to estimate the positions of robots in mobile robot teams. To calculate the
interestimate correlations in a distributed manner, the split covariance intersection filter (SCIF) is
applied in the algorithm. Based on the split covariance intersection filter cooperative localization
(SCIFCL) algorithm, we adopt fault detection and isolation (FDI) to improve the robustness and
accuracy of the DCL results. In the proposed algorithm, the signature matrix of the original FDI
algorithm is modified for application to DCL. A simulation-based comparative study is conducted to
demonstrate the effectiveness of the proposed algorithm.

Keywords: robot localization; mobile robot; distributed cooperative localization; fault detection
and isolation

1. Introduction

Robots have become increasingly prevalent in many domains, such as medical services and
security [1]. Tasks assigned to robots such as rescue [2] are becoming increasingly complex for a single
robot to address, making multirobot cooperation imperative. The cooperation intrinsic to a multirobot
team makes it possible to execute tasks such as rescue which may be difficult or difficult with a single,
highly capable robot; moreover, the presence of more than one robot makes the team fault-tolerant. The net
effect is that a robot team can reliably execute its task even when its working environment changes.

Accurate position information is very important for cooperation in a multirobot team. For a
single robot, the localization process is performed based only on its own sensor data, such as Global
Positioning System (GPS) data [3], camera data [4], or laser scanner data [5,6]. In a multirobot
team, however, sensor data collected from inter-robot observations can be considered in the process
of cooperative multirobot localization. It is believed that cooperative localization (CL) methods
using sensor data from inter-robot observations will outperform traditional single-robot localization
methods [7].

The idea of CL was first proposed in [8], in which the robot team was considered to be divided
into two groups. Each group alternately remained stationary to serve as a landmark for the other group.
In [9], the premise of the stationarity of one group of robots is canceled. To date, many CL algorithms
have been proposed. Among these algorithms, the simplest is centralized cooperative localization
(CCL) [10]. In CCL, all information, including observation information and position information from
the whole team, is transmitted to a fusion center, which maintains only one global state, as shown
in Figure 1.
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Figure 1. Communication graph for CCL.

However, CCL has clear disadvantages. First, the communication and computational costs of
CCL are very high since all computational loads are concentrated at the fusion center. Second, if a
fault occurs in the fusion center, then the whole CCL system will be corrupted. Finally, given the finite
communication and computational capabilities of a practical system, it is difficult to continue to use
only one fusion center to achieve CL for the entire team as the size of the team increases.

Decentralized cooperative localization (DCL) has proven to be a desirable solution [11] to resolve
these problems, because both the computational and communication burdens placed on each robot in
the team are lower. In DCL, each robot handles only its own local information. Moreover, in this paper,
to calculate the interestimate correlations in a distributed manner, the split covariance intersection
filter (SCIF) [12] is applied. In this algorithm, two covariance states, namely, independent covariance
and dependent covariance, are maintained in each robot.

To improve the robustness of the robot team, fault detection and isolation (FDI) [13–15] are
needed. In [16], an FDI algorithm was applied in CCL. However, the FDI algorithms cited above
are designed for CCL and are not applicable in DCL due to the limited sensor information available.
To improve the performance of fault detection, a decision algorithm that maximizes the amount of
information transformation is adopted, as introduced in Section 3. To enable the application of FDI
in DCL, the isolation rule is modified. The signature matrix is simplified by combining certain fault
types, and a new Kullback–Leibler (KL) residual is added.

The remainder of this paper is organized as follows. The theoretical background of the DCL and
FDI algorithm is introduced in Section 2. We describe the concepts of DCL with the SCIF and FDI and
introduce the corresponding algorithms in Section 3. The experiments and results are introduced in
Section 4. The last section concludes the paper.

2. Background

In this section, some background knowledge is introduced.
Four assumptions are made in this paper. First, each robot is assumed to be equipped with one

motion sensor. The equipped sensors can report the motion data on of the robots. No single-robot
localization method based on other sensors is considered in these simulations.

