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ABSTRACT
Background:African swine fever (ASF) is one of the deadliest swine diseases with haemorrhagic symptoms and a high mortality
rate. Plant-derived additives are potential antiviral agents against viruses due to their environmental and user-friendly properties.
Objectives: This study aims to evaluate the efficacy of plant-based additives (Phyto.A04 and Phyto.B) compared to an organic
acid blend (OAB) in inactivating ASF virus (ASFV) in cell culture and feed.
Methods:ASFV-spiked feedwas treatedwith individual or combined additives such asOAB, Phyto.A04 and Phyto.B. The viability
of ASFV after treatment of ASFV-spiked feed with additives was then confirmed by both methods, real-time PCR and cell culture.
Results: The results of the in vitro test with cell cultures showed that all three additives (OAB, Phyto.A04 and Phyto.B) exerted
a strong virucidal effect on ASFV in porcine alveolar macrophage cells. OAB at a concentration of 0.3% reduced the virus
concentration from 4.48 log10 HAD50/mL after 1 day of treatment (day 1) to 3.29 log10 HAD50/mL after 3 days of treatment (day
3) and remained undetected after 7 days of treatment (day 7). In Phyto.A04 with 1%, the virus was only detectable on day 1
(3.53 log10 HAD50/mL). Phyto.B with 0.01% and 0.05% both showed good efficacy in completely inhibiting virus presence on
days 3 and 7.
Conclusions:All additives, OAB, Phyto.A04 and Phyto.B, were able to inactivate ASFV in a dose-dependentmanner, as confirmed
by cell culture and PCR methods. The combination of additives at different concentrations consistently improved the virucidal
results.

1 Introduction

African swine fever (ASF) is a highly contagious and fatal swine
disease that causes severe haemorrhagic symptoms and is a
major concern for livestock worldwide. The disease continues to
be endemic in sub-Saharan Africa and other countries in Asia,

including China, Vietnam, Thailand, Korea, Laos and Cambodia
(Ge et al. 2018; Kim et al. 2020; Le et al. 2019; Mai et al. 2021;
Matsumoto et al. 2020). The African swine fever virus (ASFV), a
double-stranded DNA virus with a genome length of 170–193 kbp,
is the causative agent of the disease (Dixon et al. 2013). The
virus is classified into 24 genotypes and over eight serogroups
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based on the B646L gene (p72 protein) and EP402R gene
(CD2v protein), respectively (Gallardo et al. 2009; Sanna et al.
2017).

In Vietnam, the first outbreak of ASF was reported in 2019 in
Hung Yen province (Le et al. 2019). After 5 months of spreading,
the Vietnamese government announced that 6 million pigs had
been culled, and ASF was officially reported in every province
(Mai et al. 2021). Non-commercial pig farms, such as households
and backyards, hold a large proportion of Vietnamese pig pro-
ducers. These farms are usually susceptible to swine diseases
due to poor disease management, lack of veterinary knowledge,
low biosecurity methods, swill feeding and so on. In Vietnam,
both commercial and non-commercial pig farms use high-grade
feed as a required standard to avoid contamination. However,
feed ingredients are considered a risk factor for introducing and
transmitting swine viral diseases (Niederwerder and Hesse 2018).
Previous studies have shown that ASFV can survive on glass,
rubber and metal for more than 7 days at 25◦C, 3–5 days at 33◦C,
1–2 days at 42◦C and years in freeze conditions depending on
different types of organs (Arzumanyan et al. 2021; Nuanualsuwan
et al. 2022). This suggests concern about the contamination of
pig feed as the average temperature of Vietnam is 25–33◦C in
the summer and below 20◦C in the winter, depending on the
different areas of Vietnam. The transmissibility of ASFV was
considered possible through feed (Niederwerder et al. 2019).
ASFV can infect pigs through contaminated natural plant-based
feed, and the viability of the virus in the feed depends on the
amount of virus present and the volume of feed consumed
(Niederwerder et al. 2019). In Romania, for example, ASFV
outbreaks on family farms betweenMay and September 2019were
believed to have been caused by plant-based feeds transported
from epidemic areas (Boklund et al. 2020). Another example
comes from Latvia, where the outbreaks of ASF in pigs in 2014
were attributed to the use of ASF-contaminated grass and crops
(Ol,ševskis et al. 2016). In Estonia, ASF outbreaks in commercial
pigs in 2015 and 2017 were thought to have originated fromASFV-
contaminated grain (Nurmoja et al. 2020). The use of dried blood
contaminated with ASFV as a feed additive was also believed to
be the cause of ASFV transmission in China (Wen et al. 2019;
Zhai et al. 2019).

