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The acceleration of large-scale sequencing and the progress in high-

throughput computational analyses, defined as omics, was a hallmark for the

comprehension of the biological processes in human health and diseases. In

cancerology, the omics approach, initiated by genomics and transcriptomics

studies, has revealed an incredible complexity with unsuspected molecular

diversity within a same tumor type as well as spatial and temporal heterogeneity

of tumors. The integration of multiple biological layers of omics studies brought

oncology to a new paradigm, from tumor site classification to pan-cancer

molecular classification, offering new therapeutic opportunities for precision

medicine. In this review, we will provide a comprehensive overview of the latest

innovations for multi-omics integration in oncology and summarize the largest

multi-omics dataset available for adult and pediatric cancers. We will present

multi-omics techniques for characterizing cancer biology and show howmulti-

omics data can be combined with clinical data for the identification of

prognostic and treatment-specific biomarkers, opening the way to

personalized therapy. To conclude, we will detail the newest strategies for

dissecting the tumor immune environment and host–tumor interaction. Wewill

explore the advances in immunomics and microbiomics for biomarker

identification to guide therapeutic decision in immuno-oncology.
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Introduction

Cancer is an important cause of death worldwide, even if its mortality has declined

during the last decade (Santucci et al., 2020). The International Agency for Research on

Cancer (IARC) GLOBOCAN cancer statistics predicted an increase of 50% for the cancer

incidence and an increase of 62.5% of the mortality from now to 2040 worldwide (Ferlay

et al., 2020). There is an urgent need to better cancer survival rate; however, to cure this

disease, we first need to understand its underlying mechanisms.
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Until recently, cancer was widely considered as organ

dependent and characterized by the site of apparition of the

tumor. This hypothesis was slowly abandoned due to the

heterogeneity present between two patients with a similar

tumor (Dagogo-Jack and Shaw, 2018) that was identified

through the emergence and democratization of next-

generation sequencing (NGS). NGS allows the generation of a

large amount of data in a short period of time, marking the

beginning of a new era for cancer research: the genomics era

(Knox, 2010; Lakshmanan et al., 2020). This led to a new

characterization of cancer, not based on the tumor site but

founded on molecular classification (pan-classification)

(Hoadley et al., 2014; Campbell et al., 2018). Following the

expansion of genomics, the exploration of the other layers of

cancer biology started. The apparition of different omics such as

transcriptomics, epigenomics, and proteomics allowed the

possibility to understand the underlying complexity of tumors

(Alyass et al., 2015). The dawn of omics studies led to the

discovery of further complexity with cancer presenting intra-

tumoral heterogeneity at a cellular level (Dagogo-Jack and Shaw,

2018). The study of these new omics highlighted an unsuspected

complexity inside the tumor architecture but also furthered our

understanding of interactions between cancer and its

environment (gene-environment, microenvironmental

interaction, and immune system interaction) (McAllister et al.,

2017; Zhou et al., 2017; Gonzalez et al., 2018; Barriga et al., 2019).

The use of single omics, such as genomics and

transcriptomics, uncovered many driver genes to better

comprehend the genomic landscape of cancer. Interestingly,

some of these studies revealed the wide complementarity of

genomics and transcriptomics, many of the driver genes being

identified by either one or the other modality (Wong et al., 2020;

Berlanga et al., 2022). This fosters the need of combining the

interconnected biological elements of cancer to move from

single-omics to multi-omics analysis. The multi-omics

integration is defined by the modelization of more than one

biological element in order to characterize biological systems in

its globality at the phenomenological level (de Anda-Jáuregui and

Hernández-Lemus, 2020). The purpose of doing this is to look at

how the different biological layers of the cells interact with each

other, leading to the creation of an interconnected network

highlighting the underlying complexity of cancer. Data

integration in cancer have three main goals: understanding

the molecular mechanism of cancer, clustering disease

samples, and predicting an outcome (survival or therapy

efficacy) (Hiley et al., 2014; Jamal-Hanjani et al., 2014; Tebani

et al., 2016; Sharifi-Noghabi et al., 2019). Computational

methods were needed to integrate the large diversity of data

prompting the development of new algorithms to overcome the

intricacies of multi-omics integration.

To this day, even with the new information that multi-

omics approaches can bring, understanding how cancer

develops and maintains is puzzling. Indeed, cancer cells

interact with many different components including the host

immune system (Witkowski et al., 2020). These interactions

define the tumor immune microenvironment (TiME) that can

be beneficial or detrimental to cancer cells, leaning toward

more tolerogenicity or immunogenicity (Iwai et al., 2002;

Garrido and Aptsiauri, 2019; Gou et al., 2020; Tang et al.,

2020). To understand the TiME provides insights on how the

cancer cells hijack the immune system to survive, but also

might predict if a tumor is likely to respond to

immunotherapy by immune checkpoint blockade (ICB)

(Riaz et al., 2017). Indeed, biomarkers derived from the

study of TiME appeared to be helpful to anticipate cancer

sensitivity to immunotherapy (Goswami et al., 2020).

Immunomics, the field of omics-based analysis that aims to

describe the reaction of the immune system to another

biological component (pathogen or cancer), can be used to

analyze the interactions existing between the host immune

system and the cancer cells and how it leads to immune

recognition or immune ignorance (Arnaout et al., 2021).

However, to fully depict the interconnection that exists

between the tumor and the immune system, other players

need to be taken into the equation. Indeed, it has been shown

that the microbiome can influence the sensitivity of cancers to

ICB, suggesting an interplay between the host microbiota and

the immune constitution of tumor microenvironment

(Baruch et al., 2021). Immunomics and microbiomics are

two novel components that should be included into multi-

omics models to integrate the tumor/host interaction in

cancer complexity.

In the first part, due to the growing interest in multi-omics,

this review will address the challenges raised by omics and how to

overcome them. In the second part, we will provide an overview

of different databases that are useful in cancer research. In the

third part, this review will attempt to illustrate how to integrate

mutli-omics to clarify cancer complexity, and how the use of

machine learning can help to predict survival and treatment

response. Finally, we will give an overview of new methods to

decipher the interaction between the host and the cancer cells

and how it can bring opportunity for personalized therapy

(Figure 1).

Challenges

To integrate the massive data flow generated through the

different biological elements explored by NGS, innovative

computational tools are needed for diminishing the data

dimension, then making them manipulable by human hands.

These tools allow researchers to fulfill the gap of missing

knowledges and contribute to the discovery of novel biomarkers,

deciphering the complexity of cancers (Subramanian et al., 2020;

Poirion et al., 2021; Wörheide et al., 2021; Zeng et al., 2021). Despite

the progresses in these new instruments, multiple challenges remain.
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TABLE 1 Description of different tools for multi-omics integration with their application and their major strength and limits.

