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Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the
clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits
malignant tumor growth and regulates immune system function in addition to anti-malaria.
In parasites and tumors, DHA causes severe oxidative stress by inducing excessive
reactive oxygen species production. DHA also kills tumor cells by inducing programmed
cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits
inflammation by reducing the inflammatory cells infiltration and suppressing the
production of pro-inflammatory cytokines. Further, genomics, proteomics,
metabolomics and network pharmacology of DHA therapy provide the basis for
elucidating the pharmacological effects of DHA. This review provides a summary of the
recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the
relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA
will become an alternative therapy in the clinical treatment of malignant tumors and
inflammatory diseases.

Keywords: dihydroartemisinin (DHA), anti-tumor activity, programmed cell death, anti-tumor immunity,
inflammatory diseases, pharmacological mechanism
1 INTRODUCTION

Dihydroartemisinin (DHA), a derivative of artemisinin, is the active metabolite of artemisinin-like
compounds in vivo (1, 2). DHA is widely used in the clinical treatment of malaria and has saved
countless lives, due to its 100% efficiency against malaria parasites and low toxicity. DHA kills
plasmodium parasites by damaging their membranes, disrupting their mitochondrial function and
causing oxidative stress through producing excessive reactive oxide species (ROS) (3, 4). In addition
to directly killing malaria parasites, it has recently been found that DHA enhances the ability of the
immune system to resist parasites, such as malaria parasites and toxoplasma gondii. Jagannathan
et al. find that Ugandan children who receive DHA preventative administration from 6 to 24
months old have a lower incidence of malaria, more IL-2+CD4+ T cells and TNF-a+CD4+ T cells,
and fewer IL-10+CD4+ T cells than their peers who do not receive DHA (5). Zhang and colleagues
find that DHA increases the number of T-helper (Th) cells and CD8+ T cells and the levels of IL-5
and IL-22, decreases the number of B cells and the content of some inflammatory cytokines,
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including TNF-a, IFN-g, IL-2, IL-4, IL-6, and IL-10 in the mice
who are infected with Toxoplasma gondii or Plasmodium
Berghei (6). The above studies show that DHA can not only
directly kill parasites, but also prevent hosts from parasitic
diseases by regulating T cell subsets and cytokines production.

With the development of DHA research, it has been found
that DHA has the pharmacological effect of anti-tumor and
inhibition inflammation (7–12). Our laboratory has investigated
the anti-tumor and inhibition inflammation effects of DHA and
conducts a preliminary analysis of its mechanisms. It has been
found that DHA inhibits the growth and metastasis of melanoma
in mice by several ways (13). In addition, DHA also significantly
alleviates imiquimod-induced mice psoriatic lesions (14). The
pharmacological effects of DHA on tumors, pathogen infections,
etc. over the past decades have been described in the review of Ho
et al. (15), Efferth (16) and Slezakova et al. (17). Therefore, this
article will review the last advances in DHA anti-tumor (Table 1)
and anti-inflammation (Table 2) studies in recent years.
2 THE ANTI-TUMOR ACTIVITY OF DHA

Malignant tumors threaten the life safety of people all over the
world and have become the main cause of death together with
cardiovascular and cerebrovascular diseases and respiratory
diseases (115). It has been demonstrated that DHA exerts
significant anti-tumor activity in a variety of malignant tumors,
and it has no toxicity to normal cells at appropriate doses (18, 20,
85, 94, 116, 117). It has been found that DHA not only is used as
an adjuvant drug in combination with other chemotherapy drugs
to improve drug resistance and enhance tumor killing function,
but also has a significant inhibitory effect on tumors (21, 29, 34,
39, 45, 46, 70). Gao et al. find that combination of DHA and
resveratrol inhibits the proliferation, metastasis and invasion of
Hep2 and MDA-MB-231 cancer cells (57). Chen et al. confirm
that DHA alleviates the resistance of multiple myeloma to
dexamethasone (73). Hu and colleagues demonstrate that
DHA/miR-29b combination therapy significantly inhibits
proliferation and promotes apoptosis of cholangiocarcinoma
cells (31). Guo et al. find that DHA increases the sensitivity of
drug-resistant breast cancer cells to chemodynamic therapy, and
plays a role in promoting chemotherapy as an adjuvant therapy
drug (25). Similar to the mechanism by which DHA kills
plasmodium parasites, DHA causes oxidative stress in tumor
cells by lysing the peroxide groups, then leading tumor to death
(55). In addition, DHA also plays an anti-tumor role through
inhibiting tumor metastasis, inducing programmed cell death,
blocking cell cycle, and enhancing anti-tumor immunity.

