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The mechanisms of epigenetic gene regulation—histone modifications, chromatin
remodeling, DNA methylation, and noncoding RNA—use metabolites as enzymatic
cofactors and substrates in reactions that allow chromatin formation, nucleotide
biogenesis, transcription, RNA processing, and translation. Gene expression responds
to demands from cellular processes that use specific metabolites and alters or maintains
cellular metabolic status. However, the roles of metabolites—particularly nucleotides—as
regulatory molecules in epigenetic regulation and biological processes remain largely
unknown. Here we review the crosstalk between gene expression, nucleotide
metabolism, and cellular processes, and explore the role of metabolism in epigenetics
as a critical regulator of biological events.

Keywords: nucleotide metabolism, chromatin modifiers, DNA damage, metabolism, histone modifications, NAD,
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INTRODUCTION

One-carbon metabolism governs cellular nutritional status by sensing input metabolites and
generating and redistributing output metabolites (1, 2). The input metabolites of one-carbon
metabolism are usually serine and glycine reacting in the folate cycle; output metabolites include S-
adenosyl-L-methionine (SAMe), glutathione, nucleotides, and polyamines. This one-carbon
metabolic network generates energy and coordinates intracellular redox status. One-carbon
metabolism has been targeted in cancer therapy (1, 3), for example by using pyrimidine
analogues such as fluorouracil, which inhibits thymidylate synthase in the folate metabolic
pathway (3). Outputs of one-carbon metabolism play key roles in post-translational modification
of histones, DNA methylation, chromatin remodeling, and RNA biogenesis including tRNA
modifications (2, 4).

Chromatin modifications regulate transcription and gene expression to modify or maintain the
cellular status. Metabolites are essential cofactors and substrates in the epigenetic marking of
histones including those in nucleosomes. For example, histone/lysine acetyltransferases use acetyl-
CoA to catalyze the addition of an acetyl group to an epsilon amino group of a lysine sidechain in
the N-terminal “tail” domains of histones (5). Lysine acylation reactions also include
propionylation, butyrylation, crotonylation, b-hydroxybutyrylation, succinylation, malonylation,
and glutarylation (6). These different acylation reactions use different short-chain acyl
intermediates, suggesting that the type of acylation is determined by the cell metabolic status.
Histone deacetylases (HDACs) catalyze the hydrolysis of an N-e-acetyl-L-lysine sidechain to
generate acetate and L-lysine (7). Class I and II HDACs catalyze this hydrolysis in a Zn+-
dependent manner; Class III HDACs (sirtuins) use the oxidized form of nicotinamide adenine
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dinucleotide, NAD+, as a co-substrate and transfer the acetyl
group onto adenosine diphosphate ribose (ADPR) to form a 2’-O-
acetyl-ADPR (8, 9). Therefore, sirtuins may be sensitive to cellular
NAD/energy levels in their regulation of transcription.Methylation
of histones and DNA requires SAMe (which is synthesized from
ATP and methionine by methionine adenosyltransferase) as a
cofactor. Histone demethylations are catalyzed by two major
classes of lysine demethylases: lysine-specific histone
demethylases (LSDs) and JmjC-domain-containing histone
demethylases (JMJCs) (2). LSDs require flavin adenine
dinucleotide (FAD), a redox-active coenzyme that is synthesized
denovo fromriboflavin (vitaminB2) (10).Demethylationby JMJCs
requires Fe(II), consumes a-ketoglutaric acid/2-oxoglutaric acid
andO2, and produces succinate, CO2, and formaldehyde (11); these
demethylation reactions are directly involved in redox reactions.
These reversible histone modifications enable crosstalk of
metabolism with epigenetic regulation via coordination of
nucleosome modifiers (12).