Therefore, mitigating the risk of ASF associated with feed prod-
ucts is a priority for affected and non-affected countries. Poultry,
cattle and swine feed are commonly treated with chemical
additives to minimise bacterial and viral pathogens such as
porcine epidemic diarrhoea virus (PEDV), Salmonella enterica,
avian influenza virus, porcine delta coronavirus and Escherichia
coli (Amado et al. 2013; Cottingim et al. 2017; Toro, van Santen,
and Breedlove 2016; Trudeau et al. 2016). Recent studies have also
focused on feed treatment with chemical compounds to reduce
the risk of food contamination with ASFV (Jackman et al. 2020;
Niederwerder et al. 2021). However, chemical treatment usually
causes environmental issues and is banned in other regions,
such as the European Union [Regulation (EU) 2018/183] and
Vietnam (Regulation QĐ 867/1998). Plant-based additives have
been used as alternatives for their environmentally friendly origin
and safety. This study aims to evaluate the efficacy of plant-
based additives (Phyto.A04 and Phyto.B) compared to an organic
acid blend (OAB) in inactivating ASFV in cell culture and feed
ingredients.

2 Materials andMethods

2.1 Cells, Viruses, Feed Ingredients and
Additives

Primary porcine alveolar macrophages (PAMs) used for the study
were collected from the lungs of healthy pigs that were 8–10
weeks old, and the absence of Porcine circovirus type 2 (PCV2),
Classical swine fever (CSF), Porcine reproductive and respiratory
syndrome (PRRS), and ASF viruses was confirmed by real-time
PCR (Median Diagnostics Inc., http://www.mediandiagnostics.
com). This study was conducted in the biosafety facility of the
Faculty of Veterinary Medicine, Vietnam National University
of Agriculture (VNUA), Hanoi, Vietnam. All virus experiments
were conducted in accordance with good experimental practice
guidelines. In addition, the animal experiments were approved
by the Committee on Animal Research and Ethics of the Faculty
of Veterinary Medicine of VNUA with approval number CARE
−2021/10 and an approval date of 4December 2021. The PAMcells
were cultured in amedium that included RPMI 1640 (Gibco), 10%
foetal bovine serum (FBS), and 1% antibiotic. For cell culture, the
cells were seeded onto tissue culture plastic plates at a density
of approximately 4×105 cells/cm2. Dead cells were removed by
washing after 24 h, and the cells were then cultured at 37◦C
with 5% CO2. The virus strain VNUA/HY/ASF1/Vietnam/2019,
the causative strain belonging to p72 genotype II, was used for the
study and originated from infected pigs during the first outbreak
of ASF in Vietnam (Le et al. 2019). Commercial industrial pig feed
(without antibiotics and formaldehyde), which contained cereal
flour, meat, bone meal and minerals, was purchased from the
American Feeds Company (http://goldcoin.com.vn/en). The feed
was screened using real-time PCR to ensure an ASFV-negative
status before use.