2.1 Inhibition of Tumor Metastasis
Tumor metastasis is one of the main causes of tumor treatment
failure. Epithelial-mesenchymal transformation (EMT), matrix
metalloproteinases (MMPs) secretion and neovascularization are
closely related to tumor metastasis. DHA has exerted anti-
metastasis effect in a variety of tumors (26, 44, 47, 50, 68, 118).
In our study, DHA inhibits the melanoma metastatic capacity by
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reducing the production of MMPs in vivo and in vitro (13).
Furthermore, DHA significantly reduces the number of
pulmonary melanoma nodules, inhibits EMT, and decreases
the expression of MMPs in the mouse melanoma lung
metastasis model (Data not shown). Li et al. find that DHA
inhibits EMT of ovarian cancer, thereby reducing its metastasis
to the lung, liver and intestine (82). TGF-b-Smad signaling
pathway and Akt signaling pathway play important roles in
DHA suppressing tumor metastasis. In breast cancer, DHA
inhibits EMT by reducing TGF-b production and decreasing
phosphorylation of Samd2 and Smad3 (27). DHA inhibits
phosphorylation of Akt in glioblastoma cells, thereby inhibiting
EMT and reducing MMPs secretion (51). Similarly, Ju et al.
observe that DHA inhibits breast cancer metastasis by reducing
the production of MMPs, vascular endothelial growth factor
(VEGF), and TGF-b (23).

As metastatic tumors grow, they induce angiogenesis by
upregulating the expression of HIF-1a and VEGF to combat
the lack of oxygen and nutrients within the tumor. It has been
shown that DHA induces autophagy in human umbilical vein
endothelial cells by inhibiting Akt and mTOR signaling
pathways, thereby inhibiting their ability to generate blood
vessels in vitro (66). In addition, DHA also inhibits
angiogenesis by increasing the expression of VEFGR1, a
deceptive receptor of VEGF, to block the binding of VEGF and
VEFGR2 (67). Li et al. find that DHA inhibits esophageal cancer
growth and metastasis by inhibiting the phosphorylation of p65
and reducing the activity of HIF-1a and VEGF (40). These
suggest that DHA has a strong inhibitory effect on angiogenesis.

2.2 Induction of Programmed Cell
Death in Tumors
2.2.1 Apoptosis
Apoptosis, a kind of programmed cell death, is the main way that
drugs cause tumor cell death and is regulated by many factors,
such as Bcl-2 protein family (12, 35, 48). In non-small cell lung
cancer (NSCLC), DHA inhibits the expression of anti-apoptotic
Bcl-2, disrupts the balance of the Bcl-2 family, and induces
apoptosis (76). Similarly, in cervical cancer, DHA regulates Bcl-2
family protein expression and induces HeLa cell apoptosis by
inhibiting the phosphorylation of mTOR (30).

In addition to changing the balance of members of the Bcl-2
protein family, DHA causes the accumulation of ROS in tumor
cells, leading to mitochondrial damage (61). With excessive
damage of mitochondrial, caspase cascade is activated and
eventually activates caspase 3, the executor of apoptosis,
causing mitochondrial apoptosis (19). Im et al. find that DHA
increases the expression of cleaved caspase 8, cleaved caspase 9
and cleaved caspase 3 by inhibiting MAKP signaling pathway in
hepatocellular carcinoma, thus inducing caspase-dependent
apoptosis (62). Li et al. use b-dihydroartemisinin-Emodin to
treat human liver cancer HepG-2 cells and similar results are
observed. b-dihydroartemisinin-Emodin activates caspase 8,
caspase 9 and caspase 3 and induces apoptosis by regulating
the balance of Bcl-2/Bax (60). In our study, DHA increases the
ratio of Bax/Bcl-2, activates caspase cascade and induces
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TABLE 1 | The effects of DHA on tumors.