Method Principle Aim Omics element Pros Cons

JIVE Matrix
factorization

Disease subtyping,
systemic knowledge,
module detection

Genomics and epigenomics Integrate large amount of data Sensitive to outliers and missing
values

NMF Disease subtyping,
module detection,
biomarker discovery

Genomics and epigenomics Filtering weak signal. Integrate
large amount of data. Detection of
cluster of small size

Time and memory consuming.
Underperforming on missing
values

nNMF

jNMF

intNMF

SLIDE Disease subtyping,
module detection,
biomarker discovery

Genomics, epigenomics and
proteomics

Integrate large amount of data Underperforming with missing
values. Optimum solution is not
guaranteed

MALA Logic data mining Sample classification Genomics and
transcriptomics

Works well on experimental data.
Integrate large amount of data

Phenotype number must be
delivered with data. Sensitive to
missing values

iCluster Gaussian latent
variable model

Genomics, epigenomics and
transcriptomics

Needs to test a large amount of
solution to find the most relevant

iCluster+ Generalized
linear regression

Disease subtyping Genomics, transcriptomics,
proteomics and epigenomics

Handle missing values No evaluation of statistical
significance for selected features

iClusterBayes Bayesian
integrative
clustering

Biomarker discovery Genomics, transcriptomics,
and epigenomics

Good performance in the presence
of explicative data

Underperform with outliers

MOFA Bayesian factor
analysis

Biomarker discovery,
systemic knowledge

Proteomics, metabolomics
and lipidomics

Handle well missing values Linear model can miss linear
relation

MOFA+ Genomics and epigenomics The use of continuous learning
enabling MOFA to recover
different trajectory

Need of multi-modal measurement
for the same set of cells

JIVE: joint and individual variation explained.

(n, j, int) NMF: (network, joint, integrative) non-negative matrix factorization.

SLIDE: structural learning and integrative decomposition.

MALA: micro array logic analyzer.

MOFA: multi-omics factor analysis.

FIGURE 1
Overflow of the omics integration for precision medicine. The bulk tumor is composed of many different biological elements that can be
classified and used to find novel interactions between interconnected elements. These interactions can be used to molecularly characterize and
subtype cancers with the aim of anticipating their clinical evolution and treatment sensitivity to promote precision medicine.
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One of these challenges is the heterogeneity that exists across

the biological layers. It may differ in type, with numerical or

categorical features, discrete or continuous variables with

different ranges. The number of features can also vary

between the different data sources, creating novel struggles to

consider. Another burden, operating during sample collection,

are missing values, setting up uninterpretable elements difficult

to handle by some algorithms. Also, processing outliers and

highly correlated variables might be burdensome to integrate as

they might be irrelevant, create noise, or overfeed a system

(Mirza et al., 2019; Song et al., 2020a).

To face these challenges, different tools have been created

that we will summarize (Canzler et al., 2020; Nicora et al., 2020;

Subramanian et al., 2020). Two main types of algorithms can be

distinguished: 1) the “exploratory matrix” and 2) the

“probabilistic matrix”. The first one is based on the matrix

and its result. It performs best with a well-defined matrix, can

handle outliers, but is less accurate when data are missing

(Devarajan, 2008; Chauvel et al., 2020; Hamamoto et al.,

2022). The probabilistic matrix utilizes probabilistic formulas

(such as Gaussian and Bayesian). These algorithms shine when

the dataset is incomplete, with missing values, but lose accuracy

with outliers (Needham et al., 2007; Yuan et al., 2021; Chu et al.,

2022). This approach aims to reduce the size of the matrix to

identify patterns within the dataset, allowing for powerful

classification models (Table 1).

Exploratory matrix

Starting with exploratory matrices, herein is a brief overview

of two algorithms using this approach: matrix factorization and

logic data mining. These methods would be preferred for well-

defined exhaustive datasets containing extreme values that need

to be considered.

Matrix factorization: joint and individual variation explained

(JIVE), non-negative factorization (NMF), and structural

learning and integrative decomposition (SLIDE) are some of

the tools based on this approach. This algorithm uses a system of

multiplication between columns and rows on a dataset

decomposed in multiple matrices of smaller dimension. Each

matrices have n columns, referring to n common objects, that will

be multiplied by m rows, referring to other common objects. The

matrix can contain different biological elements, that is, gene

expression and miRNA measurement. The strength of matrix

factorization is to cluster different matrices together but requires

a dataset with scarce missing values (Brunet et al., 2004;

Devarajan, 2008; Lock et al., 2013; Pierre-Jean et al., 2022).

Logic data mining is a multistep procedure: 1) feature

binarization, that assigns a threshold to convert each feature

in binary values (0 or 1); 2) feature selection, that uses a machine

learning approach to select a subset of data with relevant features

introduced in a model; 3) extraction of logic formulas to build the

final classification model. As an example, microarray logic

analyzer (MALA) is based on this approach and has been

used to identify overexpressed interrelated genes and proteins

involved in a common pathway (Bertolazzi et al., 2008;Wang and

éditeur, 2009; Weitschek et al., 2012).

Probabilistic matrix

We will now detail four types of algorithms to better

conceptualize the probabilistic matrix approach. These models

follow the principles of Gaussian probability, linear regression, or

Bayesian statistics and are very useful to troubleshoot datasets

with missing values.

Gaussian latent variable model uses a probabilistic matrix

starting with the dimension reduction of the dataset. The matrix

composed of N columns and D rows will be decreased to a matrix

with a lower dimensionality on D. D will be reduced in Q most

relevant data. Relevant data will then be extracted to identify a

pattern explaining the results. Because the algorithm is based on

Gaussian probability, dataset with a Gaussian distribution

perform better with this instrument than expression profiles

near 0. Lower outliers close to the null value may cause

misinterpretation during the analysis. However, missing values

are well managed by the algorithm. A tool using this algorithm,

iCluster, will be further explained in the next chapter (Li and

Chen, 2016).

Generalized linear regression is one of the subcategories

found in the generalized linear model. This algorithm is

composed of three components: 1) random component; 2)

systematic component; and 3) link function. The first step is

the matrix generation, then a linear regression will be applied to

the matrix finding the best possible linear relation to fit the

expected values. The systematic components are distributed on

the line while random components are outside of the line. The

link function will identify a relationship between the linear

predictor and the distribution of the random components. It

aims to explain why some values are following a linear repartition

while others are not. This model performs well when using data

that are already explained on unexplained data. The accuracy

might, however, be hindered by outliers that may introduce

misinterpretation. This model is used in the icluster + tools

(Mo et al., 2013; Song et al., 2022).

Bayesian integrative clustering: the objective of this approach

is to capture the major variations of multiple omics datasets,

using a reduction of the high-dimensional space to a low-

dimensional subspace. This could be vulgarized into a

compaction of the data. The algorithm will extract the

principal variations of the datasets to integrate matrices of

different dimensions to a single matrix called Z with n x k

dimensions, following the rule of multivariate normal

distribution. A joint integrative clustering will capture relevant

features to individualize distinct clusters across omics datasets.
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The use of Baye’s theorem enables the analysis of factors with

various distributions and correlation among datasets. The

probabilistic model is also permissive of missing values

(Needham et al., 2007; Fang et al., 2018; Mo et al., 2018).

Bayesian factor analysis: this is a key component of the multi-

omics factor analysis (MOFA) family tools used for multi-omics

data integration. This unsupervised method infers principal

component-based factors to decompose each matrix of M

different omics components. The matrices will be transformed

into a Z matrix of factors for each sample and M weight (W)

matrices with features in rows and factors in columns, for each

omics element. Downstream analysis will identify inference

across Z and W matrices. Also, because the algorithm is based

on a Bayesian framework, the distributions of the data are placed

on the unobserved variables of the models and the algorithm will

keep running until all the data have been characterized

(Needham et al., 2007; Argelaguet et al., 2018; Min et al., 2018).

To finish, despite the numerous tools that are now available,

the perfect tool does not exist. The continual development of

computational methods necessitates systematic evaluation

(benchmarking) of the omics data analyses tools and methods

(Mangul et al., 2019). The major issue on this benchmarking is

the lack of “gold standard” datasets, providing unbiased ground

truth. This lack of gold standard hinders the possibility to

establish generalizable benchmarks to test novel complex

software (Mangul et al., 2019; Weber, 2019; Marx, 2020).

