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Single cell profiling of primary and paired
metastatic lymph node tumors in breast
cancer patients

Tong Liu1,7, Cheng Liu2,3,4,7, Meisi Yan5,7, Lei Zhang2,3,4, Jing Zhang2,3,4, Min Xiao1,
Zhigao Li 1 , Xiaofan Wei 2,3,4 & Hongquan Zhang 2,3,4,6

The microenvironment of lymph node metastasized tumors (LNMT) deter-
mines tumor progression and response to therapy, but a systematic study of
LNMT is lacking. Here, we generate single-cell maps of primary tumors (PTs)
and paired LNMTs in 8 breast cancer patients. We demonstrate that the acti-
vation, cytotoxicity, and proliferation of T cells are suppressed in LNMT
compared with PT. CD4+CXCL13+ T cells in LNMT are more likely to differ-
entiate into an exhausted state. Interestingly, LAMP3+ dendritic cells in LNMT
display lower T cell priming and activating ability than in PT. Additionally, we
identify a subtype of PLA2G2A+ cancer-associatedfibroblasts enriched inHER2+

breast cancer patients that promotes immune infiltration. We also show that
the antigen-presentation pathway is downregulated in malignant cells of the
metastatic lymph node. Altogether, we characterize the microenvironment of
LNMT and PT, which may shed light on the individualized therapeutic strate-
gies for breast cancer patients with lymph node metastasis.

Metastasis is the most prominent cause of cancer morbidity and
mortality. Due to the special structure of lymph node (LN) vessels in
tumors, tumor cells tend to metastasize to LN tissue, and tumor cell
metastasis to LNs is an early manifestation of metastatic tumors1. The
microenvironment of lymph node metastasized tumors (LNMTs) is
considered to be immunosuppressive; however, the characteristics
and specific mechanisms of various immune cells are not clear. There
is an apparent need for the therapeutic targeting of LNMT, rather than
of the PT, to secure proper antitumor T-cell generation and timely
tumor infiltration2, 3. Studies have found that metastatic LNs can affect
the immune response of tumors. For example, targeting metastatic
LNs can significantly enhance the therapeutic effect on PTs4, which
may represent an important strategy for improving patient survival.

Therefore, it is important to characterize anddifferentiate between the
LNMT and PT microenvironments.

Genomic and transcriptomics technologies can help us to
understand the changes of tumor cells during metastasis to distant
organs5. In recent years, the emergence of and advances in single-cell
sequencing technology have provided a new and precise approach for
understanding the complexity of genetic heterogeneity in tumor
evolution and tumor cell metastatic progression6. Tumor cells in a
state of partial epithelial–mesenchymal transition located in the per-
iphery of the original tumor are more likely to metastasize than are
the cells inside the tumor7. It is well known that tumors form as a
consequence of interactions between malignant cells and the
microenvironment8.

Received: 21 April 2021

Accepted: 31 October 2022

Check for updates

1Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China; Heilongjiang Academy of Medical Sciences, Harbin, China. 2Pro-
gram for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health
ScienceCenter, Beijing 100191, China. 3Peking University International Cancer Institute, Peking UniversityHealth ScienceCenter, Beijing 100191, China. 4MOE
Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science
Center, Beijing 100191, China. 5Department of Pathology, Harbin Medical University, Harbin 150081, China. 6Department of Human Anatomy, Histology, and
Embryology, Shenzhen University School of Medicine, Shenzhen 518055, China. 7These authors contributed equally: Tong Liu, Cheng Liu, Meisi Yan.

e-mail: drzhigaoli@hrbmu.edu.cn; weixiaofan@bjmu.edu.cn; Hongquan.Zhang@bjmu.edu.cn

Nature Communications |         (2022) 13:6823 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4169-143X
http://orcid.org/0000-0002-4169-143X
http://orcid.org/0000-0002-4169-143X
http://orcid.org/0000-0002-4169-143X
http://orcid.org/0000-0002-4169-143X
http://orcid.org/0000-0003-2151-9322
http://orcid.org/0000-0003-2151-9322
http://orcid.org/0000-0003-2151-9322
http://orcid.org/0000-0003-2151-9322
http://orcid.org/0000-0003-2151-9322
http://orcid.org/0000-0001-8193-0899
http://orcid.org/0000-0001-8193-0899
http://orcid.org/0000-0001-8193-0899
http://orcid.org/0000-0001-8193-0899
http://orcid.org/0000-0001-8193-0899
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34581-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34581-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34581-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34581-2&domain=pdf
mailto:drzhigaoli@hrbmu.edu.cn
mailto:weixiaofan@bjmu.edu.cn
mailto:Hongquan.Zhang@bjmu.edu.cn


Breast cancer is the most common cancer in women worldwide
and has a high mortality rate9. The molecular characteristics of breast
cancer vary considerably among the different subtypes, and specific
therapeutic approaches are required for each classification10. There-
fore, understanding the composition of different types of breast can-
cer has great clinical value. Thus far, several studies have used single-
cell sequencing to investigate breast cancer. For instance, one study
explored the mechanism of treatment resistance of malignant cells in
triple-negative breast cancer (TNBC) by using single-cell copy number
variation (CNV) sequencing technology11, while another studyonTNBC
characterized tumor-infiltrating immune cells12. Research involving
single-cell analysis of breast cancer has mainly centered on immune
cells or tumor cells, but there is currently a lack of systematic research
on the interactions among various cell types, and the relevant pub-
lished articles have primarily focused onTNBC11,13, 14. It has further been
shown that luminal and human epidermal growth factor receptor 2
(HER2)+ patients have a higher risk of LNmetastasis than patients with
TNBC15. Therefore, we chose to direct the focus of our study on
non–basal-like breast cancer.

In this work, we aim to investigate the regulatory mechanism of
the tumor microenvironment (TME) that may contribute to malignant
cell metastasis and the colonization of LNs, with a particular focus on
uncovering the differences between the PT and LNMT in non-TNBC
patients using single-cell RNA sequencing. Our analyses reveal that the
microenvironment of metastatic LNs is more conducive to tumor cell
survival than is that of tumors in situ due to the lower immune cell
activity of metastatic LNs. Moreover, we identify a type of cancer-
associated fibroblast (CAF) expressing PLA2G2A that can interact with
immune cells and that is enriched in HER2+ breast cancer. Our data
provide insights into the mechanism of LNMT and immune infiltration
in tumors and may be a valuable reference for the clinical application
of immunotherapy for breast cancer metastasis.

Results
The microenvironmental landscape of PT and LNMT in breast
cancer
To characterize the TME of the PT and LNMT in patients with breast
cancer, we collected paired tissues of LNMT and PT from 8 treatment-
naïvepatientswith breast cancer subtypes including luminalA, luminal
B, and HER2+. These tissues were separated into single cells, and we
obtained a total of 118,845 cells sequenced by using 10x Genomics 5′
mRNA and T cell receptor (TCR) sequencing methods (Fig. 1a).
Hematoxylin and eosin (HE) staining showed the gross appearance of
metastatic LNs, indicating a high frequency of LNMT among the
enrolled patients (Supplementary Fig. 1a). We used BBKNN integration
to integrate cells from different patients16 (Supplementary Fig. 1b).
All of the cells could be divided into the following 9 major types
according to their canonical markers: B cells (CD3D, CD79A), CD4
T cells (CD3D, CD4), CD8 T cells (CD3D, CD8A), NK cells (GNLY), mye-
loid cells (LYZ), epithelial cells (EPCAM and KRT19), CAFs (PDGFRA),
perivascular-like (PVL) cells (RGS5), and TECs; (PLVAP; Supplementary
Fig. 1c–e). We found that the cell types in PT varied largely across the
patients, but those in LNMTwere similar (Supplementary Fig. 1f). Then,
we further clustered and annotated the cells into 40 different cell
clusters according to their specific marker genes (Fig. 1b, Supple-
mentary data 1). To investigate the enrichment of cell types in PT and
LNMT, we calculated the percentage of the tissues within each cluster.
The data showed that B cells and CD4 T cells, which are well-known
cellular components of normal LNs, are enriched in the micro-
environment of LNMT. In contrast, epithelial cells, CD8 T cells, CAFs,
and mast cells were abundant in PT (Fig. 1c, d). The difference in cell
types between PT and LNMT was also shown in the UMAP embedding
plot which was colored according to tissue type (Fig. 1e). To further
prove that the cells we collected were intratumoral, we randomly
picked LN tissues of 4 patients from the 8 patients in the present study

toperform spatial transcriptomics. The results showed that the ratio of
tumor cells was over 50% in all 4 patients and over 75% in 3 of them,
suggesting that the samples were from LN metastases (Fig. 1f, Sup-
plementary Fig. 1g). These data indicated that the cell types of the
metastatic microenvironment of LNs differed significantly from those
of PTs.