Second, the robots are assumed to be able to capture the relative poses of other robots within their range
of perception. A robot that is perceived is called a neighboring robot in this paper. Each robot can share its
relative measurements and motion states with its neighboring robots via inter-robot communication.

Third, two types of noises are considered in the simulations: additive white Gaussian noise and
impulse noise. Here, additive white Gaussian noise consists of unbiased normally distributed errors
with a fixed standard deviation, as shown in Figure 2a, whereas impulse noise consists of unpredictable
errors that simulate certain unexpected situations, such as poor odometric measurements and noisy
and distorted measurements, as shown in Figure 2b.
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(a) Additive white Gaussian noise
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Figure 2. Additive white Gaussian noise and impulse noise.

To demonstrate the features of these two types of noise in our simulation, the localization errors
of a robot under these two types of noise without filtering are shown in Figure 3a,b. As shown in these
figures, the localization error of the robot increases smoothly under additive white Gaussian noise,
whereas it increases suddenly under impulse noise.
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(a) Position error under additive white Gaussian noise
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Figure 3. Position errors under additive white Gaussian noise and impulse noise.

Fourth, the members of the robot team are assumed to be subject to different levels of positioning
error. When one robot changes its orientation to avoid an obstacle, the accuracy of its motion model
will be lower than those of its neighboring robots because the amplitude of the noise is related to the
yaw rate and the yaw rate of this robot will be larger than those of the other robots on the team.

2.1. Split Covariance Intersection Filter

As mentioned above, in DCL with the SCIF, each robot executes a localization algorithm to
calculate its own position. This subsection provides a brief introduction to the concept of the SCIF,
which enables the fusion of two different estimates with an unknown correlation.

Given two estimates {X1, P1} and {X2, P2}, where X denotes the estimated state vector and P
denotes the estimated covariance, the following fused estimate {X, P} can be calculated using the
Kalman filter:
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P−1 =P−1
1 + P−1

2 ,

X =P(P−1
1 X1 + P−1

2 X2).
(1)

However, one premise of the Kalman filter that may not be satisfied is that the estimate and
the observation are independent of each other. In other words, the estimate and the observation are
correlated, Equation (1) might yield inconsistent results, and the fused result might be overconfident.

One widely used tool for handling the fusion of estimates with unknown correlations is the covariance
intersection filter (CIF) [17]. In the CIF approach, a parameter w is added to the fusion formulae:

P−1 =(
P1

w
)−1 + (

P2

1− w
)−1,

X =P((
P1

w
)−1X1 + (

P2

1− w
)−1X2),

(2)

where w, which takes values in the interval [0, 1], is chosen to minimize P.
Although the CIF alleviates the overconfidence problem, it also has clear drawbacks, mainly

because it treats the estimates to be fused as completely interdependent values. Thus, the fused
result estimated with the CIF is pessimistic. To further mitigate this problem, the SCIF [12] has been
introduced. In the algorithm of SCIF, the estimates to be fused are split into two parts: an independent
part and a dependent part. Thus, the estimate {X1, P1} and the observation {X2, P2} to be fused
are reformulated as {X1, P1d + P1i} and {X2, P2d + P2i}, respectively, where P1d corresponds to the
dependent part of X1 and P1i corresponds to the dependent part of X1. The formula of SCIF can be
written as

P1 =
P1d
w

+ P1i,

P2 =
P2d

1− w
+ P2i,

P−1 =P−1
1 + P−1

2 ,

X =P(P−1
1 X1 + P−1

2 X2),

Pi =P(P−1
1 P1iP−1

1 + P−1
2 P2iP−1

2 )P,

Pd =P− Pi,

(3)

where w, which takes values in the interval [0, 1], is chosen to minimize P.

2.2. Statistical Decision Theory Based on an Information Theoretic Approach

In this subsection, statistical decision theory based on an information theoretic approach is
introduced. In this algorithm, the decision is evaluated based on the mutual information I(S, Sa).
The decision rule δ(x), which is based on an observation x, can be written as shown in Equation (4).