Different notable benchmarks are available comparing: multi-

omics and multi-view clustering algorithms (Rappoport and

Shamir, 2018), multi-omics dimensionality reduction (Cantini

et al., 2021), multi-omics for cancer subtyping (Duan et al., 2021),

TABLE 2 Publicly available cancer databases with their main characteristics.

Database Multi-omics data available Disease References

TCGA (The Cancer Genome Atlas) 20,000 individual tumor samples Cancers (Weinstein et al., 2013; Tomczak et al., 2015)

RNA-Seq, DNA-Seq, miRNA-Seq, SNV, CNV, DNA
methylation, and RPPA, clinical data (treatment received
and response to treatment), histological data

TCIA (The Cancer Immunome
Database)

8,000 tumor samples Cancers Charoentong et al. (2017)

Genomic immune-related gene set, immune infiltrate,
neoantigens, cancer antigens, HLA types, and tumor
heterogeneity

ICGC (International Cancer Genomics
Consortium)

20,383 samples listed Cancers (Hudson et al., 2010; Australian Pancreatic Cancer
Genome InitiativeBailey et al., 2016; Thompson
et al., 2018)

Somatic and germline whole genome sequencing, genomic
variation data

METABRIC (Molecular Taxonomy of
Breast Cancer International Consortium)

2,503 breast tumor samples Breast
cancers

Curtis et al. (2012)

Clinical traits, gene expression, SNP, and CNV.

TARGET (Therapeutically Applicable
Research to Generate Effective
Treatments)

24 different types of pediatric cancers Pediatric
cancers

(Ma et al., 2018; Rajbhandari et al., 2018)

Gene expression, miRNA expression, CNV, and DNA-seq
data

CRI (Cancer Research Institute) iAtlas 10,000 tumors samples Cancers (Thorsson et al., 2018; Eddy et al., 2020)

Clinical data (immunotherapy responses and clinical
phenotypes), genomics, immunomodulatory genes,
neoantigens load

DNA-seq: deoxyribo nucleic acid-sequencing.

RNA-seq: ribonucleic acid-sequencing.

miRNA-seq: micro ribonucleic acid-sequencing.

SNV: single nucleotide variant.

CNV: copy number variation.

SNP: single nucleotide polymorphisms.

DNA, methylation: deoxyribo nucleic acid methylation.

RPPA: reverse-phase proteomic arrays.

miRNA, expression: micro ribonucleic expression.

HLA: human leukocyte antigen.
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and multi-omics survival prediction methods (Herrmann et al.,

2021). Regardless of the use of the same dataset for comparison,

the results obtained are not necessarily reproducible on another

database and cannot be apply to the integration of omics that

were not included in the initial dataset. The lack of a gold

standard dataset impairs the success of the benchmarking

(Krassowski et al., 2020).

Multi-omics database

The expansion and acceleration of NGS have generated a

tremendous amount of data. In a collaborative effort, extensive

omics databases have been created to stock and make those data

publicly accessible to researchers, allowing for large meta-

analysis for a tumor category or across cancer types. These

datasets can host the sequencing output of different biological

elements from bulk tumor or single-cell sequencing as well as

clinical and treatment information. We will provide a summary

of the main databases that are available for cancer research and

detail the characteristics of each library with tumor types

included and the biological and clinical contents provided

(Table 2).

The Cancer Genome Atlas (TCGA) is the largest pan-cancer

multi-omics database with clinical annotation allowing for large

meta-analysis. TCGA is widely used by the research community,

promoting new discoveries on tumor biology, evolution, and

treatment specific biomarkers validated on meta-analysis across

cancer types (Weinstein et al., 2013; Tomczak et al., 2015).

The Cancer Immunome Database (TCIA) is a new database

of immunogenic analysis of NGS data from 20 different types of

solid tumors derived from TCGA database. This database has

served for the elaboration of a pan-cancer immunogenomic

classification for checkpoint blockade sensitivity (Charoentong

et al., 2017).

The International Cancer Genomics Consortium (ICGC) is

the most ambitious biomedical efforts research since the human

genome project. This database has permitted novel observation

of cancer biology through the whole genome annotated

alterations from 2,800 samples (Hudson et al., 2010;

Australian Pancreatic Cancer Genome InitiativeBailey et al.,

2016; Thompson et al., 2018).

The Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) contains genomic data from breast

cancers. This database helped improving the classification and

subtyping of breast tumors and already led to the discovery of

10 subgroups (Curtis et al., 2012).

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) is a clinically annotate database hosting

genomics and transcriptomics data from pediatric tumors. This

dataset empowered the description of the driving process of

childhood cancers, and was used, for example, for characterizing

the immune environment of pediatric cancers and its prognostic

impact (Ma et al., 2018; Rajbhandari et al., 2018; Sherif et al.,

2021).

Cancer Research Institute (CRI) iAtlas is a database platform

allowing the study of interaction between tumors and immune

microenvironment, granting the possibility to explore immune

response across genomics and clinical phenotypes. iAtlas (first

version) allows researchers to explore these readouts and the

relation between tumor types and immune response (Thorsson

et al., 2018). CRI iAtlas now shares information about

immunotherapy response useful for biomarker identification

(Eddy et al., 2020).

The dramatic acceleration in data production and the policy for

data sharing have increased the comprehension of cancer

complexity and fostered the integration of interrelated biological

elements of omics analysis in more and more complex

computational models that we will show in detail in the following.

Multi-omics for greater accuracy

Multi-omics for a better classification of
cancer types

Tumor heterogeneity remains a hurdle to understand tumor

biology. For example, for a same tumor type, there is a wide variation

in clinical evolution across population of patients, highlighting

differences in tumor cells to progress or mutate (Lagoa et al.,

2020; Wu et al., 2020). These differences are barriers to develop

efficient therapies (Marusyk et al., 2012; Cyll et al., 2017; Marusyk

et al., 2020). Cancer is relatively easy to classify as the classification is

based on the histotype and site of origin of the tumor. However, the

classification system has increased in complexity in the last decades

with the introduction of genomics and molecular features to better

account for the clinical evolution and foster the identification of

histologic groups (Carbone, 2020). Therefore, omics data can be

used to individualize tumor types. In this aim, a variety of

bioinformatic tools have been developed to refine and accelerate

sample classification.

One of these tools that allows the sample classification is a

microarray logic analyzer (MALA). MALA is based on logic data

mining algorithm. Its follows a three-step process: (Santucci

et al., 2020) discrete cluster analysis, (Ferlay et al., 2020)

selection of the most relevant (cluster of) genes, and (Dagogo-

Jack and Shaw, 2018) logical formulas characterizing the samples

(Weitschek et al., 2012). In the context of cancer research, a

comparative study came out with the purpose to evaluate which

tools could be the most accurate in treating multilevel omics data.

MALA with sparse canonical correlation analysis (SCCA) and

non-negative matrix factorization (NMF) were compared. When

using the experimental data, MALA performed the best sample

classification compared to the others. However, on a larger data

set of simulated data, the efficiency of the model decreased

(Pucher et al., 2019).
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Multi-omics for cancer subtyping

To better understand cancer, researchers need to characterize

the different cancer subtypes. Subtyping cancer is more

complicated and remains one of the major challenges in

cancer research. The identification of subtypes can provide an

understanding of the underlying molecular mechanisms and

thereby help design precise treatment strategies for efficient

cancer management. Contrary to classification that is more

histologic, the subtypes are influenced by oncogenic

alterations and/or modifications in the gene/protein

expression (Anderson et al., 2021). Molecular classification has

partially elucidated tumor heterogeneity, however, different

subtypes can be identified depending on different layers of

biological elements: genomics, alterations, gene and protein

expression profile as well as cellular composition (Skoulidis

and Heymach, 2019). The main challenge is to be able to

accurately analyze the large amount of data and to determine

and isolate predictive patterns. Multi-omics provides a powerful

approach to process, treat, and characterize the large quantity of

data required for cancer subtyping (Menyhárt and Győrffy,

2021).