The additives used in this study, including OAB (powder form),
Phyto.A04 (liquid form) and Phyto.B (powder form), were kindly
provided by Dr. Eckel Animal Nutrition GmbH& Co. KG. OAB is
amixture of formic acid, lactic acid, calcium formate and calcium
lactate as well as citric acid in a ratio of 8.2:1:1.7:11.9:2.5 and a
pH value of 2. Phyto.A04 is a preparation of bioactive substances
with hops. It contains a CO2 extract from the flowers ofHumulus
lupulus, which contains hop-soft resin in a total concentration of
0.1% at a pH of 11. Phyto.B (pH= 5.04) is a preparation of bioactive
substances containing anhydrous licorice extract (Glycyrrhiza
glabra) from aqueous extraction.

2.2 Detection of ASFV Genome

The genomic DNA of ASFV in the PAM cell culture and ASFV-
spiked feeds were extracted using Qiagen DNeasy Blood & Tissue
Kit (Qiagen). The presence of viral DNA was identified by a
commercialised real-time PCR VDx ASFV qPCR Ver 2.1 (Cat. No.
NS-ASF-31) kit targeting the p72 gene (Median Diagnostics Inc.,
http://www.mediandiagnostics.com).

2.3 In Vitro Test of Plant-Based Additives
Against ASFV in Cell Culture and Feed Ingredients

100 g of feed was prepared in each Ziploc bag and used for the
study. All experiments were designed as described in Table 1. In
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TABLE 1 Experiment design for in vitro test of plant-based additives against ASFV (108HAD50) in cell culture and feed.

Code Name Mixture

P1 Positive control 100 g feed + ASFV
N1 Negative control 100 g feed solely
C1 Control 1 100 g feed + 0.3% OAB + 1% Phyto.A04 + 0.05% Phyto.B
C2 Control 2 0.3% OAB + 1% Phyto.A04 + 0.05% Phyto.B + ASFV
T1 Treatment A 100 g feed + 0.3% OAB + ASFV
T2 Treatment B 100 g feed + 1% Phyto.A04 + ASFV
T3 Treatment C 100 g feed + 0.01% Phyto.B + ASFV
T4 Treatment C 100 g feed + 0.05% Phyto.B + ASFV
T5 Treatment A + B 100 g feed + 0.3% OAB + 1% Phyto.A04 + ASFV
T6 Treatment A + C 100 g feed + 0.3% OAB + 0.05% Phyto.B + ASFV
T7 Treatment B + C 100 g feed + 1% Phyto.A04 + 0.05% Phyto.B + ASFV
T8 Treatment B + C 100 g feed + 1% Phyto.A04 + 0.01% Phyto.B + ASFV
T9 Treatment A + B + C 100 g feed + 0.3% OAB + 1% Phyto.A04 + 0.01% Phyto.B + ASFV
T10 Treatment A + B + C 100 g feed + 0.3% OAB + 1% Phyto.A04 + 0.05% Phyto.B + ASFV

Note: 0.3% OAB corresponds to 0.3 g; 1% Phyto.A04 corresponds to 1 mL; 0.05% Phyto.B corresponds to 0.05 g; and 0.01% Phyto.B corresponds to 0.01 g.

FIGURE 1 Results of ASFV detection after treatment of ASFV-spiked feed with additives after 1 (D1), 3 (D3), and 7 (D7) days using real-time PCR
(Median Diagnostics Inc., http://www.mediandiagnostics.com). Ct value ≥40: negative; Ct value <40: positive.

detail, for virus contamination of the feed, after the addition of
additive products into the appropriate feed bags, 10 mL of ASFV
(VNUA/HY-ASF1/Vietnam/2019) solution (107 HAD50/mL) was
added into each bag, followed by shaking for 10 minutes to
mix well. All bags were then incubated at room temperature
(approximately 25◦C). After incubating for 1, 3 and 7 days, 50 mL
of RPMI 1640 medium was added to each bag, mixed well, and
the supernatant was collected by centrifuging at 4000 rpm for
10 min. The resulting supernatants, referred to as ‘Treatment’,
were filtered using a 0.45 µm filter to remove impurities and
limit bacteria. Serial 10-fold dilutions of the Treatment (coded
as T1–T10 in Table 1 and Figures 1 and 2) were then prepared
in RPMI medium for virus titration on PAM cell cultures. Each