δ(x) = arg max
Sa

I(S, Sa) (4)

Here, the decision Sa is chosen to maximize I(S, Sa). The input state x represents the observation
of the fault state of the detection system, which is conditioned on the true state, represented by S.

The state space of S consists of two values: s0 or s1, where s0 represents the absence of fault and s1

represents the presence of fault. Similarly the decision result Sa may only take one of these two values.
The value of I(S, Sa) can be calculated using Equation (5):

I(S, Sa) = ∑
S

∑
Sa

p(S, Sa) log(
p(S|Sa)

p(Sa)
), (5)
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where the various probabilities that appear in this expression are defined as follows:
p(S|Sa):

p(S|Sa) =


p(S = s0|Sa = s0) = 1− PF,

p(S = s0|Sa = s1) = PF,

p(S = s1|Sa = s0) = 1− PD,

p(S = s1|Sa = s1) = PD.

(6)

p(Sa):
p(Sa = s0) = P0(1− PF) + (1− P0)(1− PD),

p(Sa = s1) = P0PF + (1− P0)PD.
(7)

p(S, Sa):

p(S, Sa)


p(S = s0, Sa = s0) = (1− PF)P0,

p(S = s0, Sa = s1) = PFP0,

p(S = s1, Sa = s0) = (1− PD)(1− P0),

p(S = s1, Sa = s1) = PD(1− P0).

(8)

Here, PD is the probability of correctly concluding that there are faulty sensors when faulty
sensors are present in the robot system, PF is the probability of incorrectly concluding that there are
faulty sensors when no faulty sensors are present in the robot system, and P0 is a priori probability of
the absence of faulty sensors in the robot system, whose initial value is known.

The values of PD and PF are calculated as shown in Equation (9):

PD =
∫ ∞

λ
f (x|S = s1)dx,

PF =
∫ ∞

λ
f (x|S = s0)dx.

(9)

Additionally, the probability density functions f (x|S = s0) and f (x|S = s1) are computed from
the data distributions of x in the faulty and nonfaulty cases, respectively.

By substituting Equations (6)–(8) into Equation (5), we can obtain Equation (10):

I(S, Sa) =P0(1− PF) log(
1− PF

P0(1− PF) + (1− P0)(1− PD)
)

+ P0PF log(
PF

P0PF + (1− P0)PD
)

+ (1− P0)(1− PD) log(
1− PD

P0(1− PF) + (1− P0)(1− PD)
)

+ (1− P0)(PD) log(
PD

P0PF + (1− P0)PD
).

(10)

The threshold t of the likelihood ration that maximizes I(S, Sa) is determined as follows.
First, the derivative of I(S, Sa) with respect to PF is calculated:

∂I/∂PF = −P0 log
1− PF

PF
+ [P0 + t(1− P0)] log(p(Sa = s0))

− t(1− P0) log
1− PD

PD

− [P0 + t(1− P0)] log(p(Sa = s1)).

(11)
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Set this derivative is equal to zero. We obtain that

t =
−P0[log(p(Sa = s0)/p(Sa = s1))− log((1− PF)/PF)]

(1− P0)[log(p(Sa = s0)/p(Sa = s1))− log((1− PD)/PD)]
. (12)

Here,

t =
∂PD
∂PF

. (13)

With this threshold t, the decision rule δ() can be written as

δ(x) =

{
s1 l(x)≥t,
s0 l(x) < t.

(14)

Here, l(x) is a likelihood ratio that is calculated as follows:

l(x) =
fx(x|s1)

fx(x|s0)
. (15)

Likely wise Equation (14) can be expressed as

δ(x) =

{
s1 x≥λ,
s0 x < λ.

(16)

Here λ is calculated by algorithm where is chosen from the a set λ consisting of values between
λmax and λmin (shown in Algorithm 1).