Cancer subtyping can be efficiently addressed by matrix

factorization, such as joint and individual variation explained

(JIVE) algorithm. This tool aims to individualize two types of

structures: joint and individual structures. The former is the

biological patterns of the samples that are shared between the

different component types (i.e., gene expression and

miRNA), while the latter is intrinsic of one component

and unrelated to others (Lock et al., 2013). One structure

can interfere in finding a signal in the second structure and

vice versa. JIVE was developed to distinguish these possible

interfering effects by decomposing the datasets into a sum of

three terms: (Santucci et al., 2020) low-rank approximation

capturing joint variation across the biological components,

(Ferlay et al., 2020) low-rank approximation capturing

structured variation specific to a given component, and

(Dagogo-Jack and Shaw, 2018) residual noise. It explores

the information provided by a specific biological data type or

by the interaction between several data for subtyping. A

logical weakness of this method is its sensitivity to

outliers. JIVE algorithm was tested on 234 glioblastoma

samples, with an input of miRNA and gene expression

matrices. It showed that the gene expression introduced

more structured variation than miRNA and that joint

structure variation between the gene expression and

miRNA was more accurate to classify the biological

subgroups. Overall, the multi-component integration

improved the subclassification of glioblastoma samples.

In the optic of diseases subtyping, a growing diversity of tools

based on matrix factorization were developed. As an example,

non-negative factorization (NMF) consists in multiplication

between the columns and the rows of a matrix. The input

data sets are formed by a matrix called A, composed of N

genes and M samples. Genes that regulate the expression of

downstream genes will be identified and labeled k. In the second

step, the matrix A will be split in two matrices: W composed of

the N genes and k, and H composed of k andM samples. Finally,

W and H matrices will be combined in a new matrix. The

advantage of the NMF technics is to easily cluster gene and

samples, but this is a time and memory consuming tool that does

not handle negative input and is not designed to integrate

multilayer components (Lee and Seung, 1999; Brunet et al.,

2004; Zhang et al., 2012; Yang and Michailidis, 2015).

Briefly, NMF extensions were implemented to allow multi-

omics profiling. Multi-omics integration with jNMF was

compared to single omics to class clinical data from TCGA

into different subgroups and outperformed the single element

model. Moreover, the number of groups will depend on the

clinical data used (Zhang et al., 2012). A secondmajor update was

intNMF, while jNMF only considers homogenous effects inWHI

and intNMF considers heterogenous effects (Yang and

Michailidis, 2015). As an example, breast cancer subtyping

with multi-omics data integration of five biological

components by intNMF refined the subclassification from four

classical subsets to six unique clusters (Chalise and Fridley, 2017).

The last update of NMF is called network-based integrative

(nNMF). nNMF involves a two-step process with network

generation and integration of the network. To generate the

network, a consensus matrix is built with a binary value

attributed to each sample to reflect the connectivity between

samples. Successive cycles are performed attributing a new binary

value for every novel entry until the matrix is stabilized. The

mean of the consensus matrix is made for each iterative cycle

until the last cycle. This generates a consensus matrix for each

data type integrated. The larger elements of the consensus matrix

reflect the higher similarity between samples. After the networks

are generated, samples can be considered as vertices and the

consensus values as the edges. The network integration is based

on the message passing theory (updating and combining

network) that is processed on two ways: strong signals present

in any data are conserved and consistent signals in multiple data

are added up during an iterative process. Weak signals disappear

while filtering out the noise. An advantage of nNMF is its ability

to detect true cluster of small size with high reliability. Clinical

application of nNMF demonstrated the capacity to establish

novel clusters on head and neck squamous cell carcinoma,

glioblastoma, and low-grade glioma data sets, suggesting a

new comprehensive subtyping that eliminates previously

unclassified samples (Chalise et al., 2020).

NMF and its extensions are based on matrix factorization

algorithm that are efficient tools to treat a massive amount of data

but are underperforming with missing values. To complement

this part, iCluster family tools are good alternatives. iCluster is

based on probabilistic matrices algorithm and iCluster is based

on a Gaussian latent variable model. The basic concept of
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iCluster is to jointly estimate the link between the data with a

dimension reduction principle: data and features are clustered

together to maximize the correlation between data types (Shen

et al., 2009). iCluster was used to classify novel subtypes of

esophageal cancers based on genomics, epigenomics, and

transcriptomics data. The classification varied depending on

the type of omics. Compared to previous classification, the

samples were consistently classified into three groups with

different biological traits and prognostic significance (Ma

et al., 2021). It was also used in breast cancer to integrate

DNA and RNA data leading to novel subtyping with

noticeable clinical outcomes beyond classic expression

profiling (Curtis et al., 2012).

The first extension of iCluster was iCluster+ (or

iClusterplus), a model based on a generalized linear regression

combined to the basic algorithm of iCluster. Compared to

different models, iCluster + produces the best classification

when integrating unknown datasets. It has been useful to

construct two molecular subtypes and identified two core

genes (CNTN4 and RFTN1) for lung adenocarcinoma (Zhao

et al., 2021). Two limitations to this tools can be pinpointed: it

needs to test hundreds of values to tune the optimal solution

parameters and there is no evaluation of statistical significance

for a selected feature (Sathyanarayanan et al., 2020).

The most recent upgrade is iClusterBayes, which uses a

Bayesian integrative clustering algorithm. The main advances

of iClusterBayes are to overcome the limitations of iCluster + that

were priorly exposed. This tool was tested on kidney cancer and

glioblastoma and grants the possibility for tumor subtyping.

However, iClusterBayes was not compared to another method,

so that its capacity to discover novel subtypes could not be

assessed (Mo et al., 2018).

SLIDE is a tool based on the concept of the multi-view of

data, using a matrix factorization algorithm. SLIDE was

developed in the continuity of JIVE, trying to investigate on

shared and individual structure. Compared to JIVE, SLIDE

allows the creation of partially shared scores in addition to

the individual ones. SLIDE was able to upgrade breast cancer

subtyping using gene, methylation, miRNA, and protein profiling

(Gaynanova and Li, 2019).

The integration of multiple layers of interconnected

biological elements through a wide palette of multi-omics

tools available is a great opportunity to better classify

biological-relevant cancer subtypes and to reduce unclassified

samples. The choice of the algorithm should judiciously fit the

characteristic of a given dataset to optimize the model

performance.

Biomarker discovery

The tumor biology is intimately related to disease evolution

and treatment response (Marusyk et al., 2020). The assimilation

of clinical data as additional features to feed multilayer integrated

models enables association between molecular subtypes and

clinical outcome. Discovering biomarkers associated with

prognosis and treatment sensitivity/resistance is a keystone for

risk-group classification and therapeutic decision. The

identification of treatment specific biomarkers is also granting

the opportunities to provide therapies tailored to the biological

trait of a specific tumor, opening the path for precision medicine.