Tumor Drug Effect Reference

Bladder cancer DHA apoptosis↑, ROS↑, p21↑, metastasis↓ (18, 19)
Breast cancer DHA + Trastuzumab metastasis↓, AKT signaling pathway↓, ROS↑, (20)
Breast cancer DHA + Docetaxel apoptosis↑, ROS↑, p53↑ (21)
Breast cancer DHA + Epirubicin autophagy↑, apoptosis↑ (22)
Breast cancer DHA + Octreotide +

daunorubicin
metastasis↓, VEGF↓, TGF-b↓ (23)

Breast cancer DHA + Rapamycin autophagy↑, apoptosis↑, G0G1 phase arrest (24)
Breast cancer DHA metastasis↓, TGF-b-Smad signaling pathway↓, ROS↑ (25–28)
Cervical cancer DHA + ALA-PDT apoptosis↑, ROS↑, NF-kB signaling pathway↓, Nrf2-HO-1 signaling pathway↑ (29)
Cervical cancer DHA autophagy↑, apoptosis↑, p-mTOR↓, ROS↑, (7, 30)
Cholangiocarcinoma DHA + miR-29b miR-29b↑, apoptosis↑ (31)
Cholangiocarcinoma DHA autophagy↑, apoptosis↑, Akt-mTOR signaling pathway↓ (32)
Colon cancer DHA + oxaliplatin ROS↑, G2M phase arrest, IFN-g↑, macrophages↑, dendritic cells↑ (33)
Colon cancer DHA + Doxorubicin induction of apoptosis↑, improvement Doxorubicin resistance (34)
Colon cancer DHA + 5-fluorouracil induction of apoptosis↑, improvement 5-fluorouracil resistance (35)
Colon cancer DHA induction of apoptosis↑, MMPs↓, STAT3/p38-MAPK signaling pathway↓ (1, 36, 37)
Endometrial carcinoma DHA autophagy↑, apoptosis↑ (38)
Esophageal cancer DHA autophagy↑, apoptosis↑, metastasis↓, G2M phase arrest, ROS↑, VEGF↓, glycolysis↓, (8, 39–43)

Akt-mTOR/NF-kB-HIF-1a/Sonic Hedgehog signaling pathway↓, pyruvate kinase M2↓
Gallbladder cancer DHA TCTP-dependent metastasis↓ (44)
Gastric cancer DHA + Anlotinib apoptosis↑, VEGF-A↓, metastasis↓ (45)
Gastric cancer DHA apoptosis↑, NF-kB/STAT1/Akt signaling pathway↓, metastasis↓, G0G1 phase arrest (36, 46–49)
Glioma DHA autophagy↑, apoptosis↑, ferroptosis↑, metastasis↓, ROS↑, miR-21↓, G0G1 phase arrest,

Akt/b-catenin signaling pathway↓
(50–54)

Head and neck squamous cell
carcinoma

DHA + Osimertinib STAT3 signaling pathway↓ (12)

Head and neck squamous cell
carcinoma

DHA apoptosis↑, G0G1 phase arrest, anti-tumor immunity↑, STAT3 signaling pathway↓ (55, 56)

Hepatocellular carcinoma DHA + resveratrol metastasis↓, NF-kB signaling pathway↓ (57)
Hepatocellular carcinoma DHA + sorafenib apoptosis↑, ROS↑, G0G1 phase arrest, TGF-b↓ (58, 59)
Hepatocellular carcinoma b-dihydroartemisinin-

emodin
apoptosis↑, G0G1 phase arrest (60)

Hepatocellular carcinoma DHA autophagy↑, apoptosis↑, pyroptosis↑, b1,6-branching of N-linked carbohydrate↓, ROS↑, (61–65)
glycosylation↓, inhibition MAPK/Akt-mTOR/signaling pathway↓, regulation the
gene expression of angiogenesis, apoptosis, cell cycle and signaling pathways

Human umbilical vein endothelial
cell

DHA autophagy↑, VEFGR1↑, Akt-mTOR signaling pathway↓ (66, 67)

Laryngeal carcinoma DHA autophagy↑, metastasis↓, IL-6-STAT3 signaling pathway↓, caspase 1↓, IL-1b↓ (68, 69)
Leukemia DHA + Navitoclax apoptosis↑, increase sensitivity to Navitoclax (70)
Leukemia DHA autophagy↑, apoptosis↑, ferroptosis↑, ROS↑, G0G1 phase arrest, (71)
Melanoma DHA apoptosis↑, NF-kB/STAT3 signaling pathway↓, STAT1 signaling pathway↑, metastasis↓,