Suppressed T cell activity in LNMTs
LNs are central to immune cell circulation and maturation. To deter-
mine why malignant cells can survive in LNs without being eliminated
by the immune cells, we analyzed the features of immune cells both in
PTs and LNMTs. We annotated T cells and NK cells into 15 clusters,
including 5CD8T cell subsets, 7 CD4T cell subsets, γδT cells, and 2NK
cell subsets (Fig. 2a, Supplementary Fig. a & b). The data showed that
T cells and NK cells from the 2 tissues were distributed differently and
exhibited disparate transcription programs (Fig. 2a). We found that
these 2 types of NK cells expressed tumor-suppressing genes (XCL1
and XCL217 for NK-C1-XCL1, cytotoxic genes for NK-C2-GZMH) in higher
proportions in PTs than in LNMTs (Supplementary Fig. 2c).

To track the development trajectories of CD8 T cells, we
employed a diffusion embedding map to visualize CD8 T subsets and
found continuous developmental progression (Fig. 2b). CD8-C1-CD8B
was present at the initial stage of CD8 T cells differentiation, in which
there was also a high expression of CCR7 and SELL (Fig. 2b, Supple-
mentary Fig. 2c), which are the markers of naïve T cells (TN). CD8-C2-
CCL5, characterized by higher expression of cytotoxic markers and
high expression ofHOPX (Supplementary Fig. 2b, d),was present in the
next stage after CD8-C1-CD8B.CCL5+ T cells further branched intoCD8-
C3-GZMK or CD8-C4-HSPA1A (Fig. 2b). CD8-C3-GZMK cells were
defined as effect memory T cells (TEM) due to their expression of
cytotoxic markers like NKG7, GZMA, and GZMK; meanwhile, CD8-C4-
HSP1A1, which expressed cytotoxic markers and a high level of CD69
but a low level of ITGAE, represented CD69+ITGAE- tissue-resident
memory T cells (TRM) (Fig. 2b, Supplementary Fig. 2b). CD8-C5-CXCL13,
which differentiated from CD8-C3-GZMK, was considered to be the
terminal state of differentiation (Fig. 2b). CD8-C5-CXCL13 expressed
cytotoxicmarkers and exhaustedmakers includingCTLA4, PDCD1, and
LAG3 (Supplementary Fig. 2b, e), and was characterized as exhausted
or pre-exhausted CD8 T cells. We then performed principal compo-
nent analysis (PCA) to investigate CD8T cells in themicroenvironment
of LNMTs and PTs. Principal component (PC) 2 was the most promi-
nent component distinguishing CD8 T cells between PT and LNMT of
the first 20 PCs (Supplementary Fig. 2f). We used a PCA embedding
map colored according to tissue type to determine the distribution of
CD8 T cells (Fig. 2c). The most variant genes contributing to PC2 were
CCL5, CCL4, chemokines involved in T cell recruitment, MHC class II
genes functioning in antigen presentation, and cytokines such as
GZMA and GZMH, which are known for their cytotoxic function in
T cells (Supplementary Fig. 2g). The CD8 T cell activation signature
also showed CD8 T cells in PTs to have a higher activation score than
those in LNMTs (Fig. 2d), supporting the previous findings.

Next, we analyzed the characteristics of CD4 T cells. Single-cell
sequencing has recently been used to identify the tumor-suppressing
functions of CD4 T cells, for example, the function of GZMK+CD4+

T cells in bladder cancer18. It has been found that CD4 T cells are more
complex than initially believed and need to be further explored. In our
study, CD4 T cells were classified into 7 clusters according to their
specific gene expressions (Fig. 2a, Supplementary Fig. 2b). According
to their markers, CD4-C1-RPL corresponded to naïve CD4 cells, while
CD4-C2-ANXA1 and CD4-C3-YPEL5 corresponded to memory or pre-
memory CD4 cells. These 3 clusters were enriched in LNMTs (Fig. 2a,
Supplementary Fig. 2c). CD4-C6-CXCL13 highly expressed CXCL13,
which is reported to attract B cells19, and corresponded to Tfh or Tfh-
like cells. Interestingly, we found notable heterogeneity among
CD4+CXCL13+ T cells across the 2 microenvironments (Fig. 2e, f). To
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Fig. 1 | Microenvironmental landscape of PT and LNMT in breast cancer.
a Diagram of the single-cell sequencing strategy for lymph node metastasis
patients. b, c UMAP embedding plot showing identified clusters of all 118845 cells
from paired PT (primary tumor) and LNMT (lymph nodemetastasized tumors) of 8
LNMT patients. Cells were colored according to their clusters (b) or tissues (c). The
number of cells per cluster, per patient, and per tissue is summarized in Supple-
mentary data 2. d Bar plots showing the differences in themajor cell types between

the 2 tissues (PT: n = 8 samples, LNM: n = 8 samples). Statistical testing was per-
formed by a two-sided Wilcoxon test. Data are presented as mean values+/− SD.
e The relative proportion of clusters between breast tumor and metastasis lymph
node samples. Cell proportion has been normalized by sample size. f Spatial
transcriptome analysis revealed the distribution of epithelial cells in the LNMT of 4
patients. Source data are provided as a Source Data file.
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study the heterogeneity of CD4+CXCL13+ cells, we re-clustered
CD4+CXCL13+ T cells and found 5 clusters of CD4+CXCL13+ T cells as
identified by their typical markers (Fig. 2g–i). We found that the per-
centage of cluster 2 in PTs was much higher than that in LNMTs
(Fig. 2j). Cluster 2 expressed a higher level of interferon-gamma (IFN-γ)
than did the other CD4+CXCL13+ clusters, indicating that this type of
CD4 T cells has a potential role in killing tumor cells (Fig. 2i).

Intriguingly, we found that BHLHE40was highly expressed in cluster 2
(Fig. 2i), which is consistent with a previous study that reported
BHLHE40+CD4+ T cells to have the ability to suppress colon cancer
cells20, supporting the speculation of the tumor-suppressing function
of cluster 2, which need further functional validation. In contrast,
LNMTs showed more cluster 1 cells with a high expression of GPR183,
which is reportedly expressed in naive CD4 and CD8 T cells21 (Fig. 2i).
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Using a diffusion map to infer the CD4+CXCL13+ T cell trajectory, we
found that the initial development stage of cluster 1 could differentiate
into 3 branches: cluster 2, cluster 3, and cluster 4 (Fig. 2g). We found
that cluster 1 in LNMT mainly differentiated into exhausted cluster 3,
whereas in PT, it mainly differentiated into tumor-suppressing cluster
2 (Fig. 2k). Differential gene analysis between cluster 2 and cluster 3
confirmed that cluster 2 expressed high tumor-suppressing genes
(e.g., GZMA) in tumor (Fig. 2l). The ratio of cluster 3 to cluster 2 could
also be used to predict poor prognosis in TCGA-BRCA datasets
(Fig. 2m). This finding suggested that CD4 T cells in LNMTs are less
mature than those in PTs and CD4+CXCL13+ T cells and are more likely
to be reprogrammed into an exhausted state in LNMTs. Altogether,
these data demonstrated that the antitumor cytotoxicity of T cells in
LNMTs was reduced compared to that in PTs.