Nucleosome modifiers may sense cellular status by using
metabolites in reactions that regulate gene expression. For
example, acetylation and methylation can occur on the same
lysine substrate, such as in histone H3 lysine 9 (H3K9)
methylation and acetylation in mammals. H3K9 methylation is
seen in silenced chromatin; however, H3K9 acetylation is a mark
for transcription activity. Notably, a nontranscriptional function
of histone methylation plays an important role in mediating gene
expression and metabolism in Saccharomyces cerevisiae. Excess
methyl group formed by abolishing phospholipid methylation is
stored in core histones, leading to increased H3K36, K79, and K4
methylation (13). This feature of histones as methyl sinks adjusts
the intracellular levels of toxic sulfides and reactive oxygen species
(ROS) which are regulated in transsulfuration and sulfur amino
acid catabolism (13). Metabolic enzymes not only catalyze
metabolite generation, but also participate in chromatin
modification. For example, in S. cerevisiae, Pyk1, a homolog of
human pyruvate kinase M2 (PKM2), is a component of the serine-
responsive SAM-containing metabolic enzyme (SESAME)
complex, which contains serine metabolic enzymes (Ser33, Ser3,
and Shm2), SAMe synthetases (Sam1 and Sam2), and an acetyl-
CoA synthase (Acs2) (14). Pyk1 in SESAME phosphorylates
H3T11 by utilizing phosphoenolpyruvate as the phosphate
donor instead of ATP (14). The interaction of SESAME with the
Set1 H3K4 methyltransferase complex enables crosstalk between
H3K4 methylation and H3T11 phosphorylation in response to
glycolysis and glucose-dependent serine metabolism (14).
Remarkably, loss of phosphorylation on H3T11 extends the
chronological lifespan of S. cerevisiae (15). Thus, histone and
chromatin modifications use metabolites to regulate gene
expression and cellular metabolism.

An important production of one-carbon metabolism is
nucleotide biosynthesis. Nucleotides are fundamental
components of nucleosomes and RNA transcripts. However, it
remains unclear how nucleotide/nucleoside metabolism
influences chromatin modifications and epigenetics. Therefore,
in this review we focus our discussion on nucleotide metabolism
in epigenetic regulation and biological processes.
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CHROMATIN MODIFIERS AND
NUCLEOTIDE BIOSYNTHESIS

Transcription is a mechanism to regulate metabolism and is
regulated by chromatin modifiers. Chromatin modifiers often
form protein complexes that modify chromatin structure and/or
place epigenetic marks. ATP-dependent chromatin remodeling by
the Switch/sucrose non-fermentable (SWI/SNF) family plays
important function in gene activation and displaces acetylated
histones (12). BAF60a, a subunit of SWI/SNF promotes
chromatin accessibility at PPARg and EBF2 transcription factor
binding sites on thermogenic genes in brown and beige
adipogenesis and thermogenesis (16). However, adipocyte-
specific BAF60a knockout mice show more pronounced cold-
induced browning of inguinal white adipose tissue induced by
MC2R, a receptor for the adrenocorticotropic hormone (16). Thus,
unexplored roles of SWI/SNF in energy generation is
under consideration.

Some chromatin modifiers contain nucleotide metabolic
enzymes. In Drosophila and mammals, the nucleotide
biosynthetic enzyme guanosine 5’-monophosphate synthase
(GMPS) forms a heteromeric complex with ubiquitin protease 7
(USP7) (17, 18). This complex is recruited to polycomb response
elements and promotes polycomb silencing of homeotic genes
through methylation of histone H3K27 (17). The suggested
mechanism is that USP7-GMPS removes ubiquitin from
ubiquitylated H2B which is associated with active chromatin. In
mammalian cells,GMPSpromotes p53 stabilization in the presence
of etoposide, which inducesDNAdamage (19). GMPS is critical for
expression of the p53 target genes p21 and bax, and for p53-
dependent transcriptional suppression of cdc6 and mcm6
following etoposide treatment (19). GMPS also promotes de novo
synthesis of guanine (20) (Figure 1). GMPS is highly expressed in
ovary cancer tissue, in which p21 expression is reduced (22). A
remaining question is whether recruitment of GMPS to the
polycomb complex suppresses GMPS nucleoside synthase
activity. Interestingly, the polycomb group gene super sex
combs (sxc) encodes O-linked N-acetylglucosamine (GlcNAc)
transferase (Ogt) in Drosophila (23). Ogt modifies serine and
threonine residues of target proteins by adding a single
N-acetylglucosamine in an O-glycosidic linkage (Figure 2). Lack
of sxc/Ogt results in failure to maintain polycomb transcriptional
repression. O-GlcNAcylation of polycomb complex subunits is
necessary for proper targeting of Hox repression in human (25),
the role of the polycomb complex in glycosylation is unknown
(Figure 2). Monitoring the expression of polycomb target genes
upon adding supplemental UDP to sxc/Ogt-null mutants may help
address the question of whether polycomb suppresses its target
genes by suppressing glycosylation orwhether UDP is required as a
cofactor for the repression of polycomb target genes.
NUCLEOTIDES AND DNA DAMAGE