diluted Treatment was inoculated into triplicate wells of PAM cell
plates (100 µL per well). In parallel, ASFV-infected commercial
pig feed without additives (coded as P1), feed alone (coded as
N1), feed plus with additives (0.3% OAB + 1% Phyto.A04 + 0.05%
Phyto.B) without ASFV (coded as C1), ASFV-infected additives
0.3% OAB + 1% Phyto.A04 + 0.05% Phyto.B + ASFV without
feed (coded as C2), ASFV-infected and -uninfected PAM cells
were used as controls. Each experiment was repeated three times.
The cell culture plates were incubated for 2 h at 37◦C in a 5%
CO2 incubator. The Treatments were then replaced with 200 µL
of cell culture media containing RPMI 1640 (Gibco), 10% foetal
bovine serum (FBS) and 1% antibiotic. After 48 h of incubation,
20 µL of 1% porcine red blood cell in RPMI medium was added to
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FIGURE 2 Results of ASFV titration on PAM cells after treatment
of ASFV-spiked feed with additives after 1 (D1), 3 (D3), and 7 (D7) days.

each well of PAM cells. The formation of hemadsorption (HAD)
rosettes on ASFV-infected PAM cells was observed daily under
an inverted microscope for 5 days. The titer (log10 HAD50/mL) of
the recovered virus was calculated using the Reed–Muench study
(Reed and Muench 1938).

3 Results

3.1 Detection of ASFV in Feed Ingredients After
Additive Treatments Using Real-Time PCR

The antiviral activity of plant-based additives OAB, Phyto.A04
and Phyto.B against ASFV was determined in their single (T1–
T4) and combination (T5–T10) forms (Table 1). In this study,
the viability of ASFV after treatment of ASFV-spiked feed with
additives was confirmed by both methods, real-time PCR and
cell culture. The results of ASFV detection by a real-time PCR
(Median Diagnostics Inc., http://www.mediandiagnostics.com)
showed that single treatments, including T1, T2, T3 and T4, could
inhibit ASFV. Treatment T1 (0.3% OAB) produced the Ct value
of 29.70 on day 1, then increased to 33.82 on day 3 and was
negative on day 7. Treatment T2 showed a better result with
detecting the virus on day 1 and negative on days 3 and 7. Different
concentrations in Treatment T3 also produced similar results to
Treatment T2. A higher concentration of Treatment T4 was also
effective at reducing virus concentration (Figure 1).

In the dual combine groups, Treatments T5, T6, T7 and T8 only
had a viral presence on day 1 with the Ct values of 32.98, 34.81,
33.88 and 34.81, respectively, and then were negative for ASFV
at days 3 and 7. The effectiveness of virucidal additives was
even better with the triple combination. The Ct values of the
Treatments T9 and T10 were 36.79 and 36, respectively, on day 1
and then undetectable on days 3 and 7.

3.2 Detection of ASFV After Additive Treatments
by Cell Culture

In vitro trial results showed that all three additives (OAB,
Phyto.A04 and Phyto.B) expressed a strong virucidal effect on

ASFV in PAM cells. Treatment 1 with 0.3% concentration of OAB
reduced the viral concentration from 4.48 log10 HAD50/mL on
day 1 to 3.29 log10 HAD50/mL on day 3 and remained undetected
on day 7. In Treatment 2 with 1% Phyto.A04, the virus was only
detectable on day 1 (3.53 log10 HAD50/mL). Treatments T3 (0.01%
Phyto.B) and T4 (0.05% Phyto.B) both showed good effectiveness
at completely inhibiting viral presence at days 3 and 7. With
Treatments T2, T3 and T4, the presence of ASFV could not
be detected on days 3 and 7. The positive control with only
virus produced the highest log10 HAD50/mL value of 5.54 on
day 1, reduced to 4.56 log10 HAD50/mL on day 3 and 3.58 log10
HAD50/mL on day 7 (Figure 2).