IFN-g↑, CTL↑, IL-6↓, IL-10↓, Treg↓
(13, 72]

Multiple Myeloma DHA apoptosis↑, ROS↑ (73)
Nasopharyngeal carcinoma DHA apoptosis↑, CLC3 chloride channels opening (11)
Non-small cell lung cancer DHA + Gefitinib apoptosis↑, G2M phase arrest, Akt-mTOR/STAT3 signaling pathway↓ (74)
Non-small cell lung cancer DHA +Arsenic Trioxide apoptosis↑, G0G1 phase arrest (75)
Non-small cell lung cancer DHA + ABT263 apoptosis↑, STAT3/MAPK signaling pathway↓ (76)
Non-small cell lung cancer DHA autophagy↑, ferroptosis↑, STAT3/PI3K-Akt/MAPK/b-catenin signaling pathway↓, ROS↑, (77–79)

immune escape↓, metastasis↓
Osteosarcoma DHA autophagy↑, ROS↑, p-ERK↑ (80)
Ovarian carcinoma DHA + curcumin miR-124↑, G0G1 phase arrest, apoptosis↑ (56)
Ovarian carcinoma DHA + Gemcitabine ROS↑ (9)
Ovarian carcinoma L-A03 autophagy↑, apoptosis↑, p-JNK↓ (81)
Ovarian carcinoma DHA autophagy↑, apoptosis↑, metastasis↓, macrophage↓, G2M phase arrest, NF-kB/

hedgehog signaling pathway↓
(2, 82–84)

Prostate cancer DHA apoptosis↑, G0G1 phase arrest, glycolysis↓ (85–90)
IFN-g↑, Treg↓, gd T cell↑, perforin↑, granzyme B↑, IFN-g↑, miR-7↑, miR-34a↑,
p-Akt↓, HIF-1a↓,

NCI-H292, MCF7, HT29, SW480,
MEF, HCT116,
MDA-MB-453,HT1080

DHA ferroptosis↑ (91)

A549, HT1080 DHA ferroptosis↑ (92)
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mitochondrial apoptosis by regulating STAT3 and other
signaling pathways, thereby inhibiting mouse melanoma (13).
In addition, DHA also induces endoplasmic reticulum stress
(119). In glioblastoma cells, DHA not only induces
mitochondrial apoptosis mediated by cleaved caspase 9 and
cleaved caspase 3, but also induces endoplasmic reticulum
stress pathway of apoptosis by activating caspase 12 (52).
Interestingly, Luo et al. demonstrate that DHA induces
endoplasmic reticulum stress by activating PERK in porcine
ovarian cancer (120). These results indicate that DHA has a
wide range of anti-tumor effects, not only its pharmacological
mechanisms are diverse, but also has obvious anti-tumor effects
in many species.

2.2.2 Autophagy
In addition to inducing apoptosis, DHA also has the ability to
induce autophagy in tumors (22, 41, 69, 77, 81). When DHA
damages tumor cells, autophagy is activated to clear damaged
organelles, but excessive autophagy often leads to cell death.
During autophagy, a series of ATG proteins is activated, and
microtubule-associated protein 1 light chain 3-I (LC3-I) is
transformed into LC3-II to form the membrane structure of
autophagosome (24). In cholangiocarcinoma and hepatocellular
carcinoma, DHA induces autophagy by inhibiting the Akt-
mTOR signaling pathway (32, 63). Further, Tang et al. find
that DHA up-regulates LC3-II/LC3-I ratio and induces
autophagy in endometrial cancer and cervical cancer cells (38).