Nucleotide metabolic enzymes also have been found to directly
modi fy nuc leosomes . The interac t ion of SAICAR
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(phosphoribosylaminoimidazolesuccinocarboxamide) with PKM2
facilitates PKM2 activity and the phosphorylation and activation of
Erk1/2, which is necessary for mitogen-induced cell proliferation in
Hela cells (26, 27). SAICAR is an intermediate of de novo purine
synthesis (Figure 1). SAICAR also stimulates histone H3T11
phosphorylation in vitro (27). Promotion of cell proliferation by
SAICAR-PKM2 presumably involves cell cycle control and DNA
replication because DNA replication is coordinated with nucleotide
Frontiers in Endocrinology | www.frontiersin.org 3
synthesis. Deoxynucleotide triphosphates (dNTPs) used in DNA
replication are obtained from corresponding ribonucleotides
through reduction reactions catalyzed by ribonucleotide
reductase (RNR) (28). Imbalances in the dNTP pool increase
mutation rates and replication anomalies; therefore, RNR activity
and dNTP pool sizes are strictly regulated (29). At low ROS levels
in mammalian cells, increased oligomerization of peroxiredoxin 2
(PRDX2) results in formation of a replisome-associated complex
with the replication fork accelerator TIMELESS, which associates
with chromatin (30). However, at high ROS levels induced by
hydroxyurea inhibition of RNR, a smaller PRDX2 oligomer
displaces TIMELESS from replisomes, resulting in attenuation of
DNA replication (30). It remains unknown whether elevated ROS
from different sources select different nucleotide synthetic
pathways, and whether the pathways that generate ROS
attenuate DNA replication.

Methylthioadenosine phosphorylase (MTAP) is required for
the salvage of adenine and methionine (31) (Figure 1). Deletion
of MTAP is frequently found in human tumors, including 53% of
glioblastomas and 26% of pancreatic cancers (32). MTAP-
deleted cancer cells accumulate methylthioadenosine (MTA),
which inhibits the methyltransferase activity of protein
arginine methyltransferase 5 (PRMT5) (32). The viability of
MTAP-deleted cancer cells is diminished by depletion of
PRMT5 (32), suggesting that lowed SAMe levels influence
cancer cell viability, as PRMT5 is required for maintenance of
cellular SAMe levels (33). It has been proposed that depletion of
PRMT5 may be useful for cancer therapy (32); however, it is
cautioned that PRMT5-dependent SAMe is required for proper
FIGURE 1 | Enzymes and a synthase relaying on purine metabolism modify nucleosomes. The association of GMPS with USP7 removes monoubiquitylation of
histone H2B. The association of SAICAR with PKM2 facilitates H3T11 phosphorylation. MTAP suppresses PRMT5, which methylates H3 arginine (R) 8 and H4R3.
AMP, adenosine monophosphate; MTA, 5’-methylthioadenosine; PRPP, 5-phosphoribosyl-1-pyrophosphate; AICAR, 5-amino-1-[3,4-dihydroxy-5-(hydroxymethyl)
oxolan-2-yl]imidazole-4-carboxamide; FAICAR, 5-formamidoimidazole-4-carboxamide ribotide; IMP, inosine monophosphate; XMP, xanthosine monophosphate;
GMP, guanosine monophosphate; IMPDH, inosine monophosphate dehydrogenase; GMPS, guanine monophosphate synthase. Figure adapted from (21).
FIGURE 2 | O-linked-N-acetylglucosaminylation. O-linked-N-
acetylglucosaminylation (O-GlcNAcylation) occurs when O-GlcNAc is added
to serine or threonine residues of nuclear or cytoplasmic proteins by O-
GlcNAc transferase (OGT) (24). This reaction is reversible as O-GlcNAc can
be removed by O-GlcNAcase (OGA). Linkage of GlcNac to histones and
polycomb subunits affects gene expression. ?, unknown.
August 2021 | Volume 12 | Article 731648
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mRNA splicing (33). It also remains unknown whether tumor
suppressor genes, which may induce MTAP, are critically
regulated by methyltransferase activity of PRMT5 in healthy
cells. Inhibition of methionine adenosyltransferase 2A
(MAT2A), which catalyzes the production of SAMe from ATP,
reduces SAMe levels and inhibits the proliferation of MTAP-
deleted HCT116 cells (34). However, MAT2A inhibition using
AGI-24512 induces greater DNA damage in MTAP-deleted
HCT116 cells than in wild type HCT116 cells (34). Another
MAT2A inhibitor, AG-270, may be a stronger drug candidate
than AGI-24512 as AG-270 reduces proliferation and DNA
damage repair in MTAP-deleted cells (34). These observations
suggest that loss of adenosine induces DNA damage in MTAP-
deleted cells; however, no measurements of adenosine levels in
MTAP-deleted cancer cells and HCT116 cells were performed.
Such measurements of metabolites including nucleotides which
require MTAP are needed to be understand the results of these
preclinical studies of MAT2A inhibitors.
NICOTINAMIDE ADENINE DINUCLEOTIDE