Among the Treatments, Treatment 2 (1% Phyto.A04)was themost
effective additive in reducing virus concentration. In the double
combination groups, ASFVwas detected in Treatments T5, T6, T7
and T8 only on the first day with HAD50 values of 3.53, 3.0, 3.27
and 3.0, respectively, while no ASFV was detected on the third
and seventh day. The efficacy of the virucidal additives was even
better with the triple combination. In Treatments T9 and T10, the
virus was only detected on the first day with an HAD50 value of
2.43 and 2.66, respectively, and was then no longer detectable on
the third and seventh day.

Comparison between the single and combined treatments of
additives revealed that combining additives at different con-
centrations had better virucidal results. With all the combined
treatments (T5–T10), Treatment T9 expressed the lowest viral load
with 2.43 log10 HAD50/mL on day 1 and went undetected on days
3 and 7. The results of the cytotoxicity test showed that the feed
alone (coded as N1) and the feed plus with additives without
ASFV (coded as C1) were safe for PAM cells (data not shown).

4 Discussion

The ongoing ASF outbreak has had a major impact on swine
production globally. Therefore, biosecurity efforts to limit the
spread and transmission of ASFV are considered a top priority.
It has been recognised that feed and feed ingredients can act
as a vehicle for disease transmission and facilitate the spread of
ASF, contributing to the transboundary spread of diseases such
as ASF (Dee et al. 2018). According to a previous experimental
study, the ASFV Georgia 2007 strain could survive for more
than 30 days in transatlantic shipping conditions for 9 out
of 12 tested feed ingredients, including organic soybean meal,
conventional soybean meal, soy oilcake, pork sausage casings,
choline,moist cat food, dry dog food,moist dog food and complete
feed (Dee et al. 2018). Other ingredients, such as lysine, choline,
vitamin D and complete swine feed in meal form, have also
been shown to support wide-ranging pathogen stability (Stoian
et al. 2020). A previous report has shown that complete feeds do
not significantly reduce ASFV titers in ASFV-contaminated feeds
during the incubation period (Dee et al. 2018). Our study also
showed that complete feeds did not significantly reduce ASFV
titers in ASFV-contaminated feeds during the 7-day incubation
(P1 in Figures 1 and 2). Therefore, feed and feed ingredients are
considered vectors for transboundary viral diseases and are also
considered factors in transmitting ASF through the oral route.
To avoid further transmission and reduce economic losses for
owners, it is necessary to mitigate the risk of feed contamination
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in herds. Although feed ingredients can be disinfected by physical
and chemical means, their quality may be reduced. In this study,
we proposed new and friendly plant-based additives that can
easily be mixed with feed or feed ingredients to reduce viral
contamination. The results showed that all additives exhibited
good virucidal activity. The presence of ASFV in ASFV-spiked
feed was reduced in all Treatments (Treatments 2–10) on day 1
and undetectable on days 3 and 7, as confirmed by both real-
time PCR and cell culture methods, while Treatment 1 with 0.3%
OAB showed negative results only on day 7 (Figures 1 and 2).
Among the additives, the additive Phyto.A04 at a concentration
of 1% showed the best virucidal effect, followed by Phyto.B
at 0.05% and 0.01% and OAB at 0.3%. Phyto.A04, which was
used in this study, is a preparation of bioactive substances with
hops. It contains a CO2 extract from the flowers of H. lupulus,
which contains hop-soft resin in a total concentration of 0.1%.
An earlier study has shown that soft resin compounds in hops
are effective against gram-positive bacteria over a long period of
time (Howard 1953). It is assumed that this effect is based on
their surfactant-like properties (Behr and Vogel 2009). It cannot
be ruled out that the described efficacy of these compounds
against the outer membrane of gram-positive bacteria can also
be observed in a similar way against enveloped viruses such as
ASFV. Phyto.B, which was used in this study, is a preparation
of bioactive substances containing anhydrous licorice extract (G.
glabra) from aqueous extraction. Previous reports showed that
the antiviral properties of licorice, likely due to the compound
glycyrrhizin, are still under investigation (Huan et al. 2021).
However, antiviral activity against enveloped viruses such as
the HIV-1 virus has been demonstrated (Harada 2005). Of the
additive combinations, Treatment 9 (0.3% OAB + 1% Phyto.A04
+ 0.01% Phyto.B) showed the best virus reduction with a log10
HAD50/mL value of 3.11, followed by Treatment 10 (0.3% OAB +
1% Phyto.A04 + 0.05% Phyto.B) with a log10 HAD50/mL value of
2.88. The lowest efficacy of the additive combinationwas observed
with Treatment 5 (0.3% OAB + 1% Phyto.A04). These results
showed better antiviral activity of ASFV compared to previous
reports tested with caprylic acid and formaldehyde additives at
0.03% (Jackman et al. 2020; Niederwerder et al. 2021). The results
suggest that 1% Phyto.A04 alone or a combination of the additives
OAB at 0.3% and Phyto.A04 at 1% and Phyto.B at 0.01% have the
most impressive virus reduction ability.