2.2.3 Ferroptosis
Ferroptosis is a type of programmed cell death different from
apoptosis and autophagy. In ferroptosis, excessive intracellular
free iron reacts with lipid peroxides and produces a large amount
of ROS, which causes cell damage and death after depletion of
Frontiers in Oncology | www.frontiersin.org 4
intracellular glutathione (121). In osteosarcoma, Shen et al.
demonstrate that DHA induces autophagy and mitochondrial
injury by increasing the content of ROS, and the above effects are
associated with iron (80). Furthermore, it has been found that
DHA induces ferroptosis by increasing ROS level in tumor cells
(53). Yuan et al. confirm that DHA induces ferroptosis in
NSCLC cells by regulating SLC7A11 expression, accompanied
by a decrease in intracellular GSH content and an increase in
ROS and MDA (78). Du et al. find that DHA induces ferroptosis
in leukemia cells by autophagy mediated degradation of ferritin
and subsequent increases of intracellular free iron (71). However,
Chen et al. use DHA to treat lung cancer cells, colon cancer cells,
breast cancer cells and other tumor cells and observe that DHA
can also induce ferroptosis in the above cells, but the mechanism
is not related to autophagy (91). Interestingly, Bai and colleagues
find that the rearrangement of DHA to monoketo-aldehyde-
peroxyhemiacetal under physiological significantly enhance its
response to iron and this physiological process is pH-dependent
(92). The above studies suggest that DHA induces ferroptosis in
many tumor cells mainly through promoting ROS production.
However, the underlying mechanisms, such as the role of
autophagy in DHA-induced ferroptosis, remain controversial
and require further research.

2.3 Tumor Cell Cycle Arrest
Cell cycle progression requires interaction between cyclins and
cyclin-dependent kinases (CDKs). In tumors, abnormal
expression of cyclins and CDKs leads to dysfunction of cell
cycle checkpoints and rapid tumor growth (36, 75). It has been
shown that DHA blocks tumor cell cycle at G0/G1 or G2/M
checkpoints by regulating the expression of cyclins and CDKs
(42, 54, 74, 86). Zhao et al. find that combination treatment with
DHA and curcumin have the effect of up-regulating the
TABLE 2 | The effects of DHA in inflammatory diseases.

Model Drug Effect Reference

IgA nephropathy DHA mTOR signaling pathway↓, autophagy↑ (93)
Psoriasis DHA NF-kB/p38-MAPK signaling pathway↓, CD8+ T cells↓, IL-1b↓, IL-6↓, IL-17↓, IFN-g↓ (14, 94,

95)
Experimental autoimmune
encephalomyelitis

DHA mTOR signaling pathway↓, Th cells↓, Treg↑, TGF-b↑ (96)

LPS-induced neuroinflammation DHA PI3K/Akt signaling pathway↓, IL-1b↓, IL-6↓, TNF-a↓ (97)
Inflammatory bowel diseases DHA PI3K/Akt/NF-kB-NLRP3 signaling pathway↓, HO-1 signaling pathway↑, Treg↑, Th1, Th17

cells↓,
(98–102)

IL-1b↓, IL-6↓, IL-23↓, BMD↑, Bacteroidetes↓, Proteobacteria↑ Verrucomicrobia↓,
Firmicutes↑,

Rheumatoid arthritis DC 32 Nrf-2/HO-1 signaling pathway↑, Th17 cells↓, Treg↑, IL-6↓, MMPs↓, RF↓ (103, 104)
Osteoarthritic synovium DC 32 Nrf-2/HO-1 signaling pathway↑, IL-1b↓, IL-6↓, MMPs↓, CXCL12↓, CX3CL1↓, (105)
Systemic lupus erythematosus DHA Nrf-2/HO-1 signaling pathway↑, TNF-a-TLR4-NF-kB signaling pathway↓, Th17↓, Treg↑,

IFN-a↓,
(106–108)

IFN-b↓, IL-1b↓, IL-6↓
Lupus nephritis DHA +

siHMGB1
TNF-a-TLR-4-NF-kB signaling pathway↓, HMGB1↓, IL-1b↓, IL-6↓ (109)

LPS-induced acute kidney injury DHA NF-kB signaling pathway↓, IL-1b↓, IL-6↓, IL-17A↓, TNF-a↓, IFN-g↓, CXCL-1↓ (110)
Allergic Asthma DHA IL-6-STAT3/p38-MAPK/NF-kB signaling pathway↓, OVA-specific IgE↓, miR-183C↓, Th17

cells↓,
(111, 112)