T cells in PTs showed higher expansion and transition ability
than did those in LNMTs
T clonal expansion and transition are manifestations of immune
response and immune activation. Consequently, we analyzed T clonal
expansion and transition in CD4 and CD8 T cells with single-cell
resolution TCR sequencing. 59,327 immune T cells were captured and
47,803 of them were performed TCR analysis. We found that patient 2
and patient 4 had very rare immune cells, which were removed from
the downstream analysis (Supplementary Fig. 3a). Of all the T cells,
approximately 18.4% showed clonal expansion (5.01% with 2 cells per
clone, and 13.39% with 3 cells per clone; Supplementary Fig. 3b). We
found that the proportion of T cells in the PTs with clonal expansion
washigher than that in LNMTs (Fig. 3a).We then employed STARTRAC,
a method based on Shannon entropy, to quantify the expansion and
transition ability of T cell clusters20. The transition and expansion
ability of CD8 T cells was more powerful than that of CD4 T cells
(Supplementary Fig. 3c, d). We found that CD4 T cells in PTs, such as
CD4-C3-YPEL5, had stronger transition ability than did those in LNMTs
(Fig. 3b). Then, we used STARTRAC-expansion to measure the
expansion of each T cell cluster. CD4-C6-CXCL13 had the greatest
expansion ability among CD4 T cells, followed by CD4-C5-FOXP3
(Supplementary Fig. 3c). these both clusters showed a greater expan-
sion ability in PTs than in LNMTs (Fig. 3c). CD8-C2-CCL5 and CD8-C3-
GZMK demonstrated a significantlymore powerful expansion ability in
PTs than in LNMTs (Fig. 3c). To investigate the relationship between T
cell expansion and T cell activation based on TCR sequencing analysis,
we fitted the line of CD4 regulatory T cells (Tregs) score and CD8
activation score with cell expansion in each cluster in different tissues
separately to determine the correlation between T cell activation and
TCR expansion. T cells showed a weaker expansion ability in LNMTs
than in PTs, even when at a similar developmental stage (Fig. 3d, e).
Overall, TCR sequencing analysis of CD4 and CD8 T cells further

proved that T cells displayed a lower activity of expansion and tran-
sition in LNMTs than in PTs.

Characteristics of matched T cells in the breast cancer
microenvironment
To further demonstrate that T cells are suppressed in LNMTs, we
compared the activity of matched T (MT) cells in LNMTs with those in
PTs. T cells with identical TCRs located in 2 different tissues were
considered to be MT cells, originating from the same progenitor and
having a similar development time22 (Fig. 4a). The results showed that
the microenvironment of PTs had a higher percentage of MT cells
(25%) than did the LNMTs (5.8%) (Fig. 4b). Matched T cells only occupy
lower than25% in total T cells (Fig. 4b) andmay transit betweendiverse
states. To avoid missing the differences caused by different states of
matched T, we included all matched CD8 T in DEG analysis and sepa-
ratedmatchedCD4Tcells into conventional CD4T (Tconvs) andTregs
for differential gene analysis. The results showed that 128 genes were
significantly down-regulated and 63 genes were up-regulated in mat-
chedCD8Tcells of LNMTcomparedwith PT (Fig. 4c). These significant
genes were then thrown into pathway enrichment analysis to uncover
the underlying biological functions.We found that the down-regulated
genes of expanded CD8 T cells in LNMT were enriched in T cell acti-
vation, which also reflects a lower T cell activity in LNMT than in PT
(Fig. 4d & Supplementary Fig. 4a).

For CD4 T cells, 460 genes were significantly down-regulated and
21 genes were up-regulated in matched Tconvs of LNMT compared
with PT (Fig. 4e). Pathway enrichment analysis revealed that Tconvs in
PT are in enriched in the T cell activation pathway and positive reg-
ulation of cytokine production (Fig. 4f & Supplementary Fig. 4b). As for
Tregs, only 27 genes were down-regulated and 16 genes were up-
regulated in the matched Tregs of LNMT compared with PT (Supple-
mentary Fig. 4c). In summary, these data further supported that T cells
are less activated in LNMT compared with PT.

Characteristics of myeloid cells in the breast cancer
microenvironment
Myeloid cells play an important role in the TME23. We identified 11
clusters of myeloid cells including 4 dendritic cells (DC) subsets
(pDC-LILRA4, DC-C1-CD1C, DC-C2-CLEC9A, and DC-C3-LAMP3), 6
macrophage subsets (Macro-C1-APOC1, Macro-C2-SLC40A1, Macro-
C3-VCAN, Macro-C4-CXCL11, Macro-C5-SPP1, and Macro-C6-CCL3)
andmast cells (Fig. 5a, Supplementary Fig. 5a). The enriched genes of
each cell type are shown in Fig. 5b. DC-C1-CD1C and DC-C2-CLEC9A;
the high expression of DC1C/CLEC10A and XCR1/CLEC9A correspond
to cDC1 and cDC2, respectively, and have been well-characterized24.
DC-C3-LMAP3, which was characterized in several recent studies25, 26,
showed a high expression of CCR7, chemokines, and costimulatory

Fig. 2 | T cell activity suppression in LNMT. aAUMAP embedding plot of 58,316T
and NK cells grouped into 15 clusters from PTs and LNMTs of 8 patients. b The
developmental trajectory of CD8 T cells is inferred by the diffusion map and
colored according to tissue type and expression of example genes. c Scatter plot
showing PCA components of CD8 T cells color-coded according to tissue type. The
top density plot displays the distribution of CD8 T cells along PC1, the right density
plot displays the distribution of CD8 T cells along PC2. d A box plot showing a
comparison of the CD8 T activation score across tissues (PT: n = 9224 cells, LNMT:
n = 7275cells) as calculatedby thenormalizedgenemean expressionofT activation
signature genes (Supplementary data 3) in CD8 T cells. Statistical testing was per-
formed by a two-sidedWilcoxon test. In the box plots, the center line corresponds
to the median, box corresponds to the interquartile range (IQR), and whiskers
1.5 × IQR. e A UMAP embedding plot showing CD4 clusters color-coded according
to tissue type; the CD4-C6-CXCL13 cluster is circled. f A volcano plot showing the
differentially expressed genes between PTs and LNMTs in the CD4-C6-CXCL13
subset. P value <0.05, log2 (fold change) ≥0.5. Statistical testing was performed by
a two-sided Wilcoxon test. The P-values were corrected with Benjamini-Hochberg

adjustment. g,h 3Dprojection of the CD4-C6-CXCL13 cluster inferred by a diffusion
mapand colored according to the subset (f) and tissue type (g). iAdotplot showing
marker genes across 5 subsets of CD4-C6-CXCL13. The dot size indicates the frac-
tion of expressing cells, and dots are colored according to normalized z score
expression. j The proportion of tissues within 5 subsets in CD4-C6-CXCL13; the
coloring is according to tissue type; the x-axis represents the fraction of tissues, and
the y-axis representsmajor cell types. k Percentages of the differentiation direction
of cluster 1 to other clusters in 2 microenvironments. l Volcano plot showing dif-
ferentially expressed genes between cluster 2 and cluster 3. P value < 0.05, log2
(fold change) ≥0.5. Statistical testing was performed by a two-sidedWilcoxon test.
The P valueswere correctedwith Benjamini-Hochberg adjustment.mKaplan-Meier
plot shows that patients with breast cancer in the TCGA dataset (HER2+:
n = 67 samples, LumA: n = 421 samples, LumB: n = 192 samples) with a high ratio of
cluster 3 to cluster 2 have shorter overall survival. The ratio of cluster 3 to cluster 2
is the average expression of the cluster 3 signature genes divided by the average
expression level of the cluster 2 signature genes. Statistical testing was performed
by Log-Rank test. Source data are provided as a Source Data file.
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genes, and represented activated DCs (Fig. 5b). An embedding plot
revealed differences in DCs across the 2 microenvironments (Sup-
plementary Fig. 5b), with pDC-LILRA4, DC-C1-CD1C, and DC-C3-
LAMP3 showing a higher preference for LNMTs than for PTs (Fig. 5c).
Differential gene analysis showed that DCs in PTs were more enri-
ched in the interferon-stimulated gene (ISG15) and had higher levels

of STAT1 expression (Fig. 5d, Supplementary Fig. 5c), a key tran-
scription for DC differentiation and maturation. Moreover, DC-C3-
LAMP3 in PTs had a higher MHC II gene expression than that in
LNMTs (Fig. 5e, f). DC-C3-LAMP3 in PTs also showed higher enrich-
ment in the glycolysis pathway (Supplementary Fig. 5d), which con-
tributes to DC activation27. Because activated DCs play important