Algorithm 1 Algorithm of the thresholding calculation:

1: i← 1
2: I(S, Sa)← 0
3: while i < max do

4: calculate PFi and PDi with λi by Equation (9)
5: calculate I(S, Sa)i with PFi and PDi by Equation (10)
6: if I(S, Sa)i > I(S, Sa) then

7: I(S, Sa)← I(S, Sa)i
8: λ← λi
9: end if

10: i← i + 1
11: end while

3. Materials and Methods

The DCL algorithm with FDI is introduced in this section. The communication graph of DCL
in a robot team with three robot members, where each robot communicates only with its neighbors,
is shown in Figure 4. As shown in this figure, there is no fusion center in DCL; instead, every robot
executes its own localization and FDI algorithm to calculate its own position. In contrast with the
fusion center in CCL, which can obtain all the information that it needs, in DCL, every robot can obtain
information only from its neighbors. For this reason, the information available to every robot in DCL is
limited, and the FDI algorithms designed for CCL are not applicable to DCL. To enable the application
of FDI in DCL, a novel FDI algorithm is introduced in this section.
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Figure 4. Communication graph for DCL.

3.1. Decentralized Cooperative Localization Algorithm

In this section, the method for achieving DCL using the SCIF (abbreviated henceforth as SCIFCL)
is introduced. The SCIFCL algorithm is presented as Algorithm 2.

Algorithm 2 DCL Algorithm with the SCIF (SCIFCL):

1: for i = 1 to N do

2: Xi
k/k−1 = f (Xi

k−1, ui
k−1)

3: Pi
k/k−1 = Fi

k−1Pi
k−1FiT

k−1 + Gi
k−1(Qu)i

k−1GiT
k−1

4: Pi_in
k/k−1 = Fi

k−1Pi_in
k−1FiT

k−1 + Gi
k−1(Qu)i

k−1GiT
k−1

5: Pi_d
k/k−1 = Pi

k/k−1 − Pi_in
k/k−1

6: if there exists a relative measurement Zji
k between robot j and robot i then

7: Xi∗
k/k−1 = h(X j

k/k−1, Zji
k )

8: Pi
k/k = (1− K)(Pi_d

k/k−1/w + Pi_in
k/k−1)

9: Xi
k/k = Xi

k/k−1 + K(Xi∗
k/k−1 − Xi

k/k−1)

10: end if

11: end for

The state model of robot i in a multiple mobile robots team can be expressed as

Xi
k/k−1 = f (Xi

k−1, ui
k−1)

=

 xi
k−1

yi
k−1

θi
k−1

+

 4
i
k−1cos(θi

k−1 +
vi

k−1
2 )

4i
k−1sin(θi

k−1 +
vi

k−1
2 )

vi
k−1

 .
(17)

where Xi
k is the state vector of robot i:

Xi
k = [xi

k, yi
k, θi

k]
T ,

and
Xk−1 = [X1

k−1, X2
k−1, ..., Xi

k−1, ...]T .

Here,4i
k−1 and vi

k−1 are the elementary displacement and rotation, respectively, of robot i.
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In summary, the state model of the multirobot system consists of differentially driven robots
governed by a linear control law.

And the Jacobian matrices Fi
k−1 = ∂ f

∂X and Gi
k−1 = ∂ f

∂u are written as

Fi
k−1 =

 1 0 −4i
k−1sin(θi

k−1 +
vi

k−1
2 )

0 1 4i
k−1cos(θi

k−1 +
vi

k−1
2 )

0 0 1

 (18)

and

Gi
k−1 =

 cos(θi
k−1 +

vi
k−1
2 ) − 1

24i
k−1sin(θi

k−1 +
vi

k−1
2 )

sin(θi
k−1 +

vi
k−1
2 ) 1

24i
k−1cos(θi

k−1 +
vi

k−1
2 )

0 1

 . (19)

In DCL, in addition to the covariance of the robot itself, Pi
k/k−1, two additional covariances, Pi_in

k/k−1

and Pi_d
k/k−1, are also calculated as follows:

Pi
k/k−1 =Fi

k−1Pi
k−1FiT

k−1 + Gi
k−1(Qu)

i
k−1GiT

k−1,

Pi_in
k/k−1 =Fi

k−1Pi_in
k−1FiT

k−1 + Gi
k−1(Qu)

i
k−1GiT

k−1,

Pi_d
k/k−1 =Pi

k/k−1 − Pi_in
k/k−1.