IL-1b↓, IL-4↓, IL-17↓, IL-21↓, GM-CSF↓, IL-10↑
Human bronchial epithelial cell DHA CBF/NFY↑, FOXO1↑, HSF↑, Smad↑, SRF↑, STAT3↑, Nrf-2↑ (113)
LPS−induced acute lung injury DHA TNF-a-NF-kB signaling pathway↓, macrophages↓, neutrophils↓, Nrf-2↑, IL-1b↓, IL-6↓ (114)
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expression of miR-124 and blocking cell cycle at G0/G1 phase in
ovarian carcinoma (56). Du et al. treat leukemia cells with DHA
and observe that CDK2, CDK4 and Cyclin D expression are
significantly inhibited and cell cycle is arrested at G0/G1 phase in
the DHA treatment groups (71). Li et al. use ART or DHA
treated ovarian carcinoma cells and find that DHA show a
stronger anti-tumor effect and both ART and DHA block cell
cycle at G2/M phase (83).
2.4 Enhance Anti-Tumor Immunity
In tumor microenvironment, CD8+ cytotoxic T lymphocytes
(CTLs) play a major role in killing tumor cells. However, tumor
cells and regulatory T cells (Tregs) suppress the killing effect of
CTLs by secreting IL-10 and TGF-b, thus realizing tumor
immune escape (122). It has been shown that DHA inhibits
the production of TGF-b (23, 26–28) and TNF-a (49) in many
tumors. Noori et al. observe that, in pancreatic cancer, DHA has
the function of inhibiting Treg and increasing IFN-g production
in tumor microenvironment (87). In pancreatic cancer, Zhou
et al. find that DHA enhances the activity of T cells and promotes
the secretion of perforin, Granzyme B and IFN-g (88). In our
study, DHA exerts a significant modulation of anti-melanoma
immunity. After DHA treatment, the levels of IL-6 and IL-10 in
serum and melanoma of melanoma bearing mice are
significantly decreased, while IFN-g is significantly increased.
Furthermore, DHA enhances the killing effect of CTLs to mouse
melanoma by reducing IL-10 content and the number of Treg in
tumor microenvironment (13). In melanoma lung metastasis
models, DHA reduces the number of infiltrating Tregs in lung
tissue and increases the infiltration and function of CTLs (Data
not shown).

In addition to regulating the number and function of T cell
subsets, DHA can also regulate other immune cells to promote anti-
tumor immunity. Dendritic cells and macrophages are also involved
in anti-tumor immunity. However, depending on their phenotypes,
they can either inhibit or promote tumors (123, 124). Chen et al.
confirm that DHA inhibits the differentiation of THP-1 cells to M2
macrophage and plays an anti-tumor role by inhibiting the
phosphorylation of STAT3 (125). It has been demonstrated that
DHA inhibits ovarian cancer metastasis by reducing the production
of MMPs and the infiltration of macrophages in the metastatic sites
of ovarian cancer (84). Furthermore, in colorectal tumor, DHA
significantly strengthens anti-tumor immunity by enhancing the
phagocytosis function of dendritic cells and macrophages and
promoting the production of IFN-g by T cells. The above effects
are more obvious when DHA is combined with anti-PD-L1 mAb
(33). Further, Zhang et al. confirm that in NSCLC, on the one hand,
DHA reduces the expression of PD-L1 on tumor cells by inhibiting
the expression of TGF-b and PI3K/Akt and STAT3 signaling
pathways, thus impairs tumor immune escape. On the other
hand, DHA increases the sensitivity of NSCLC to radiotherapy by
regulating the expression of EMT-associated proteins (79). In
summary, DHA promotes T-cell-centered anti-tumor immunity
by reducing the secretion of immunosuppressive cytokines and
suppressing the number and function of immunosuppressive cells.
Frontiers in Oncology | www.frontiersin.org 5
2.5 Other Anti-Tumor Effects
The detection and analysis of abnormal expression of genes,
proteins and metabolites in tumors are helpful to identify tumor
pathogenesis and explore effective tumor treatment methods.
Hepatocellular carcinoma MHCC97-L cells are treated with
DHA for Global gene expression profiles analysis. The results
show that DHA regulates gene expression which is associated
with angiogenesis, apoptosis, cell cycle and various pathways
(64). As a kind of non-coding RNA, Micro-RNA (miR) plays an
important role in tumor by connecting to mRNA to regulate
gene expression (72). Paccze et al. demonstrate that DHA
inhibits tumor growth by up-regulation miR-7 and miR-34a in
prostate cancer (90). In addition, Zhao et al. find that DHA
binding curcumin up-regulate miR-124 and inhibit ovarian
cancer (56). Hou et al. treat hepatocellular carcinoma cells
MHCC97H and HCCLM3 with DHA and Sorafenib, and
perform a proteomics analysis using Tandem Mass Tag
peptide coupled with LC-MS/MS. Compared with the control
group, there are 532, 426 and 628 differentially expressed
proteins in the DHA group, Sorafenib group and DHA +
Sorafenib group, respectively. And these differentially
expressed proteins are mainly involved in cellular component
organization, response to stress, and intracellular biochemical
and metabolic reactions (58). Further, the metabonomic analysis
of DHA in the treatment of esophageal cancer is performed. The
results show that DHA down-regulates pyruvate kinase M2 and
inhibits glycolysis, which is the main way for cancer cells getting
energy (43). Zhu et al. demonstrate that DHA also inhibits
glycolysis in prostate cancer (89). Liu et al. conduct a network
pharmacologic analysis for the anti-hepatocellular carcinoma
effect of DHA and find that DHA regulates the glycosylation
and inhibits liver cancer by downregulating the expression of
b1,6-branching of N-linked carbohydrate (65).