Fig. 3 | T cells in PT have higher expansion and transition ability than those in
LNMT. a Pie charts showing the fraction of clonal size of shared clonotypes in
tumor (left) or LNMT (right). Red represents unique clonotypes, green represents a
clonal size of shared clonotypes of 2, and blue represents the clonal size of shared
clonotypes of 3 or above. b Developmental transition of CD4 T clusters (left) and
CD8 T clusters (right) quantified by STARTRAC-transition for each patient (n = 6)
within each tissue. Two-sided Wilcoxon test. In the box plots, the center line cor-
responds to the median, box corresponds to the interquartile range (IQR), and
whiskers 1.5 × IQR. c Clonal expansion of CD4 T clusters (left) and CD8 T clusters
(right) quantified by STARTRAC-expansion for each patient (n = 6) within each

tissue. Two-sidedWilcoxon test. In theboxplots, the center line corresponds to the
median, box corresponds to the interquartile range (IQR), and whiskers 1.5 × IQR.
d, e Scatterplot showing the correlation of Tregs score (d) or CD8 activation score
(x-axis) (e) with STARTRAC-expansion (y-axis) on CD4 T clusters (d) or CD8 T cell
cluster (e) across different tissues. Tregs score and CD8 activation score were
calculated with the average expression of corresponding gene list (Supplement
data 3). Each dot represents a corresponding cluster for each patient. Pearson
correlation coefficient and linear regression were used. Source data are provided
as a Source Data file.
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roles in communicating with other immune cells, we then undertook
to determine whether DC-C3-LAMP3 showed a different type of
communication with immune cells depending on whether it was in
PTs or LNMTs. LAMP3+ DCs highly expressed CXCL9 and CCL19 in PTs
and highly expressed CCL17 and CCL22 in LNMTs (Fig. 5g). Cell–cell
interaction analysis showed that LAMP3+ DCs in PTs exhibited greater
interaction with immune cells through CXCL9:CXCR3, CCL19:CXCR3,
or CCL19:CCR7 than in LNMTs. However, LAMP3+ DCs in LNMTs
showed a stronger interaction with Tregs through CCL17:CCR4
and CCL22:CCR4 (Fig. 5h), suggesting that LAMP3+ DCs in LNMTs
may be more likely to recruit and activate Tregs to enhance

immunosuppression. These data suggested that DCs, especially
LAMP3+ DCs in PTs, were more mature and had a greater T cell
priming and activating ability than those in LNMTs.

Subsets with a high expression of CD68 were defined as macro-
phages. Tumor-associated macrophages (TAMs) are characterized by
enrichment in the TME. We subsequently combined the data of a
published study12 and that of our single-cell analysis to clarify the
properties of the tissue-resident macrophage subsets (Supplementary
Fig. 5e). Consistent with the previous study, we found that the mac-
rophages in the TME showed a greater degree of diversity and
complexity28. Macro-C4-CXCL11 and Macro-C5-SPP1 were significantly
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Fig. 4 | Characteristics of matched T cells in the breast cancer microenviron-
ment. a Diagram of matched T and nonmatched T cells. b Pie charts showing the
fraction of matched T and nonmatched T cells in PT (left) or LNMT (right).
c Volcano plot showing differentially expressed genes between LNMT vs PT for
matchedCD8Tcells. P value <0.05, log2 (fold change)≥0.25. Statistical testingwas
performed by a two-sided Wilcoxon test. d Top 8 enriched pathways for down-
regulated genes of matched CD8 T cells in LNMT vs PT. Statistical testing was

performedbyhypergeometric test. eVolcanoplot showing differentially expressed
genes between LNMT vs PT for matched Tconvs. P value < 0.05, log2 (fold
change) ≥0.25. Statistical testing was performed by a two-sided Wilcoxon test.
f Top 8 enriched pathways for down-regulated genes in LNMT vs PT. Statistical
testing was performed by hypergeometric test. Source data are provided as a
Source Data file.
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highly enriched in the TME and corresponded to TAMs. Macro-C1-
APOC1,Macro-C2-SLC40A1, andMacro-C6-CCL3were defined as tissue-
resident macrophages, the levels of which in tumors were comparable
to those in adjacent tissues (Fig. 5i). It is well known that M1 and
M2 signatures represent the different functions ofmacrophages in the
tumor. In this study, we found there is no difference in the ratio
of these 2 types of macrophages in PTs compared to LNMTs

(Supplementary Fig. 5f, g). However, using differential gene analysis,
we found that macrophages have a higher expression of IFI27, IFITM1,
and IFI44L in PTs than in LNMTs (Fig. 5j), suggesting activation of IFN-γ
signaling in PTs. Furthermore, CCL8, which has been reported to pro-
mote breast metastasis and progression29, was more highly expressed
in PTs than in LNMTs, indicating distinctmicroenvironments in PT and
LNMT that could influence tumor cell survival.
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PLA2G2A+ CAFs in HER2+ breast cancer promoted immune
infiltration
In our dataset, we identified 3 types of stromal cells: TECs, PVLs, and
CAFs30 (Fig. 6a, Supplementary Fig. 6a). PVLs included 2 subtypes, PVL-
C1-MGS5 and PVL-C2-MYH11, both ofwhich exhibited a high expression
of actin cytoskeleton gene ACTA2 and GTPase-activating protein RGS5
(Supplementary Fig. 6b). CAFs play a pivotal role in the cancer
microenvironment and may suppress the immune response and/or
promote tumor metastasis31. We found there is no difference in the
proportion of total CAFs in PTs versus LNMTs (Fig. 1d). According to
their differentially coexpressed markers, fibroblasts were further
classified into 3 CAF types: myofibroblast-like phenotype (mCAF)
including CAF-C1-POSTN; and 2 inflammatory property fibroblasts
(iCAF), including CAF-C2-APOD and CAF-C3-PLA2G2A (Fig. 6a). CAF-C1-
POSTN expressed high levels of POSTN and collagen genes (COL1A2,
COL3A1), which have been reported to contribute to extracellular
matrix remodeling and stiffness of tumor (Supplementary Fig. 6b)32.
CAF-C3-PLA2G2A, which has been reported in other studies33, was
characterized by a high expression of OGN, which encodes a small
leucine-rich proteoglycan protein that functions in T-cell recruitment
and immune infiltration in tumors34.

Importantly, we found CAF-C3-PLA2G2A at a high frequency in
HER2+ tumors, while CAF-C2-APOD was enriched in luminal tumors
(Fig. 6b, c). Compared with those in luminal breast cancer, HER2+

tumors have a high degree of immune infiltration, and patients with
this subtype can benefit from immunotherapy35. We thus aimed to
determine whether CAF-C3-PLA2G2A enrichment in HER2+ tumors had
a connection with immune infiltration. Using cell–cell interaction
analysis, we found that, comparedwith the other 2 types of fibroblasts,
CAF-C3-PLA2G2A showed a much stronger interaction with immune
cells, including CD4 and CD8 T cells, DCs, and macrophages (Fig. 6d).
Mechanistically, PLA2G2A: α4β1 integrin,OGN:HLA-DRB1, VSIR:CCL4L2,
FN1:α4β1 integrin, andDPP4:CCL3L1 interaction complexes were found
to be responsible for the association of PLA2GA+ CAF with immune
cells.HLA-DRB1,α4β1 integrin,CCL4L2, andCCL3L1were reported tobe
expressed in immune cells36,37. In our study, we found that CAF-C3-
PLA2G2A also exhibited an abundant expression ofOGN,VSIR, FN1, and
DPP4, which can interact with immune cells. In contrast, the gene
expression of OGN, VSIR, FN1, and DPP4 was much lower in CAF-C2-
APOD (Fig. 6d, e). To further validate the function of PLA2G2A+ CAFs in
immune cells, we treated monocyte THP1 cells with PLA2G2A protein
and found that PLA2G2A could promote the migration of THP1 cells
(Fig. 6f). Thesedata suggested the potential of PLA2GA+ CAFs to attract
immune cells.

Furthermore, we found that PLA2G2A, which is exclusively
expressed in PLA2G2A+ CAFs (Supplementary Fig. 6c), was highly
expressed in HER2+ patients and highly correlated with the immune
cellmarkerCD3E in theTCGA-BRCAdataset (Fig. 6g).PLA2G2Awasalso
positively correlated with the CD45 antigen PTPRC, B-cell marker
CD79A, and CD8 T cell marker CD8A in breast cancer patients (Sup-
plementary Fig. 6d). Immunohistochemical (IHC) staining in human
breast cancer tissues further revealed that PLA2G2A+ CAFs were more

abundant in HER2+ tumors than in luminal tumors (Fig. 6h, i). Immu-
nofluorescence analysis also showed that PLA2G2A+ CAFs had a similar
spatial distribution to macrophages and CD8 T cells (Fig. 6j), and
confirmed the interactions of PLA2G2A+ CAFs with macrophages and
CD8T cells at the single-cell level (Fig. 6k). In short, we identified 3CAF
subsets in breast cancer patients and demonstrated enrichment of
PLA2G2A+ CAFs in HER2+ tumors, and these may be the main micro-
environmental factors that determine the immune infiltration in breast
cancer.