The antiviral properties of various substances against ASFV have
been extensively studied, focusing on the effects of pH on virus
inactivation. It is well documented that both strongly acidic and
strongly alkaline environments can inhibit ASFV activity. In
particular, ASFV is sensitive to pH values below 3.9 and above
13, which can lead to the inactivation of the virus (Juszkiewicz
et al. 2020; Plowright and Parker 1967). Although Phyto.A04 is an
alkaline additive extracted from the flowers of H. lupulus with a
pH of 11, and Phyto.B is an acidic additive containing anhydrous
licorice extract (G. glabra) with a pH of 5.04, both showed strong
anti-ASFV activity. Their pH values of 5.04 and 11 for Phyto.B and
Phyto.A04, respectively, are far beyond the pH values of below
3.9 and above 13 that inactivate ASFV. Although we believe that
the antiviral effect of these additives is due to specific bioactive
compounds and not to their pH values, we recognise that this
hypothesis is not directly supported by the pH data obtained
under the experimental conditions. Further studies are needed to
clarify the role of pH in the antiviral effect of these additives. Feed

and feed ingredient biosecurity has become an important and
widely recognised target to prevent viral swine diseases on farms.
Biosecurity measures in feed and feed ingredients are essential
to reduce the risk of ASFV at all stages of swine production, and
implementing biosecurity procedures for feed can help to eradi-
cate these risks (Reicks 2019; Stewart et al. 2020). In addition to
biosecurity considerations for feed and feed ingredients, physical
and chemical treatments of feed or ingredients can reduce the risk
of ASFV contamination. For example, strict quarantine of feed
and feed ingredients or storing them after importation from high-
risk countries and regions is a strategy that allows the virus to
degrade before these feed and feed ingredients are introduced into
swine diets (Niederwerder et al. 2019). This study evaluated the
efficacy of plant-based additives against ASFV in both cell culture
and feed ingredients. Although commercial-grade feed is pro-
duced under strict control and regulations, there are still risks of
contamination during transportation and delivery to pig produc-
ers’ facilities. Additional treatment with safe and human-friendly
additives could provide a better scenario in which contamination
risks are further reduced. Some reports from the beginning of
the ASF outbreaks in Vietnam revealed that ASFV could infect
herds despite all applied biosecurity regulations. Contaminated
feed ingredients may have been a cause of these outbreaks.
This study may benefit commercial pig farms in avoiding ASF
infection.

5 Conclusions

In summary, this study showed that all additives, OAB, Phyto.A04
and Phyto.B, were able to inactivate ASFV, which was confirmed
by cell culture and PCR methods. The PCR and cell culture
results are the same and consistent. The efficacy of these additives
provides a new approach to reducing the incidence of ASFV
in feed ingredients using plant-based additives. However, the
molecular interactions between the additives and ASFV and the
effects of the additives on the health and production of pigs need
to be further investigated.
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