Machine learning and deep learning models, trained on

Kaplan–Meier derived survival data, are powerful classifiers to

predict the clinical evolution. In this part, we aim to illustrate

how multi-omics integration alongside machine and deep

learning approaches might facilitate biomarker discovery and

guide treatment decision.

Application of multi-omics to biomarker
discovery

Multi-omics tools have been developed to discover novel

biomarkers in oncology. For example, jNMF allows biomarker

discovery for prediction of drug response through pathway

signature analysis. The identification of novel connections

between tumor biology and drug response highlighted an

association between BRAF inhibitors efficacy and BRAF/MITF

overexpression in breast cancer (Fujita et al., 2018). Also,

iClusterBayes demonstrated its ability to discover biomarkers,

revealing the role of MTAP/CDKN2A/2B expression for PD-L1

blockade sensitivity with a proportional relation of

Kaplan–Meier survival to the gene expression level (Mo et al.,

2020).

Lemon-tree is another tool for multi-omics processing that

runs a series of tasks that are self-contained step in the learning

and clustering process. The workflow of the tools is as follow: ask

biological question→ preprocess data→ clusterization→ builds

modules of cluster→ compute score→ results. Using this tool to

discover biomarkers was operated on glioblastoma genes, looking

at the amplification levels and copy-loss level of genes. The

results show that genes that have copy number alteration

(CNA) of glioblastoma oncogene EGFR and tumor

suppressors CDKN2A and PTEN, but also novel candidates

such as KRIT1 and PAOX were assimilated with a worse

prognosis (Bonnet et al., 2015). iProFun, is a method

analyzing the “cascade effects” of the genes. It takes as input

statistics associated with the data, aiming to detect the joint

variation between each data. This study highlighted potential

therapeutic candidates (AKT1, KRT8, and MAP2) in ovarian

cancers. But it also demonstrated the role of BIN2 in ovarian

cancer, and how it can be a favorable survival outcome (Song

et al., 2019). Finally, AMARETTO is used to identify driver genes

by integrating genomics and epigenomics data. This is a three-

step process, identifying candidate cancer driver genes, modeling

effect on gene expression, and association of drivers with their
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targets. In other words, it creates clusters depending on driver

genes and expression of the genes. AMARETTO was able to

highlight different driver genes such as GPX2 for smoking

induced cancer (lung squamous cell carcinoma), but also

identified OAS2 and TRIM22 as modulator of the immune

response (Champion et al., 2018).

Machine learning model for biomarker
discovery

Machine learning are algorithms that can predict models

using statistical methods based on training data. Algorithms can

be trained in two ways: via supervised or unsupervised learning.

Supervised learning relies on a labelled input dataset used to train

and develop a function to predict the outcome on an

experimental dataset. The algorithm attempts to find patterns

relating the features to the given label. The second step is to

integrate data test and to classify the validation data in the right

label by following the identified patterns. The correlation

between the given and predicted labels can be compared to

assess the accuracy of the model. Unsupervised learning

clusters the samples by identifying and regrouping different

features following a similar pattern (Huang et al., 2015). The

main difference of supervised learning is that the input data are

not labelled. Machine learning approaches algorithms containing

only one hidden layer.

A powerful tool developed for multi-omics integration is the

artificial neural network (ANN). It can be used for machine

learning and for deep learning. ANN is a simple approach to

create an artificial model, composed of neurons organized in

layers. This is composed of an input layer, hidden layer, and an

output layer. The input layer corresponds to the dataset given to

the algorithm and the output layer corresponds to the possible

outputs of the algorithm, in this case, a classification of the data.

The hidden layer is what defines the complexity of the algorithm,

it represents possible pathways linking the input layer to the

output layer. For the integration of multi-omics, different blocks,

specific to each type of omics data, are created. Depending on the

biological question, different machine learning algorithms can be

preferred.

A vast diversity of algorithms are available for machine

learning; random forest classifier and k-nearest neighbor are

commonly supervised classifiers that are easily suitable for

biomarker discovery. A random forest algorithm builds

multiple decision trees that are randomly generated. Each

decision tree provides a classification. The classification that is

chosen in a majority of cases is used to classify each datapoint of

the dataset (Tin Kam, 1995). K-nearest neighbor follows three

main steps: 1) a reference dataset is clustered into the different

classes that need to be distinguished, 2) the experimental data are

integrated into the dataset, and 3) the experimental data are

classified by calculating the distance to each defined class and

classifying each datapoint in the nearest cluster (Fixt and Hodges,

2022).

These different approaches have been successfully applied to

biological data to improve prognoses prediction. For example, ANN

has already been used to analyze the survival in two breast cancer

datasets. The model was able to predict the prognoses (favorable or

unfavorable) and relapse probability (Chi et al., 2022). In the second

example, machine learning approaches were compared to

histopathological grading to classify and predict patients’

outcome in glioblastoma. In this test, a k-nearest neighbor-based

ANN approach out scaled the histopathological grading for tumor

classification and survival prediction. (Petalidis et al., 2008). In the

third example, a random forest algorithm allowed the discovery of a

novel prognostic biomarker in the Ewing Sarcoma. As an example, a

lower Ki67 expression was associated to a better prognosis for the

subset of samples with low-CD99 expression (Bühnemann et al.,

2014). In the final example, a gene expression-based algorithm of

k-nearest neighbor and random forest identified novel prognostic

genes had increased the accuracy for the classification of the poorly

defined group of soft tissue sarcomas. They were also able to

annotate the samples in molecular subsets with potential

therapeutic susceptibility (van IJzendoorn et al., 2019).

Deep learning for treatment guiding

Deep learning approaches are a subset of machine learning

that contains multiple hidden layers organized in a network

allowing for progressive learning (LeCun et al., 2015; Bi et al.,

2019). Deep learning can be deep neural network (DNN) or

convolutional neural network (CNN). DNN is similar to ANN

with an increased number of hidden layers, and CNN is a class of

ANN used for imaging analysis (Simonyan and Zisserman, 2015;

Szegedy et al., 2015; He et al., 2016; Chollet, 2017).

Survival analysis learning with multi-omics neural network

(SALMON) attempts to aggregate and simplify the gene

expression data to enable prognosis prediction. Deep learning

approaches typically introduce an extensive number of

parameters from a limited sample set that can introduce data

overfitting rendering the models ineffective. In comparison,

SALMON favorizes the use of eigengene matrices of gene co-

expression modules to feed the model. This model was compared

to other survival prognostic models on breast cancer datasets,

including DeepSurv and random survival forest. SALMON

predictor reached a higher survival concordance index than

other methods and showed that the integration of multi-omics

data combined with clinical and demographical features can

increase the prediction performance. This algorithm was used

to develop an age-specific prognostic score for breast cancer

(Huang et al., 2019).

CNN is very useful for deconvolutional observations of

histological images used to classify and predict cancer

prognoses. CNN was successful to detect and to predict
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patient outcomes on haematoxylin-eosin-stained tumor tissue

microarray with a higher accuracy than the visual prognostic

prediction. For that, the image was cut into spots that were

characterized with a pre-trained convolutional neural network

(Bychkov et al., 2018). MesoNet is another tool developed to

analyze larger images. To do so, the whole-slide images are

subdivided in tiles that have a score assigned. Based on the

score, the algorithm can select the most relevant tiles for the

prediction. The cumulated score of the selected tiles informs the

prediction of a patient’s overall survival (Courtiol et al., 2019).