Antigen-presentation pathway was down-regulated in malig-
nant cells of metastatic lymph node
Finally, we wanted to characterize the features of malignant epithelial
cells. Epithelial cells were divided into malignant epithelial cells and
nonmalignant epithelial cells according to their CNVs. Malignant cells
and nonmalignant cells were separated according to the distribution
of epithelial cell malignancy scores (Supplementary Fig. 7a, b). Heat-
maps of CNVs exhibited a considerable degree of divergence among
the patients, and similar patterns were observed in the same patients,
even in different tissues.Malignant cells from the samepatient showed
a similar CNVpattern, suggesting that themalignant cellswere derived
from the same point of origin (Fig. 7a, b).

To further understand the characteristics of malignant cells of
lymph node metastasis, we compared transcriptome signatures of the
malignant cells between LNMTand PT for patients that have at least 20
cells in each tissue. Thus, 3 patients were excluded and the tran-
scriptome signature of the other 5 patients was calculated (Supple-
mentary data 4). Few significant genes are shared across patients
(Supplementary Fig. 7c, d). Interestingly, we found antigen presenta-
tion genes, such as CD74, HLA-DRA and B2M, are mostly down-
regulated in LNMT compared with PT for patient 8 (Fig. 7c). Similarly,
we also found that HLA-B and HLA-C are down-regulated in LNMT of
patient 5 (Supplementary Fig. 7e). To character whether these findings
are prevalent in most patients, transcriptome signatures from the 5
patients were used for GSEA enrichment analysis (Supplementary
data 5). Significant pathways shared by the 5 patientswere analyzed and
the normalized enrichment score (NES) for each pathwaywas averaged.
The pathways were then ranked according to the numbers of shared
patients and the mean of NES. From the top 10 enriched pathways, 4
pathways are related to antigen presentation and these pathways are
enriched in 4 of 5 patients (Fig. 7d, e, Supplementary data 6).

It is interesting to ask whether the down-regulated antigen pre-
sentation pathway is related to CNV clones ofmalignant cells. Then we
clustered malignant cells according to their CNV similarity for each
patient and then compared the DEG of each CNV clone in PT vs LNMT
(Fig. 7f). We found that malignant cells belonging to different CNV
clusters in patient 8 have no difference in metastasis ability
(Fig. 7g). And the malignant cells in different CNV clusters of
patient 8 are also enriched in the antigen presentation pathway (Sup-
plementary Fig. 7f, g). Antigen presentation genes can be mainly
divided into MHC I andMHC II class molecules. We compared the two
types of antigen presentation in PT vs LNMT across the different CNV

Fig. 5 | Characteristics ofmyeloid cells in the breast cancermicroenvironment.
aUMAP embedding plot of 5992myeloid cells grouped into 11 clusters.bAdot plot
showingmarker genes acrossmyeloid clusters from the adjacentUMAPembedding
plot (a). The dot size indicates the fraction of expressed cells, and the color
represents the normalized expression level. c Bar plots showing DC clusters
between 2 tissues (PT: n = 8 samples, LNM: n = 8 samples) among myeloid cells.
Statistical testing was performed with a two-sided Wilcoxon test. Data are pre-
sented asmean values +/− SD. d Violin plots showing the STAT1 expression level of
DC clusters. e A volcano plot showing the differentially expressed genes between
PT and LNMT in the DC-C3-LAMP3 cluster. P value < .05, log2 (fold change) ≥ 0.5.
Statistical testing was performed by a two-sided Wilcoxon test. f A heatmap
showing the expression pattern of MHC II genes between PT and LNMT in the DC-

C3-LAMP3 cluster. The black board pattern indicates the significance of the
unpaired 2-sided t-test. g Violin plots showing the expression of represented che-
mokines in DC-C3-LAMP3. h Bubble heatmaps show the interaction strength for
representative ligand-receptor pairs between LAMP3+ DC and immune cells in dif-
ferent microenvironments; the dot size and color indicate the interaction strength.
i A dot plot showing tissue enrichment of myeloid clusters based on GSE114727
dataset12; the dot size indicates the number of cells, and the color represents the
enrichment score. j Volcano plot showing the differentially expressed genes
between PT and LNMT in macrophages. P value < .05, log2(fold change)≥0.5.
Statistical testing was performed by a two-sided Wilcoxon test. The P-values were
corrected with Benjamini-Hochberg adjustment. Source data are provided as a
Source Data file.
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clusters and found that both MHC I and MHC II class molecules are
down-regulated in LNMT across different CNV clusters in patient 8
(Fig. 7h). MHC I genes but not MHC II genes are down-regulated in
LNMT of Patient 5 (Supplementary Fig. 7h–j). These findings indicate
that malignant cells migrated to LNMT may render lower antigen
presentation genes, resulting in an immune evasivemechanism, which

provide insight into the characterizationofmalignant cellmetastasis in
breast cancer.

Discussion
Single-cell sequencing is a powerful tool for analyzing the TME6.
Several breast cancer studies have used single-cell sequencing12,38–40 to
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analyze the differences of immune cells among breast cancer in situ,
adjacent cancer, blood, and normal LNs. However, an analysis of the
metastatic LN microenvironment in breast cancer at the single-cell
level has not yet been reported. We thus systematically revealed the
characteristics and differences in the microenvironment between
LNMTs and paired PTs in breast cancer.

The TME is shaped into an environment with characteristics, such
as immunosuppression, that aremore conducive to tumor growth. For
example, we found that the TME induced the transformation of
CXCL11+ macrophages with the manifestation of M1-like macrophages
into SPP1+ macrophages with a higherM2 signature, promoting cancer
progression. However, compared with the TME in situ, the micro-
environment of lymphatic metastasis exhibited stronger immuno-
suppression. Lymphatic vessels play an important role in tumor
immunity, aiding the antigen presentation of DCs and the activation of
T cells in the TME41. The particularity of lymphatic vessel structure and
thehigh expressionofCXCR4 inbreast tissue cellsmaybe an important
reason for metastasis to and colonization of LNs42. Our study investi-
gated this mechanism by performing a single-cell analysis and by
characterizing the microenvironment of LNMTs. We found that the
overall activity of T cells in metastatic LNs was suppressed more than
that in the PTs. This conclusion is supported by several lines of evi-
dence: (1) from the transcriptional level, CD8 T cells showed weaker
activity and cytotoxic effect in the LNMTmicroenvironment compared
with those in PTs. Although it iswell known thatCD8T cells in PTs have
higher activation than those in LNMTs, we identified the phenotype
and characteristics of CD8 T cells within the two tissues in detail, such
as the subpopulation and development path of CD8 T cells in PT vs
LNMT, which can be well characterized in single-cell sequencing. (2)
CD4+CXCL13+ cells were reprogramed to an exhausted state and
expressed lower levels of IFNG, CXCL13, and genes that inhibit tumor
growth in the LNMTmicroenvironment. However, the function of the 5
clusters of CD4+CXCL13+ cells needs to be further verified by experi-
ments. (3) The frequency of CD8+CXCL13+ was remarkably decreased in
LNMT. And (4) compared to those in PTs, MT cells in LNMTs exhibited
functional inhibition. Collectively, these findings indicate that immune
cells in metastatic LNs are reprogrammed in several ways. Lymphatic
vessels express several genes that inhibit T cell activity, such as pro-
grammed death-ligand 1 (PD-L1), and may mediate immune
tolerance43,44, a fact which may be the key to explaining our findings.
Furthermore, very interestingly, we found that malignant cells migra-
ted to LNMT downregulate their antigen presentation pathway, which
results in the defect of presenting tumor-related epitope to adaptive
immune cells. Loss of antigen presentation has been studied in various
tumors and was the common way for cancer cells to escape from
immune surveillance. Taken together, these findings may help us
understand why the tumor cells are easy to survive in LN.

Another interesting finding in this study is that activated LAMP3+

DCs showed higher enrichment in LNMTs than in PTs and strongly
interacted with Tregs through CCL17 or CCL22, and this may partly

account for the suppressed activity of T cells in LNMTs. A recent study
revealed that LAMP3+ DCs in pancreatic adenocarcinoma might pro-
mote immune tolerance through interacting with tumor-infiltrating
Tregs, supporting our conclusions45. Given the higher proportion of
naïve state T cells in LNMTs compared to in PTs, we speculate that
immunotherapy drugs may have very limited antitumor effects on the
microenvironment of LNMTs, and this may have ramifications for the
clinical treatment of breast cancer with LNMTs.