(20)

When robot i is observed by robot j, the measurement model can be written as
Thus, the measurement of Xi

k can be written as

Xi∗
k/k−1 =h(X j

k/k−1, Zji
k )

=


xj

k/k−1 + xji
k cosθ

j
k/k−1 − yji

k sinθ
j
k/k−1

yj
k/k−1 + xji

k sinθ
j
k/k−1 + yji

k cosθ
j
k/k−1

θ
j
k/k−1 + θ

ji
k

 ,
(21)

where
Zji

k = [xji
k , yji

k , θ
ji
k ]

T .

Then, the measurement and the observation to be fused are {Xi
k/k−1, Pi_d

k/k−1 + Pi_in
k/k−1} and

{Xi∗
k/k−1, Pi∗_d

k/k−1 + Pi∗_in
k/k−1}, respectively, where

Pi∗
k/k−1 = Ci∗

k Pj
k/k−1(C

i∗
k )T + Di∗

k (Di∗
k )T ,

Pi∗_in
k/k−1 = Ci∗

k Pj_in
k/k−1(C

i∗
k )T + Di∗

k (Di∗
k )T .

(22)

Here, the Jacobian matrices Ci∗
k =

∂Xi∗
k/k−1

∂X j
k/k−1

and Di∗
k =

∂Xi∗
k/k−1

∂Zji
k

can be expressed as

Ci∗
k =

∂Xi∗
k/k−1

∂X j
k/k−1

=

 1 0 −xji
k sin(θ j

k/k−1)− yji
k cos(θ j

k/k−1)

0 1 xji
k cos(θ j

k/k−1)− yji
k sin(θ j

k/k−1)

0 0 1

 ,

Di∗
k =

∂Xi∗
k/k−1

∂Zji
k

.

(23)
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Applying the SCIF to the cooperative localization problem, we obtain that

(Pi
k/k)

−1 = (
Pi_d

k/k−1

w
+ Pi_in

k/k−1)
−1 + (

Pi∗_d
k/k−1

1− w
+ Pi∗_in

k/k−1)
−1

Xi
k/k = Pi

k/k[(
Pi_d

k/k−1

w
+ Pi_in

k/k−1)
−1Xi

k/k−1 + (
Pi∗_d

k/k−1

1− w
+ Pi∗_in

k/k−1)
−1Xi∗

k/k−1].

(24)

Writing the above equation in Kalman filter form, we obtain that

Pi
k/k = (1− K)(

Pi_d
k/k−1

w
+ Pi_in

k/k−1)
(25)

Xi
k/k = Xi

k/k−1 + K(Xi∗
k/k−1 − Xi

k/k−1), (26)

where K =
(

Pi_d
k/k−1

w +Pi_in
k/k−1)

(
Pi_d

k/k−1
w +Pi_in

k/k−1)+(
Pi∗_d

k/k−1
1−w +Pi∗_in

k/k−1)

.

And
Pi_in

k/k =(1− K)Pi_in
k/k−1(1− K)T + KPi∗_in

k/k−1KT

Pi_d
k/k =Pi

k/k − Pi_in
k/k .

(27)

Thus, the fused result is {Xi
k/k, Pi_d

k/k + Pi_in
k/k }.

3.2. Fault Detection and Isolation in Decentralized Cooperative Localization

After estimating the locations of the robot team via SCIFCL, the FDI algorithm is implemented.
As mentioned above, in DCL, each member of the team communicates only with its neighbors, and thus,
the information available to each robot for FDI is limited. To resolve this problem, an improved FDI
algorithm is developed.