These tools perform well to analyze cancer heterogeneity. To

finish, survival convolutional neural network (SCNN) is a CNN-

based algorithm combined to an integration tool. This model

identifies visual patterns from regions of interest isolated in

biopsies and relates them to patient’s outcome to create a

model. This comprehensive tool can also integrate genomics

biomarkers. This technology was able to develop a better

prognostic prediction tool compared to WHO genomics

classification (Mobadersany et al., 2018).

DrugCell is a visible neural network for drug response

prediction. The model is built with two branches. The first

one modulates the hierarchical organization of molecular

subsystems in human cells. Each subsystem, involving small

protein complexes, is connected to larger pathways and to

cellular functions assigned from a bank of artificial neurons.

The input layer is the mutation status from genomics data and

the output corresponds to the state of the whole cell based on the

genotype. The second branch of the system is a CNN assessing

the fingerprint of a drug. The output from the two branches of the

model is combined in a single layer of neurons integrating the

response of a genotype to a certain treatment. To test on the first

side of the model, they used two large drug screening resources:

the Cancer Therapeutics Response Portal (CTRP) v2 and the

Genomics of Drug Sensitivity in Cancer (GDSC) database. Using

these two resources, it covers 684 drugs and 1,235 cell lines. Each

cell-line genotype was represented with a binary vector (mutated

or non-mutated). The chemical structure of the drug was

represented by an average of 81 activated bits in the Morgan

fingerprint vector. Drug cell was trained to associate each

genotype-drug paired with its corresponding drug–response

curve. As a last point, drug cell was clinically tested stratify

cancer patients depending on their response to treatment. They

tested drug cell on clinical trial data from 221 estrogen receptor

positive metastatic breast cancer patients and showed that the

model was able to predict the response to mTOR and CDK4/

6 inhibitors. Drug cell also includes a feature for predicting the

sensitivity to drug combination (Kuenzi et al., 2020).

In a number of studies, DNN was used to predict prognoses.

As an example, DeepSurv is a tool defined as a prognostic model.

With the integration of time-dependent and treatment-sensitive

survival data to the model, it was trained to provide treatment

recommendations. DeepSurv was tested on four real-life datasets:

Worcester Heart Attack Study (WHAS), the Study to

Understand Prognoses Preferences Outcomes and Risks of

Treatment (SUPPORT), the Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC), and

Rotterdam & the German Breast Cancer Study Group

(GBSG). DeepSurv takes input as the patient’s baseline data.

The output is composed of one node estimating the log-risk

function in the Cox model (estimation of the effect parameters

without any consideration of the hazard function). As the second

part, it uses a treatment recommender system. This system takes

into account a group of patients assigned to a specific treatment

group to predict the log-risk of a given treatment. Using the same

base line hazard functions, it is possible to calculate the personal

risk-ratio of prescribing one treatment and then, determine a

treatment recommendation algorithm. To assess the possibility

of a treatment recommendation system, DeepSurv was trained

on the Rotterdam tumor bank to build the recommendation

system that was then tested on GBSG. The treatment

recommendation system demonstrated that, on a real clinical

dataset, the patient’s survival would be increased by following the

treatment recommendation of the algorithm. In comparison, a

random survival forest-based recommendation system was not

able to improve the patient’s outcome (Katzman et al., 2018). To

conclude, DeepSurv provides strong modeling capabilities with

the ability of guiding the therapeutic decision and bringing the

clinician closer to computer-assisted technology for precision

medicine in oncology.

Other examples of machine and deep learning models

applicable for biomarker discovery are detailed in a recent

review articles devoted to this subject (Nicora et al., 2020)

(Zhu et al., 2020). So far, these powerful algorithms have been

used to successfully develop models for prognosis and treatment

response prediction. However, these cutting-edge technologies

are not yet ready for personalized treatment recommendation in

the perspective of prospective clinical implementation.

New hope in omics: deciphering
host–tumor interplay

Novel fields of interest have emerged to unravel host–tumor

interactions (Hui, 1989) through the immunologic cancer

response (Nisar et al., 2020) (Binnewies et al., 2018) and to

understand how tumor cells can trick the host to hijack its

defensive system and favor cancer immune evasion. The

comprehension of the immune escape mechanisms opened

the path to immune-mediated therapeutic opportunities. ICB

are molecules that restore the immune system’s ability to

recognize and eliminate tumor cells such as PD1/PDL1

(program cell-death protein one and its ligand) or CTLA4

(cytotoxic T-lymphocyte associated protein 4) inhibitors have

revolutionized the treatment of some adult cancers (Nishino

et al., 2017). However, not all the patients with a same disease will

respond to these treatments and anticipating the patients who
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will be responders remains challenging. Indeed, ICB efficacy is

highly dependent of the constitution of the tumor cell

immunogenicity, the host immune recognition and, ultimately,

the TiME (Bonaventura et al., 2019). The advances in NGS and

the growing number of high-throughput tumor sequencing

datasets alongside the constant improvement of computational

analyzes opened the way to new disciplines like immunomics and

microbiomics.

ICB biomarker identification

The host-tumor interaction comprises a succession of

interrelated steps facilitating or refraining an efficient

immune recognition of tumor cells. These steps are

dependent of the tumor biology, the host ability to

recognize the tumor, and the mechanisms that will

promote immune inflammation or immune evasion. Briefly,

the somatic mutations of tumors result in the expression of

neoantigens that can be exposed to and recognized by the host

antigen presenting cells (APCs). This will activate an immune

cascade responsible for the activation and recruitment of

effector T cells in the tumor (Chen and Mellman, 2017).

These primary steps determine the infiltration of the tumor

by effector immune cells: the tumor infiltrated lymphocytes

(TILs). The anti-tumor activity of TILs is influenced by the

presence of stimulatory or inhibitory signaling. PDL1,

expressed by tumor and immune cells, binds to the

PD1 receptor on T cell and generates an inhibitory signal

leading to T-cell exhaustion and loss of activity (Chen and

Mellman, 2017). To be fully efficient, ICBs needs the tumor to

be infiltrated by inflamed T cell rending possible to develop

biomarkers of efficacy (Bonaventura et al., 2019).

The identification of biomarkers was first made possible by

immunohistochemistry (IHC) assay that has the advantage of

spatial annotation but is limited by the sparse number of

features that can be assessed. A classification in three IHC

immune states for tumor infiltrated lymphocytes (TILs)

density is usually admitted with immune inflamed (or

“hot”), immune excluded, and immune deserted (or “cold”)

tumors (PMID: 30,179,157). Few biomarkers are so far

broadly recognized. Some from the IHC like tumor

infiltrated lymphocytes (TILs) density, mostly for CD8, and

the protein expression of PD-L1 in the tumor. Other

biomarkers derive from NGS test: tumor mutation burden

(TMB) and the level of expression of interferon-gamma

(IFNγ) or INFγ gene expression profile signature (Ayers

et al., 2017; Nishino et al., 2017). These biomarkers are

known to be independent predictors of response to ICB,

however the predictive value of cumulative biomarkers

remains partially solved, so that the integration of

multilayers omics analysis for dissecting the immune

environment through immunomics was brought to the fore.

Immunomics for TiME profiling

Immunomics is the part of omics integration that aims to

comprehend the host-tumor interaction and to profile the TiME.

Integrative immunomics allows for quantitative, functional,

spatial, and clonal annotation of the immune environment to

comprehend the host/cancer interaction and discover

biomarkers for ICB efficacy.