Immune infiltration in tumors is currently an area of research
focus, and findings in this area may have important clinical
application46. Immune infiltration is related to different subtypes of
breast cancer. Comparedwithpatients of other subtypes, patientswith
triple-negative and HER2+ breast cancer exhibit stronger immune
infiltration and can benefit from immunotherapy35, 47. Although clinical
and pathological characteristics have been found to be related to
immune infiltration, the current understanding of immune cell infil-
tration is extremely limited, and the mechanisms underlying the
varying degrees of immune infiltration in patients with different sub-
types are still unclear. CAFs are important components in the TME by
their regulation of immune cell activity and promotion of tumor pro-
gression and metastasis. In this study, we found a type of PLA2G2A+

CAFs that was enriched in HER2+ breast cancer and showed high
expression levels of genes that can interact with immune cells.
PLA2G2Awas reported to promote the proliferation ofmonocytic cells
through interacting with αvβ3 and α4β1 integrin48. A previous report
also found that PLA2G2A is overexpressed in some fibroblast
subtypes49. We verified in the TCGA-BRCA database that there was a
significantly positive correlation between PLA2G2A+ CAF markers
and immune cell markers. Furthermore, in our single-cell dataset,
PLA2G2A+ CAFs were observed to interact with various immune cells,
especially macrophages, which suggests that PLA2G2A+ CAFs may be a
factor in tumor immune infiltration, promoting tumorigenesis and
tumor development. Another interesting observation is that PLA2G2A+

CAFs were present in both the PT and the LNMT of HER2+ patients;
however, they were not present in the LNMT of patients with luminal
breast cancer. Therefore, PLA2G2A+ CAFs may be recruited and
dominated by HER2+ tumor cells to migrate or differentiate in the
process of tumor development.

In summary,wedemonstrated that the immune cells in LNMTs are
less active than those in PTs and clarified the mechanism underlying
this difference. Further mechanistic investigations to determine pre-
cisely why tumor cells can more easily colonize and proliferate in LNs
are thus warranted. Our study identified the unique features of the
LNMT and PT microenvironments, the knowledge of which can aid in
developing individualized therapy that targets these microenviron-
ments in patients with breast cancer.

Methods
The studywas conducted in accordancewith theDeclaration of Harbin
Medical University complying with all relevant ethical regulations.

Fig. 6 | PLA2G2A+ CAFs in HER2+ breast cancer promoted immune infiltration.
a, b A UMAP embedding plot of 10,049 fibroblasts and vascular endothelial cells
grouped into 10 clusters. Cells were color-coded according to cluster (a) or sub-
types (b). cTheproportion of subtypeswithin 10 subsets infibroblasts and vascular
endothelial cells; the color represents the tissue type. The x-axis is the fraction of
tissues, and the y-axis is the major cell type. d A bubble heatmap showing the
interaction strength for representative ligand-receptor pairs between CAFs and
immune cells; the dot size and color indicate the interaction strength. e Violin plots
showing the expression of proteins that interacted with immune cells of d.
f Transwell assays were used to measure cell migration. PLA2G2A protein (0.5μg/
ml)was respectively applied to the top chamber and thebottomchamber, and then
cells were incubated at 37 °C in 5% CO2 for 4 h. Statistical testing was performed by
two-sided t-test. (n = 3 biological replications; ***P =0.000706, ****P =0.000011).
Data are presented asmean values+/− SD. g The correlation between PLA2G2A and

CD3E of HER2+ and luminal patients in the TCGA-BRCA datasets (HER2+:
n = 67 samples, LumA: n = 421 samples, LumB: n = 192 samples). The correlation
coefficient and P-value were calculated with two-sided Pearson rank correlation. In
the box plots, the center line corresponds to the median, box corresponds to the
interquartile range (IQR), and whiskers 1.5 × IQR. Statistical testing was performed
with a two-sidedWilcoxon test. h IHC staining showing the PLA2G2A protein levels
in representative luminal (left) or HER2+ (right) patients. i PLA2G2A score of IHC
either in luminal (n = 20) or HER2+ (n = 21) breast cancer patients. Two-sided Wil-
coxon test. Data are presented asmean values+/− SD. j, k Representative images of
a HER2+ patient stained by multicolored IHC; yellow represents PLA2G2A+ CAF, red
represents macrophages, and the green represents CD8 T cells. Original magnifi-
cation, 40x (j), scale bar = 200μm or 100x (k), scale bar = 100μm. (n = 3 indepen-
dent replications). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34581-2

Nature Communications |         (2022) 13:6823 11



Written informed consent was obtained from all participants. No
compensation was provided for the study participants.

Tissue acquisition
Eight treatment-naïve female patients with a pathological diagnosis of
invasive ductal carcinoma of the breast with LNMT were enrolled at
Harbin Medical Hospital. Their ages ranged from 47 to 66 years, with

the median age being 56 years. PT and paired LNMT tissues were
surgically resected from each patient. Among the patients, 5 cases
were luminal subtypes and 3 cases were the HER2-overexpressing
subtype.

This study was approved by the Research and Ethical Committee
of Harbin Medical University Cancer Hospital (IRB:KY2019-08). Writ-
ten informed consent was obtained from all participants in the study.
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Cell preparation
PT or paired LNMT tissues were separated and digested into single-cell
suspensions. The 10x Genomics Cell Preparation Guide describes best
practices and general protocols for washing, counting, and con-
centrating cells from both abundant (>100,000 total cells) and limited
cell suspensions (<100,000 total cells) in preparation for use in 10x
Genomics Single Cell Protocols.

Formalin-fixed, paraffin-embedded (FFPE) samples passing the
RNA quality control were used to prepare for spatial transcriptomic
construction and sequencing. The Visium Spatial Gene Expression
Slide & Reagent Kit (10x Genomics) was used to construct sequencing
libraries according to the Visium Spatial Gene Expression User Guide
(CG000239, 10x Genomics).

Library construction and sequencing
The cell suspension was loaded into Chromium microfluidic chips
with 5′ v.1.1 chemistry and barcoded with a 10× ChromiumController
(10x Genomics). RNA from the barcoded cells was subsequently
reverse-transcribed, and sequencing libraries were constructed with
reagents from a Chromium Single Cell 5′ v1.1 Reagent Kit (10x
Genomics) according to themanufacturer’s instructions. Sequencing
was performed with an Illumina NovaSeq 6000 PE150 system,
depending on the experiment and following the manufacturer’s
instructions.

Spatial transcriptomic sequencing was performedwith a NovaSeq
PE150platformaccording to themanufacturer’s instructions (Illumina)
at an average depth of 300 million read-pairs per sample.

Multicolor immunohistochemistry
Fresh tissues obtained from the patients were embedded in paraffin.
The paraffin-embedded tissues were cut into 5-um–thick sections on a
glass slide. The sections were infiltrated with fresh xylene 3 times for
10min each time before being soaked in 100% ethanol, 95% ethanol,
and 75% ethanol, in that order, once for 5min. The sections were then
soaked in sterile water 3 times, for 1min each time, to remove the
paraffin. The deparaffinized slides were exposed to antigen in a 100 °C
water bath with antigen retrieval solution for 20min. Next, the slides
were blockedwith 10% goat serum for 10minutes. After the removal of
the blocking solution, the slides were incubated with the first primary
antibody at room temperature for 1 h and then with the secondary
antibody at room temperature for 10min. Finally, the slides were
incubated with fluorescent staining amplification solution (Absin
multicolor immunohistochemistry kit) for 10min at room tempera-
ture. The second and third primary antibodies were stained following
the same steps as those for the first antibody, including antigen
retrieval, and incubation with primary antibody, secondary antibody,
and fluorescent amplification solution. Primary antibodies used for
multicolor immunohistochemistry were rabbit anti-human CD8A
(Abcam, catalog: ab17147, clone id: C8/144B, 1:200 dilution), rabbit
anti-human CD68 (Abcam, catalog: ab213363, clone id: EPR20545,
1:200 dilution), and anti-human PLA2G2A (Invitrogen, catalog: PA-
102403, 1:200 dilution).