To evaluate the possibility of the presence of faulty sensors, the Kullback–Leibler divergence (KLD)
between the results of estimation before and after the measurement update is calculated. The KLD
is a measure of the extent of one probability distribution diverges from another. If f (x) and g(x) are
two-dimensional Gaussian distributions, with respective means of µ1 and µ2 and covariance matrices
P1 and P2, then the KLD can be calculated using Equation (28):

KLD( f (x)||g(x)) =
1
2
[trace(P2

−1P1) + log(det(
P2

P1
))− d + (µ1 − µ2)

T P−1
2 (µ1 − µ2)]. (28)

Here, the mean Xk/k−1 and the covariance matrix Pk/k−1 of the state estimate before the
measurement update correspond to the prior probability distribution, while the mean Xk/k and
the covariance matrix Pk/k of the state estimate after the measurement update correspond to the
posterior probability distribution.

Since both the prior and posterior probability distributions are two-dimensional Gaussian
distributions, each robot can use the information obtained from its neighbors to calculate GKLDi, as an
indicator of the possible presence of a fault of robot i, as shown in Equation (29).

GKLDi =KLD(Xi
k/k−1||X

i
k/k)

=
1
2
[trace(Pi

k/k
−1

Pi
k/k−1) + log(det(

Pi
k/k

Pi
k/k−1

))−M

+(Xi
k/k − Xi

k/k−1)
T Pi

k/k
−1

(Xi
k/k − Xi

k/k−1)]

(29)
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With the threshold optimization algorithm mentioned in Section 2, the problem of fault detection
in DCL is simplified to find the Sa which maximizes the value of δ(GKLDi) in Equation (30).

δ(GKLDi) = arg max
Sa

I(S, Sa) (30)

Here the state space of S consists of two values: s0 or s1, where s0 represents the absence of faulty
sensors and s1 represents the presence of faulty sensors.

And the threshold λ can be expressed as the function of GKLDi.

δ(GKLDi) =

{
s1 GKLDi≥λ

s0 GKLDi < λ
(31)

Here the threshold λ is obtained by Algorithm 1.
After fault detection, if a fault in a robot is detected, then the fault isolation procedure is applied

to identify the faulty robot. KL residuals are calculated to isolate the fault. The number of KL residuals
calculated depends on the number of inter-robot observations. For example, when robot j is observed
by robot i, the KL residual KLij is calculated as shown in Equation (32):

KLij =KLD(Xi
k/k−1||X

ij
k/k)

=
1
2
[trace(Pij

k/k
−1

Pi
k/k−1) + log(det(

Pij
k/k

Pi
k/k−1

))−M + (Xij
k/k − Xi

k/k−1))
T Pij

k/k
−1

(Xij
k/k − Xi

k/k−1)].
(32)

Here, Xij
k/k denotes the estimation calculated by robot i based on its observation of robot j.

Each KL residual is sensitive to some faults and insensitive to others. For example, the value of
KLij depends on the odometers of robots i and j and the observation of robot j as measured by robot i.

δ(KLij) = arg max
Sa

I(S, Sa)

=s1

(33)

If the value of KLij satisfies Equation (33), then there may be a fault in the odometer of robot j or i
or in robot i’s observation of robot j. The corresponding signal value is equal to 1. As an illustrative
example, the signature matrix of robot 1 is given in Table 1.

Since the authors of [16] utilized lidar and Kinect to capture the relative position of other robot,
the observation here may represent the sensor information from these two sensors.

Table 1. The signature matrix of robot 1 for DCL.

KL12 KL13

Odometer 1 1 1
Odometer 2 1 0
Odometer 3 0 1

Observation 1 0 0
Observation 2 1 0
Observation 3 0 1

However, it is difficult to isolate the faulty sensors with signature matrices described above.
To enable FDI in DCL, the signature matrices are simplified by combining the information on the
observation and the odometer sensor for each robot. Here, the grouped observation information
for each robot is sensitive to faults in both the observation and the odometer sensor of that robot.
The corresponding signal value will equal to 1 when either the observation or the odometer sensor is
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faulty. Thus, the signature matrices are modified as shown in Tables 2–4 for the case of a robot team
with three members.

Table 2. The simplified signature matrix of robot 1.

KL12 KL13

Robot 1 1 1
Robot 2 1 0
Robot 3 0 1

Table 3. The simplified signature matrix of robot 2.