A metabolic cofactor consisting of nucleosides plays roles in
redox reactions and in enzymatic reactions as a substrate.
Nicotinamide adenine dinucleotide (NAD) is a central
metabolic coenzyme due to its involvement in redox reactions.
NAD consists of two nucleosides connected by a pyrophosphate.
NAD exists in oxidized (NAD+) and reduced (NADH) forms. In
mammalian cells, NAD+ is used by class III HDACs, including
SIRT1 and SIRT2 (35). In yeast, Sir2 is homologous to human
SIRT1 and functions in transcriptional silencing at the silent
mating type loci HML and HMR and at telomeres as part of the
SIR complex, which consists of Sir2, Sir3, and Sir4 (36). Sir2
deacetylates histones in an NAD+-dependent reaction. The
deacetylation activity of Sir2 and other sirtuins is inhibited by
nicotinamide, which inhibits silencing at the telomeres, mating
type loci, and rDNA (37, 38). Mammalian SIRT1 and SIRT6
transcriptionally drive the circadian rhythm in distinct manners
(39). Whereas SIRT1 establishes a repressive chromatin state by
contributing to H3K9me2 and H3K27me3 at circadian clock-
controlled genes by deacetylation of histone H3K9, BMAL1, and
PER2 (40), SIRT6 regulates recruitment of another circadian
activator, sterol regulatory element binding transcription factor 1
(SREBF1/SREBP1), to the promoter of the circadian clock-
controlled gene Fasn (39). Removal of SIRT6 disrupts hepatic
lipid metabolism and circadian rhythm (39). SIRT6 also
regulates lysine fatty acylation, which removes long-chain fatty
acyl group, such as myristoyl, from proteins (41). It is unknown
whether circadian clock regulators are controlled by fatty
acylation. Since fatty acid beta-oxidation is used to synthesize
acetyl-CoA, circadian clock-controlled genes may sense NAD+

(redox carrier) levels or redox status via SIRT1 recruitment and
connects to fatty acid metabolism via SIRT6 recruitment to
control acetyl-CoA-levels. Aging involves greater risk of
circadian rhythm disruption due to alteration of transcriptional
regulation of clock-controlled genes (42). In a comparison of
young (10 month) and old (22 month) mice, the addition of 3.2
Frontiers in Endocrinology | www.frontiersin.org 4
g/L of the NAD+ precursor nicotinamide riboside reprogrammed
and improved age-dependent disruption of circadian clock-
controlled transcription in the liver, as monitored by BMAL1
ChIP sequencing (42).
ADP-RIBOSYLATION