Single-cell RNA-sequencing data processing
Droplet-based sequencing data were aligned and quantified with the
Cell Ranger Software Suite (version 3.1.0, 10x Genomics) using the
GRCh38 human reference genome (official Cell Ranger reference,
version 3.0.0). To obtain high-quality cells, every sample underwent
filtering as follows: (1) cells were filtered if the number of detected
genes (log10 scale) was below the medians of all cells minus 3 × the
median absolute deviation; (2) cells were filtered if the proportion of
mitochondrial geneswashigher than themedian of all cells plus 3 × the
median absolute deviation; and (3) cells were filtered if their unique
molecular identifier (UMI) counts were lower than 300.

For spatial transcriptomic sequencing, FASTQ files and histology
images were processed by Space Ranger (version spaceranger-1.2.0,
10x Genomics) software with default parameters. The filtered gene-
spots matrix and the fiducial-aligned low-resolution image were used
for down-streaming data analyses (Seurat).

Doublet detection
To remove doublets in single-cell RNA sequencing data, cell doublets
were identified using the Scrublet package50. Briefly, for each sample,
the cell count matrix was fed to Scrublet. Then, the “scrub_doublets”
function was applied to simulate doublets, the doublet scores were
calculated, and doublet calling was performed. To further reduce the
false-negative rate in the Scrublet analysis, we over clustered the
remaining cells and calculated the average doublet score within each
cluster. We removed any clusters that had an average doublet score of
more than 0.6 or more than 1 known cell marker (i.e., CD3D for T cells
and CD79A for B cells).

Estimation and removal of contaminated messenger RNA
We observed ambient messenger RNA (mRNA) effects, which are ubi-
quitous in droplet-based single-cell RNA-sequencing (RNA-seq)
experiments. The possible reason for this is that free mRNA released
from dying cells and single cells were simultaneously captured by
beads in droplets. SCGB2A2 is expressed almost exclusively in the
normal breast epithelium and human breast cancer cells; however, in
our dataset, we found other cell types. such as immune cells and CAFs,
also expressed SCGB2A2. We stained SCGB2A2 and immune cell mar-
kers to confirm the absence of these markers. We then used SoupX
software to remove or reduce the ambient mRNA effects51. Briefly, we
regrouped all cells (“sc.tl.leiden” function from the scanpy package;
resolution = 0.8) to obtain a rough cluster classification. Raw count
matrices with defined clusters were fed into the “SoupChannel” and
“setClusters” functions. To estimate the contamination fraction of the
dataset, we manually defined the 3 gene sets with the strongest
ambient effect: immunoglobulin (IG) genes, human leukocyte antigen
(HLA) genes, and breast epithelium genes (SCGB2A2 andKRT19). These
gene lists were fed into the “estimateNonExpressingCells” function and
the “calculateContaminationFraction” function to calculate the con-
tamination fraction for each cell. Finally, the original count matrix was
automatically corrected using the “adjustCounts” function, and the
adjusted matrix was further used for downstream biological analysis.

Fig. 7 | Antigen-presentation pathwaywas downregulated inmalignant cells of
metastatic lymph node. a A heatmap showing large-scale CNVs of epithelial cells
(rows) from paired tumor tissues in 8 LNMT patients. CNVs in red indicate ampli-
fications, while those in blue indicate deletions. CNVs were identified by inferCNV.
b t-SNE plot of malignant epithelial cells identified by inferCNV malignant score.
cVolcano plot showing the differentially expressed genes between PT and LNMT in
malignant cells of patient 8. P value < 0.05, log2 (fold change)≥0.5. Statistical
testing was performed by a two-sided Wilcoxon test. d Barplot showing top 10
normalized enrichment score (NES) of shared significant enriched pathways across
patients. Genes ranks calculated by PT vs LNMT in malignant cells for each patient

were used for NES calculating by GSEA analysis. Color represents the numbers of
patientswhich are significant in samepathways. eGSEA analysis showed that genes
rank in PT vs LNMT of represented patients are enriched in antigen presentation
pathway. Left represent high gene rank in PT. Statistical testing was performed by
permutation test. The P-values were corrected with Benjamini-Hochberg adjust-
ment. f Circos plots showing 6 CNV clusters of malignant epithelial cells according
to CNVs similarity for patient 8. Cells were colored by tissue. gBar plot showing the
frequency of 6 CNV clusters in patient 8. h Violin plots showing the MHC I antigen
presentation signature (Up) andMHC II antigen presentation signature (Down) of 6
CNV clusters from patient 8. Source data are provided as a Source Data file.
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Dimension reduction and annotation of single-cell RNA-seq data
To integrate and visualize data, we used the Scanpy python toolkit
(version 1.4.1) to analyze our single-cell dataset. Briefly, we performed
dimension reduction steps including normalization, logarithmic
transformation, highly variable gene calling, data scaling, and PCA
calling. To remove the batch effect, data were processed using batch-
balanced k-nearest neighbors (BBKNN). BBKNN modifies the neigh-
borhood construction step to produce a graph that is balanced across
all batches of the data. This approach treats the neighbor network as
the primary representation of the data. For each cell, the BBKNN graph
is constructed by finding the k-nearest neighbors for each cell in each
user-defined batch independently. As for our data, we implemented
BBKNN from the scanpy package by using the “bbknn function”52, and
the parameters were set as follows: batch_key = “patient”, n_pcs = 35. A
batch-corrected neighbor graph was used to find clusters using the
Leiden community detection algorithm. To reasonably cluster cells
and find their biological markers, the following steps were performed.
First, we changed the Leiden resolution parameter from0.6 to 2 by 0.2
to obtain a collection of cell classifications. Then, we compared the
UMAP embedding plot colored by canonical markers (PTPRC, CD3D,
CD8A, CD4, CD79A, LYZ, PLVAP, ACTA2, and KRT19) with the UMAP
embedding plot colored by the clusters output by different Leiden
resolutions to find the smallest suitable Leiden resolution to distin-
guish canonical markers. Clusters with the same canonical markers
weremerged. In the first round of clustering, we identified 6major cell
types including immune T and natural killer (NK) cells, epithelial cells,
B cells, myeloid cells, CAFs, and tumor endothelial cells (TECs). We
observed that immune cell types, including CD4, CD8, and NK cells
could not be distinguishedwell using the Leiden-based classification in
the first-round clustering. The reasons for this include the cell types
detected by 10x Genomics having limited features and similar tran-
scriptome profiles, and dimension reduction preserving the difference
betweenmajor cell types but losing some information aboutmajor cell
types. In the second round of clustering, immune T and NK cells,
epithelial cells, myeloid cells, CAFs, and TECs labeled in the first round
were further divided into subsets and reclustered into more detailed
subclusters. To identify the specific markers of each cluster, differen-
tially expressed genes were identified using the “FindAllMarkers”
function of the Seurat R package (v. 3.1.5). Clusters were annotated
based on the expression of known marker genes or the most highly
expressed genes (Supplementary data 1). The third round of clustering
was performed on the annotated clusters in which we were interested,
including the group of FOXP3+ expressed CD8A+ markers that were
distinguished when we reanalyzed CD4-C5-FOXP3 and re-clustered
CD4-C6-CXCL13 to find heterogeneity and continuous biological
states. The second and third rounds of clustering were performed
following the same steps as those in the first round, starting from the
adjusted count matrix and including normalization, logarithmic
transformation, variable gene calling, scaling, PCA calculation, and
batch correlation.

Estimating the cellular composition of each sample
To compare the relative preference of each cell type in different
classifications (e.g., PT vs. LNMT and HER2+ vs. luminal), we made a
double table of the number of cells according to the corresponding
classification. To reduce the sample size effects, we calculated sample
size scaled proportion as follows: number of cells of a specific type in a
category/total number of cells in the category. The category-
normalized numbers were used to calculate the proportions of cate-
gories in a specific cell type.

To calculate the cellular composition in a specific patient, we
defined broad cell types (e.g., B, CD4, CD8, DC, macrophage, CAF, and
epithelial cell). We calculated the number of cells of a specific type as
defined above and divided this number by the total numbers of cells
from a specific patient. As the tumor cell suspensions were thoroughly

mixed and captured without bias, this ratio reflected the natural cel-
lular composition within the tumor.

Integration of spatial transcriptomic with single-cell RNA-seq
with Seurat
The Seurat package was used to perform gene expression normal-
ization, dimensionality reduction, spot clustering, and differential
expression analysis. To integrate the data, single-cell RNA-seq tran-
scriptome and spatial transcriptome were preprocessed by the
“SCTransform” function and PCA analysis. Then “FindTransferAn-
chors” and “TransferData” functions were used to measure each clus-
ter score for each spot.