To integrate and study immune cell-host interactions, novel

bioinformatic tools were developed. The quantification and

enumeration of immune cell infiltrate can be deducted from

bulk-tumor RNAseq data by deconvolution-based tools, such as

MCP-counter (Becht et al., 2016) and CIBERSORT (Newman

et al., 2019), or through gene expression scores (Danaher et al.,

2017). It is also possible to use computational analyzes to infer

the somatic mutations and the neoantigens presented by the

tumor cells as well as the immunogenicity of these neoantigens,

for example, the TMB assesses the mutational load of a tumor

(Endris et al., 2019). The enumeration of intra-tumor T-cell and

B-cell clonotype expansion, through T-cell receptor (TCR) and

B-cell receptor (BCR) rearrangement, are particularly interesting

as a surrogate of the immune reactivity potentially induced by the

tumor. Different tools exist to extract the T-cell and B-cell

clonotype repertoire from genomics or transcriptomics data,

such as MiXCR (Bolotin et al., 2015) and immuneDB

(Rosenfeld et al., 2018). These methods align VDJ sequences,

quantify them, and sort them in distinct clonotypes. With the

development of these tools, high-throughput NGS dataset can be

analyzed through the spectre of immunomics and for discovering

new biomarkers of ICB efficacy. We will, herein, present some of

the latest studies of immunomics integration.

A pan-cancer analysis, from the publicly available TARGET

dataset, aimed to characterize and classify immune subsets of

pediatric solid cancers based on transcriptomics and survival

data (Sherif et al., 2021). The gene expression profile and gene set

enrichment analysis (ssGSEA) individualized six distinct

immune groups with diagnostic and prognostic association.

The study used the data from 408 samples from five pediatric

cancers: neuroblastoma, osteosarcoma, and three kinds of renal

cancers.

The immune infiltrate was first assessed by the immunologic

constant of rejection (ICR) method (Thorsson et al., 2018) in

three classes from low- to high-immune score. Kidney rhabdoid

tumors had the higher immune score and Wilms tumor the

lowest. Correlation clustering of ssGSEA-based immune

signatures identified five main modules: interferon-gamma

(IFN-G) and tumor growth factor beta (TGF-B) signaling,

macrophages, lymphocytes, and wound healing. These five

modules were used for the identification of six immune

subtypes: T-cell helper 2 (Th2) dominant, inflammatory,

immunologically quiet, wound healing dominant,

macrophages dominant, and lymphocyte suppressed subtypes.

Each immune subtype was composed by a specific immune
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infiltrate by CIBERSORT enumeration, that mirrored the

immune signature.

Tumor types were unevenly distributed between the immune

groups, and thus highlighting the association of the immune

phenotype and the diagnosis. Furthermore, the immune

subtyping was correlated with the prognosis, inflammatory

subtype having the best clinical outcome while wound healing

dominant subtype had the worse survival. The clinical impact

was observed across cancers and within a same cancer type. This

work demonstrates that access to NGS, well clinically annotated

large tumor database, and immunogenomics integration help

understand the interplay of host immune system and tumor cells.

The immune landscape characterization can also improve tumor

classification and prognostication as shown in this pediatric

database.

A systematic meta-analysis of tumor and

microenvironmental biomarkers for ICB sensitivity has

investigated the relative impact of independent and combined

biomarkers. An immunomics analysis from bulked-tumor

transcriptomics and genomics was performed on a dataset

from seven cancer types from 1,008 adult patients (CPI1000+)

treated with immune checkpoint blockade (ICB) (Litchfield et al.,

2021). The goal of this work was to select a large panel of

biomarkers, aggregated by a systematic literature search, to

assign a Z score for each of them and test their prediction

impact for ICB efficacy in a large pan-cancer population. The

different biomarkers explored the T-cell response, the

mechanisms for immune evasion and infiltration, and the host

factors.

In univariate analysis, clonal and total TMB and CXCL9

expression, a CD8 attractive chemokine, were the strongest

predictors for ICB response, followed by CD8A expression,

T-cell inflamed INFG gene expression, and CD274

expression. Due to the high prevalence of TMB in the

literature, researchers decided to subdivide the somatic

mutation by mutations fitting in an immunogenic signature.

Some signatures like dinucleotide variants, that are source of

amino-acid changes and generate immunogenic epitopes,

ultraviolet (UV), or tobacco mutation signatures also came

out as significant determinant of ICB response. In somatic

copy number analysis, two copy number anomalies were

identified as positive or negative predictor of response.

Surprisingly, host factors like the loss of HLA heterogeneity

or HLA subtypes did not show any impact on ICB sensitivity.

They also performed single-cell RNA sequencing of a reactive

CD8 TILs from patients to identify T-cell intrinsic markers of

ICB sensitivity and highlighted CXCL13 and CCR5 gene

involvement. The immune cell enumeration or BCR/TCR

clonality assay were not assessed in this study.

Amachine learningmodel for multivariate analysis including

the significant determinant of response was a better predictor of

ICB response than TMB alone in the initial cohort and three

external independent validation datasets. Also, a two-parameter

biomarker model combining clonal TMB and CXCL9 expression

had a better prediction accuracy than clonal TMB alone, yet

inferior to the multivariate model. The integration of

multiparameter biomarkers could explain approximatively

60% of the response to ICB in the different cancer types.

This study showed that multilayers integration of

immunogenomics data and multiparameter models can

improve the prediction of biomarker to anticipate the

response to immunotherapy. It is open the opportunity to

mechanistically solve host-tumor interaction and to

understand how ICB remodel the tumor environment.

Others studies of multilayer immunomics analysis depicted

the role of B cell in promoting ICB efficacy (Anagnostou et al.,

2020; Helmink et al., 2020). In Helmink’s study, conducted on

multiple cohorts of melanoma and renal cell carcinoma treated

with ICB, for comparison between responders and non-

responders, or immunotherapy naïve to test the prognostic

impact of B-cell infiltrate. The input data comprised RNAseq,

deconvolution immune cell enumeration, BCR clonality, single-

cell RNA sequencing, and mass cytometry (CyTOF) for

functional analysis and histological evaluation for spatial

annotation. The gene expression profile showed an increase

in the activation marker genes of B cells (IFNG, MZB1,

JCHAIN, and IGLL5) in ICB responders. Using TRUST-

algorithm for BCR clonotype enumeration, they observed an

increase of clonal counts for heavy and light chains and in BCR

diversity in responders. MCP-counter deconvolution algorithm

also confirmed the enrichment of B cells in responders

compared to non-responders. To confirm the role of B cell

in ICB activity, they used IHC to assess B-cell density and to

interrogate the spatial repartition of B cell and they performed

functional study. The IHC confirmed an increase in B-cell

density in responders and revealed a spatial organization in

tertiary lymphoid structure (TLS) where CD20+ B cells

colocalize with CD4+, CD8+, and FOXP3+ T cells. A

previous study similarly showed a correlation between B-cell

signature and increased the expression of CD8A and CD8+

T-cell infiltration (Griss et al., 2019). Functional

characterization of tumor B cell by single-cell RNA-seq and

CyTOF, first confirmed the B-cell enrichment, but also decipher

a unique immune activity of B cell (increased activity in

CXCR4 signaling, cytokine receptor interaction, and

chemokine signaling pathways) and a switch in immune

activated CXCR3+ memory B cells in responders. The use of

single-cell RNAseq and spatial omics in cancer analyze allowed,

in this case, to discover unsuspected novel interaction. This

comprehensive approach has revealed the structural role of

B cell and tertiary lymphoid structures in responses to ICB

treatment.