KL12 KL23

Robot 1 1 0
Robot 2 1 1
Robot 3 0 1

Table 4. The simplified signature matrix of robot 3.

KL13 KL23

Robot 1 1 0
Robot 2 0 1
Robot 3 1 1

However, after this simplification, there is one fault type that cannot be isolated. If faults exist
in both sensors, then the signature matrices will both be equal to (1, 1), which is same with the case
that faults exist in both observations. Thus, no observation information will be accepted, even if these
sensors are free of faults.

To solve this problem, we add another set of KLD entries to the signature matrix based on the
measured divergence between the observations of the two robots being observed. Thus, the signature
matrices are modified to those shown in Tables 5–7. The proposed signature matrices can be used to
identify more fault types than is possible with the classic isolation algorithm.

KLik/ij =KLD(Xi/k
k ||X

i/j
k )

=
1
2
[trace(Pi/j

k

−1
Pi/k

k ) + log(det(
Pi/j

k

Pi/k
k

))−M + (Xi/j
k − Xi/k

k ))T Pi/j
k

−1
(Xi/j

k − Xi/k
k )]

(34)

Here, Xi/k
k denotes the observation of robot k as measured by robot i.

δ(KLik/ij) = arg max
Sa

I(S, Sa)

=s1

(35)

If the value of KLik/ij satisfies Equation (35), the corresponding signal value is equal to 1.

Table 5. The proposed signature matrix of robot 1.

KL12 KL13 KL12/13

Robot 1 1 1 0
Robot 2 1 0 1
Robot 3 0 1 1
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Table 6. The proposed signature matrix of robot 2.

KL12 KL23 KL12/23

Robot 1 1 0 1
Robot 2 1 1 0
Robot 3 0 1 1

Table 7. The proposed signature matrix of robot 3.

KL13 KL23 KL13/23

Robot 1 1 0 1
Robot 2 0 1 1
Robot 3 1 1 0

4. Results

To validate the FDI algorithm proposed in this paper, four simulations are performed.
The simulations reported in this paper were conducted in MATLAB. The background for the
simulations was based on a real scenario in which a team of robots were moved forward in a certain
formation while maneuvering to avoid an obstacle ahead. To maintain the formation of the team,
one robot adjusted its orientation, as shown in Figure 5.

The localization results obtained for the robot team using the SCIFCL algorithm and the SCIFCL
algorithm with FDI were tested in four simulations. In the first two simulations, only additive
white Gaussian noise was considered, and the distance between neighboring robots was varied from
2 m to 1 m. The velocity of each robot was approximately 0.3 m/s. The additive white Gaussian noise
added to the motion measurements introduced standard errors of 0.1 m/s in velocity and 0.005 rad/s in
yaw rate. The absolute positioning measurement period was set to 1 s. The standard errors in relative
positioning were set to 0.1 m in relative position and 0.005 rad in relative orientation. Time delay was
not considered in these simulations.

The simulations consisted of two primary stages. In the first stage, one robot was randomly
chosen as the leader, and each of the other robots used its relative measurements of the leader robot
until its own state estimation converged. Then, in the second stage, the SCIFCL algorithm and the
SCIFCL algorithm with FDI were executed simultaneously, and the robot localization errors associated
with these two algorithms were recorded.

In simulation 1, the number of robots in the robot team was set to 3. The communication graph
for the robot team is shown in Figure 6. The results of simulation 1 are shown in Figure 7, where each
subfigure presents the localization errors of one team member with different localization methods.
Here, the vertical axis represents the position error, and the horizontal axis represents the time step.
The localization errors of the different methods are represented by lines of different colors. The blue
line denotes the robot localization error achieved with the SCIFCL algorithm, and the red line denotes
the robot localization error achieved with the SCIFCL algorithm with FDI.
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Figure 5. Simulation scenario: a team of three robots.

Figure 6. Communication graph for 3 robots.
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Figure 7. Position errors of 3 robots under additive white Gaussian noise.