Comparison of myeloid cells in different tissues in other
datasets
We downloaded count matrix files (GSE114727)12 from the Gene
Expression Omnibus (GEO) database and mapped labels and embed-
dings from reference data to the new datasets. In brief, raw count
matrix data from the new dataset were imported into scanpy and
subjected to preprocessing, including filtering, normalization, and
logarithmic transformation. We then used the “ingest” function in
scanpy to integrate embeddings and annotate the new datasets
through projection onto a PCA that was fit our reference data. The
mapping labels from the new datasets were output for enrichment
analysis.

Estimation of CNV and determination of malignant cells
We inferred the CNV of epithelial cells using transcriptomic profiles,
to determine the malignant epithelial cells7. CNV was estimated
based on 2 major steps: initial CNV (CNVi) calculation and final CNV
(CNVf) estimation. Genes were first sorted according to their geno-
mic location at each chromosome, and then the CNVi was derived by
applying a sliding window of 100 genes to calculate the average
relative expression values within each chromosome. In this way,
gene-specific patterns could be eliminated, and the derived profiles
(i.e., moving average) largely reflected the CNV. We also restricted
the relative expression values to [–3, 3] (values beyond the bounds
were replaced with bound values) to avoid any genes with extreme
expression influencing the moving average. We defined the CNV
score of every single cell as the sum of the square of the CNVf across
all windows. The malignancy score of each single-cell was defined as
the mean of the square of the CNVf minus 1 across all windows. The
smooth distribution curve of the malignancy score was fit using
bimodal methods to estimate the threshold for malignancy.
This function was provided by the “getBimodalThres” function in
the scCancer package53. Cells with a malignancy score that
exceeded the malignant threshold were determined to be malignant
epithelial cells.

Cell–cell interaction analysis
Cell-cell interactions were analyzed using the cellphoneDB python
package54. To reduce the computational burden and represent dif-
ferent cell types, we downsampled the dataset by randomly sampling
1000 cells of each cell type. The strength of interactions was com-
puted based on the expression of a receptor by 1 cell type and a
ligand by another cell type. Only receptors and ligands expressed by
more than 30% of the cells in a specific cluster were considered. The
cluster labels of all cells were randomly permuted 1000 times to
calculate the P value for the likelihood of paired interactions. Only
paired interactions with a P value of less than 0.05 were considered.
To obtain different paired interactions between different types of
CAFs and other cell types, we calculated the differentially expressed
genes using the “FindAllMarkers” function. Only genes meeting the
criteria of LogFC threshold > 0.5 and min.pct > 0.25 were used to fil-
ter paired interactions.
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Diffusion map–based pseudotime trajectory inference
We implemented a diffusion map on cell types that had the same
lineage, such as CD8 T cells. A diffusion map function was imple-
mented in scanpy packages. The BBKNN batch-corrected expres-
sion matrix was used for calculating the neighbor matrix with the
following parameters: n_neighbors = 10, n_pcs = 15, and method =
“gauss”. The neighbor matrix was then used to calculate the dif-
fusion map. We found that changing the number of neighbors
did not impact the relative position of cell types in the
diffusion map.

Monocle 2–based pseudotime trajectory inference
We constructed the single-cell trajectory of epithelial tumors by using
a reversed graph embeddingmethod implemented in the RMonocle 2
package (v. 2.6.3)55. To increase the efficiency of the operation, we
randomly selected 500 cells annotated as epithelial cells from each
sample; for sample sizes of fewer than 500 cells, all the cells were
taken. We integrated the expression matrix of epithelial cells using
BBKNN, to neutralize patient-specific effects, including different
patients and disease subtypes. After this, cell clusters were determined
by a Leiden function with a resolution of 0.8 in batched-removed
epithelial cells.We compared eachcell clusterwith other clusters using
the “FindAllMarker” function in the Seurat package to determine the
batch-removed differential expressed genes, and the top 20 differ-
ential expressed genes per cluster were used to order cells in Monocle
to construct the epithelial cell DDRtree trajectory plot56. The signature
of each state was calculated based on differentially expressed genes
over the other states. To compare breast cancer epithelial cells with
normal epithelial cells, we first obtained signature genes of normal
epithelial developmental states from normal epithelial datasets. Then
the average of the signatures was calculated for breast cancer
epithelial cells.

T-cell receptor analysis
Alignment and quantification of 10× VDJ sequencing data were per-
formed with the Cell Ranger software using the GRCh38 human VDJ
reference genome (official Cell Ranger reference, v. 3.1.0). VDJ
sequencing information was extracted from the output file using the
Scripy pythonpackage (v. 0.3).Weused the “chain_pairing” function to
summarize TCR compositions. Cells with the same α or β chains were
defined as clonotypes. According to their unique α and β chains, TCR
chains can be classified into 7 types: single pair, orphan beta, orphan
alpha, extra alpha, extra beta, 2 full chains, and multichain. Only the
single pair type was used in the downstream analysis. To integrate
transcriptome data, we included cells annotated as CD4 or CD8 T cells
to visualize our TCR data on embeddings.

We used STARTRAC packages20 to analyze the behavior of T cells.
To obtain good quality data, we excluded patient 2 and patient 4, who
had low T-cell capture rates, from the downstream analysis. STARTAC-
expansion and STARTAC-transition were used to separately analyze
T cells in PTs and LNMTs.

STARTRAC-expansion is usually used in the standard TCR clon-
ality measurement but was specifically applied to different T cell
clusters in our analyses. Normalized Shannon entropy was used to
calculate the evenness of the TCR repertoire of the given T cell cluster
and then define the STARTRAC-expansion index as 1-evenness.
STARTRAC-expansion ranged from 0 to 1, with 0 representing no
clonal expansion for each clonotype and 1 representing a cluster
composed of only 1 clonally expanded clonotype. A high STARTRAC-
expansion indicated high clonality.

STARTRAC-transition was used to quantify the extent of state
transition of each clonotype within a given cluster. The STARTRAC-
transition index at the cluster level was defined as the weighted aver-
age of all TCR clonotype state transition indices contained in the
cluster.

Cell culture
THP-1 (human acute monocytic leukemia cell line, 1101HUM-
PUMC000057) was purchased from Cell Resource Center of Peking
UnionMedical College (Beijing, China). THP-1 was authenticated using
short tandem repeat analysis. No mycoplasma contamination was
detected. THP-1 cells were cultured in RPMI-1640 medium supple-
mented with 10% fetal bovine serum, penicillin (100μg/ml) and
streptomycin (100μg/ml). Cell lines were incubated in a humidified
atmosphere of 5% CO2 at 37 °C.

Transwell assay
2 × 106 THP1 cells were added into the top chamber of 24-well tissue
culture inserts (Costar). PLA2G2A (0.5μg/ml, 11187-H08H, Sino Biolo-
gical) was respectively applied to the top chamber, in RPMI-1640, and
the bottom chamber, in RPMI-1640 containing 20% serum. After
incubation at 37 °C in 5%CO2 for 4 h, cells in the bottom chamber were
collected and counted.

The Cancer Genome Atlas data analysis
The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA)
datasets were used to analyze the correlations of selected genes with
patient survival. Gene expression as well as clinical and survival data
were downloaded from UCSC Xena (http://xena.ucsc.edu/). The sig-
nature scores of the TCGA-BRCA patients were calculated as the mean
expression of genes in the signature. The signature scores were
grouped into high and low expression groups by the 55th and 45th

quantile values, respectively. We used the survival packages to calcu-
late the impact of genes or signatures on patient survival and plotted
Kaplan–Meier survival curves using ggsurvplot in R. For correlation
analysis, gene or signature scores were calculated by applying Spear-
man’s correlation coefficient using the cor function in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data and processed data of single-cell RNA-sequencing data
and single-cell VDJ-sequencing data have been deposited in the Gene
Expression Omnibus (GEO) database under accession code
GSE167036. The raw data and processed data of spatial transcriptomic
data generated in this study have been deposited in the Gene
ExpressionOmnibus (GEO) database under accession codeGSE190811.
The publicly available single cell dataset used in this study are available
from the Gene Expression Omnibus (accession numbers GSE11472712).
Source data are provided in this paper as a Source data file. The
remaining data are available within the Article, Supplementary Infor-
mation, or Source Data file. Source data are provided with this paper.

Code availability
Code can be found on GitHub: [https://github.com/bio-liucheng/brca-
singlecell] and Zenodo and the corresponding DOI is as follows:
https://doi.org/10.5281/zenodo.721288157.
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