Multi-omics integration for immune characterization has

dramatically furthered the identification of biomarkers raising

the possibility of personalizing ICB treatment based on the tumor

immune constitution.
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Microbiomics as a modulator of the
immune environment

The microbiome is the community of microbial species that

inhabit a human body (Bhatt et al., 2017). The study of

interactions between cancer and the microbiome has gained

popularity in the past few years, showing the interplay

between cancer features and species colonizing the intestinal

flora. The intestinal flora can, indeed, play a role on cancer

(Sepich-Poore et al., 2021) by influencing the risk of cancer

apparition (Song et al., 2020b) and cancer immune response, it

also may be useful for cancer detection (Chen et al., 2021). Theses

interactions can lead to mucosal inflammation or systemic

metabolic/immune dysregulation and modulate immune

responses by altering anti-cancer immunity and response to

therapy (Bhatt et al., 2017; Gopalakrishnan et al., 2018;

Riquelme et al., 2019; Dohlman et al., 2021; Jackson et al.,

2022). In this part, we will show that immunomics and

microbiomics data should be integrated into classic omics

analysis to master cancer complexity.

There are different sequencing techniques to elucidate the

microbiome composition. The first one is the sequencing of the

bacterial 16 S ribosomal RNA (rRNA) that is abundant and

specific to each species. The 16 S rRNA genes are isolated and

amplified from microbiome containing samples and then

sequenced for species characterization. The downside of this

technique is the need of high accuracy in the primer for

amplification (Janda and Abbott, 2007; Pei et al., 2010). A

second technique, majorly used in microbiomics, is shotgun

sequencing that uses the taxonomic, functional, and genomics

profile of the bacteria to deduct the microbiome composition

(Quince et al., 2017). The study of microbiome can also be done

using classic omics techniques like transcriptomics

(metatranscriptomics), proteomics (metaproteomics), and

metabolomics used to detect dysregulation of genes, proteins,

and metabolites (Franzosa et al., 2014; Bikel et al., 2015; Singhal

et al., 2015; Daliri et al., 2017).

Lately, in the aim of cancer treatment, the study of microbiome

allowed significant discoveries. It was first stated that antibiotics can

disrupt the activity of immunotherapy inducing loss of response to

immune checkpoint blockade (ICB). Inmurinemodel ofmelanoma,

it was shown that the use of different antibiotics decreases the

response of PD-1 treatment compromising its tumor effect (Routy

et al., 2018). The same effect was observed in patients with non-small

cell lung cancer (NSCLC), renal cell carcinoma (RCC), and

urothelial carcinoma. The use of those antibiotics negatively

impacted their overall survival and progression-free survival

(Derosa et al., 2022) (Routy et al., 2018). This observation

suggested that a balanced microbiota is necessary for inducing

and maintaining the tumor immune response and prompted

further evaluation of microbiome in patients treated with ICB.

Microbiome exploration by metagenomics in NSCLC patients

treated with ICB confirmed the impact of intestinal flora,

showing an enrichment of some species in responders, notably

Akkermansia muciniphila (AkM) and Firmicutes, and in non-

responder (Prevotella, Clostridium species) (Derosa et al., 2018;

Routy et al., 2018). A recent work confirmed the role of AkM in

response to ICB and introduced the notion relative abundance of

bacteria in cancer (Derosa et al., 2022). They demonstrated that a

high abundance of AkM can improve the patient outcomes in

NSCLC, but if present in high quantity, AkM will be deleterious for

ICB response. This raised the hypothesis that restoring microbiota

equipoise could restore the response. This was assessed by fecal

microbiota transplantation of responder flora in non-responders

that was able to shift from unsensitive to sensitive phenotype and

restore ICB efficacy. After operating the transplantation, 16 S RNA

sequencing revealed that a higher abundance of Veillonellaceae

family and poor in Bifidobacterium bifidum increased the

sensitivity to the treatment (Baruch et al., 2021).

The role of microbiomics for modeling the host-tumor

interaction and the immune response to cancer is now

established, however, microbiomics has not yet been routinely

implemented in multi-omics analysis but is probably a key

element of cancer biology. Considering the high plasticity of

the microbiome constitution, longitudinal analysis of the flora

should be preferred (Turnbaugh et al., 2009; Khoruts et al., 2010;

Spencer et al., 2011; Kong et al., 2012). Most importantly, the gut

microbiota is highly intricated with the host immune reaction to

the tumor warranting its integration in the models of tumor

immune environment analysis.

Improving multi-omics integration in the
context of immunomics

As we have shown, combiningmultiple biological elements of

the tumor and of the host environment is an extremely powerful

way to anatomize the TiME and to discover new biomarkers.

However, there is no standardized method for immunomics and

most of the computational integration tools are home made. To

improve the generalization of the observation and to accelerate

the possibility of patient selection for personalized therapy,

standardization of the method is urging.

In that sense, an available R package for computational tool for

immuno-oncology biological research (IOBR) has been developed to

comprehensively combine and interpret multi-omics data in the

context of immuno-oncology (Zeng et al., 2021). IOBR has been

built to easily integrate whole exome and RNA sequencing from

bulk tumor as well as single-cell RNA sequencing and long non-

coding RNA data. It consists of a four-module pipeline with a

signature/deconvolution, phenotype, mutation, and model

construction. The signature module can identify immune or

tumor specific signatures through expression gene profile and

deconvolution estimate of the immune infiltrate. The

deconvolution part directly integrates CIBERSORT (Newman

et al., 2019), TIMER (Li et al., 2020), MCP-Counter (Becht et al.,
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2016), xCELL (Aran et al., 2017), EPIC (Racle and Gfeller, 2020),

and quanTIseq (Finotello et al., 2019). The phenotypemodule tests a

large set of immune and non-immune-related published

phenotypes, and the mutation part is able to determine

association between different gene alterations and signatures.

Finally, this tool has a model construction module that provides

robust biomarker identification and model construction from the

prior modules. The utilization of standardized ready-to-use package

for onco-immunomics analysis is crucial to hasten biomarker

discovery and test their inter-cohort reproducibility.

Future directions to fully characterize the immune environment

and its dynamic would be to implement microbiomics data to such

model and to construct longitudinal models with the introduction of

time dependent models (Bodein et al., 2022). The incorporation of

spatial annotation and single-cell omics to explore the cancer

architecture at the cell level in all its heterogeneity and to

complement with functional analysis offers a new venue to

elucidate the TiME (Roh et al., 2018; Helmink et al., 2020; Zheng

et al., 2021).

Conclusion

Cancer is a complex and highly heterogenous disease that is yet

partially solved. Despite the molecular characterization made

possible by the advances of NGS technologies, many of the

underlying oncogenic mechanisms remain puzzling. The

integration of the multilayers of the omics elements is an avenue

to further elucidate cancer biology. In this review, we highlighted the

challenges of computational modelization of large multi-omics

datasets and we provided some clues for how to overcome these

barriers. We presented some innovative bioinformatic tools

developed to enlighten the implication of all the interconnected

biological elements of cancer and showed how determinant they are

to refine the disease subtyping and classification, and to discover

biomarkers. Multi-omics integration has also heightened the field of

immunomics and microbiomics, and thus has dramatically

accelerated the identification of robust biomarkers for ICB

efficacy toward the development of tailored immunotherapy.

The constant modernization of the models endows analyses

of increasingly larger datasets with a growing number of

components. Collaborative effort for high-quality and

clinically well-annotated databases, combining all the elements

of high-throughput sequencing, is crucial to feed the models.

Finally, the standardization of the methods would aid in

replicating and confirming the results to increase the global

knowledge and, ultimately, improve cancer treatments.
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