NAD also plays roles in the transfer reaction of adenosine
diphosphate (ADP). In ADP-ribosylation, one or more ADP-
riboses from NAD+ are transferred to a protein by mono
(ADP-ribose) or poly(ADP-ribose) polymerases (PARPs). Poly
ADP-ribosylation (PARylation) regulates a variety of cellular
processes including chromatin decondensation, transcription,
DNA damage response, and mitosis (43). PARP1 binds the DNA
damage site and recruits DNA repair molecules through PARylation
(44). Inhibitors of PARP and poly(ADP-ribose) glycohydrolase
(PARG) are used in cancer therapy (43). Interestingly, progestin
promotes PARP1-mediated PAR generation, and PAR and its
degradation to ADP-ribose (ADPR) are essential for increases in
nuclear ATP levels in response to progestin in human breast cancer
cells (45). Upon progestin treatment, ATP diffuses from
mitochondria into the nucleus for around 10 minutes; meanwhile,
enough NAD+ accumulates for the PAR synthesis reaction that
occurs 10 minutes after supplying progestin. ADP-ribose from PAR
degradation is used by ADP-sugar pyrophosphate nudix hydrolase 5
(NUDIX5), which synthesizes and maintains nuclear ATP used in
chromatin remodeling to maintain progestin-responsive
transcription (45). PARG also regulates chromatin remodeling of
genes that respond to retinoic acid (46). Gene expression in
response to nuclear hormones may use ATP and PAR to
transiently obtain large amounts of energy.
NUCLEOSIDES AND RNA EDITING

To escape from genome instability, damaged nucleotides are
fixed by DNA repair pathways. Nucleosides in RNA are also
edited. The editing of adenosine to inosine (A-to-I) in transcripts
is catalyzed by adenosine deaminases (ADAs) (Figure 1) (47).
This process frequently occurs at introns and 3’ untranslated
regions (3’ UTRs). A greater frequency of A-to-I editing is found
in micro RNA (miRNA) binding sites of target genes in tumor
cells than in normal cells (47). The frequency of A-to-I editing by
ADAs within miRNA is also greater in tumor cells than in
normal cells (47). A single nucleotide polymorphism in the 3’
UTR of MDM4, which enables the binding of miR-191, leads to
attenuation of tumor progression (48). However, pleural effusion
ADA levels are significantly higher in malignant pleural
mesothelioma patients than in healthy doners (49). Hence,
changed expression of ADAs and miRNAs may be the
consequences of tumorgenesis. Adenosine and inosine are
products of de novo purine synthesis; inosine is also an
intermediate of the purine salvage pathway (Figure 1).
Alteration of A-to-I editing frequency may result from an
imbalance in purine metabolism. ADA may adjust nucleoside
pools by controlling inosine and miRNA. Measuring levels of
August 2021 | Volume 12 | Article 731648
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other deaminases such as AMP deaminase and guanosine
deaminase in addition to ADA levels may reveal that
the nucleotide metabolic pathway is directly downstream of the
tumor target. These measurements may also indicate the
sensitivity of miRNA synthesis to each nucleotide. The 3’ UTR
contains a poly(A) tail; a study showing how purine metabolism
influences the poly(A) tail is also needed. The 5’ cap in mRNA
consists of N7-methylguanine (N7meG), which connects to the
first mRNA nucleotide and prevents mRNA degradation (50, 51).
Since methylation of N7G requires SAMe, RNA processing may be
affected by SAMe metabolism. Additional studies are needed to
link pyrimidine metabolism to RNA synthesis.
DISCUSSION

Chromatin consumes metabolites. Examining the connections
between metabolism, cellular events, epigenetic marks, and
Frontiers in Endocrinology | www.frontiersin.org 5
transcription will further reveal how epigenetics mirrors
cellular metabolism. Monitoring chromatin status in the
condition where the status of nucleotide biogenesis is modified
will increase our understanding of the roles of epigenetics in one-
carbon metabolism. The molecular linkages between chromatin
modifiers and different nucleotides need further study.
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