In simulation 2, the number of robots in the robot team was set to be 9. Since at least two neighbor
observations are needed for each robot to apply the SCIFCL algorithm with FDI, the communication
graph for the robot team was defined as shown in Figure 8, with each robot using only the information
obtained by observing the two nearest robots.

Figure 8. Communication graph for 9 robots.
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The results of simulation 2 are shown in Figure 9, where each subfigure presents the localization
errors for one team member as obtained using different localization methods.
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Figure 9. Position errors of 9 robots under additive white Gaussian noise.

The SCIFCL results will be improved if some team members achieve better positioning accuracy.
However, the localization results achieved by robots with better accuracy will be “contaminated” by
the robots with less position accuracy. This is mainly because the SCIFCL procedure does not consider
the accuracy of the observations being fused. We divide the team members into two groups based
on their localization accuracy, where the accuracy of the first group of robots is better than that of
the second group. Updating the localization result for a robot in either the first or the second group
with the observation from the first group of robots will improve the accuracy of its localization result.
However, updating the localization result for a robot in either the first or the second group with an
observation from the second group of robots will decrease the accuracy of the result being updated.

Since the SCIFCL algorithm is applied to all observations from neighboring robots, some observations
from robots in the second group will be utilized to adjust the states of robots in the first group.
Consequently, the localization results for robots in the first group will be “contaminated” by robots
in the second group. However, with the FDI algorithm, it is possible to select the robots that belong to the
second group and isolate them. If the observations from robots in the second group are excluded from the
measurement update, then the accuracy achieved for the entire robot team will be enhanced.
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In simulations 3 and 4, impulse noise was added in addition to additive white Gaussian noise.
In simulation 3, the number of robots in the team was three, while in simulation 4, the number of team
members was 9. The results of these two simulations are shown in Figures 10 and 11, respectively.
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Figure 10. Position errors of 3 robots under additive white Gaussian noise and impulse noise.
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Figure 11. Position errors of 9 robots under additive white Gaussian noise and impulse noise.

As in the case of simulation 1, the localization errors achieved using different methods are
represented by lines of different colors. The blue lines denote the localization errors of the SCIFCL
method, and the red lines denote the localization errors of the SCIFCL method with FDI.

As shown in Figures 10 and 11, the phenomenon of “contamination” is more evident when
impulse noise is present. The SCIFCL results for the robot team diverge, while for the SCIFCL
algorithm with FDI, the localization results for other robots in the robot team are not affected by robots
that experience extreme localization failure.

The results of these four simulations demonstrate that the SCIFCL algorithm with FDI exhibits
better localization performance than that of the SCIFCL algorithm alone.
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5. Discussion

In this paper, an FDI algorithm is applied in DCL for a multirobot system. In the proposed algorithm,
the signature matrix used in the original FDI algorithm is modified to enable the application of FDI in
DCL, in which each robot communicates only with its neighbors. In the proposed algorithm, certain fault
types in the signature matrix are combined, and a new KL residual is added. With this modified signature
matrix, fault isolation can be achieved in DCL. Simulations have been conducted to test the proposed
FDI algorithm for DCL. The experimental results demonstrate that the proposed DCL algorithm with
FDI achieves better accuracy and robustness than the DCL algorithm without FDI does.

The purpose of the algorithm introduced in this paper is to serve as an augmentation approach to
compensate for poor odometric measurements and noisy and distorted measurements from other sensors.
The proposed localization method may become a valuable tool for the application of FDI in DCL.

Possible further studies are concluded below:

1. We plan to test the performance of the proposed method in a real experiment.
2. Our algorithm is designed to be an augmentation system to some localization algorithm.

A localization algorithm with map for example AMCL and SCIFCL with FDI would be part of
our further work.

3. In our plan, the communication graph may change but the signature matrices will not change for
the algorithm FDI runs in each robot only need two nearest neighbor information. The further
discussion is needed about this issue.

4. When every robot loses theirs position at the same time a re-location algorithm with sensors like
GPS or anchor node will be needed.
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