In summary, DHA has significant inhibitory effects on a
variety of tumors in different species, and its pharmacological
mechanisms are diverse, including inhibition of cell proliferation
and metastasis, induction of autophagy and multiple
programmed cell death, and arrest of cell cycle, etc. In
addition, DHA exerts the strong effect in promoting anti-
tumor immunity. DHA corrects the immunosuppression state
of tumor-bearing mice by reducing the secretion of IL-10 and
TGF-b and suppressing the number and function of Treg, and
then activate the anti-tumor immune response mediated by T
cells with CTL as the main body. In particular, DHA is not toxic
to normal cells and is a potential tumor suppressive
option (Figure 1).
3 THE ANTI-INFLAMMATION ACTIVITY
OF DHA

It has been shown that DHA regulates the immune function in
the treatment of parasitic diseases and tumors (5, 6, 13, 33, 84, 87,
88, 125). In addition, it also has been reported that DHA
significantly inhibits inflammatory diseases. As described by
Xia et al. in IgA nephropathy mesangial cells (IgAN HMCs)
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induced by aggregated IgA1, DHA promotes autophagy of IgAN
HMCs by down-regulating mTOR expression, and thus exerts an
anti-proliferation effect (93). Further, as a potential anti-
inflammatory drug, DHA plays a powerful role in inhibiting a
variety of inflammation-related diseases. The potential
pharmacological mechanisms of DHA anti-inflammation are
described by following and list in Table 2.

3.1 Psoriasis
Psoriasis is a chronic inflammatory skin disease characterized by
excessive proliferation of keratinocytes and excessive infiltration
of white blood cells (e.g., neutrophils, T cells, etc.) into the
dermis. As described by Wei et al., we find that DHA
significantly alleviates imiquimod-induced psoriasis-like skin
inflammation in mice and inhibits keratinocyte proliferation by
regulating NF-kB and p38-MAPK signaling pathways (14).
Furthermore, the content of IL-1b, IL-6 and IL-18 decrease
significantly with the DHA treatment. In particular, the
expression of CXCL-1 is markedly reduced, suggesting that
DHA has a potential ability to inhibit neutrophil chemotaxis.
In addition, our study also shows that DHA has a potent
regulatory effect on a variety of immune cells, such as T cells,
and pro-inflammatory cytokine production (94). The
imbalanced proportion of T cell subsets leads to the skin
immune system overactivation, which is considered to be
closely related to psoriasis. Chen and colleagues demonstrate
that DHA relieves mice psoriatic-like skin lesions and prevents
psoriasis recurrence (95). Specifically, DHA treatment
diminishes the number of pathogenic CD8+ central memory T
cells and CD8+ resident T cells in the skin and reduces the
content of pro-inflammatory cytokines such as IL-17. Further,
the expression of eomesodermin and BCL-6 in CD8+ T cells is
also down-regulated with DHA treatment.
Frontiers in Oncology | www.frontiersin.org 6
3.2 Experimental Autoimmune
Encephalomyelitis (EAE)
EAE is an autoimmune disease mediated by specific CD4+ T
cells, characterized by mononuclear cell infiltration into the
central nervous system and demyelination of white matter
(126). Zhao et al. treat EAE mice with DHA and find that the
symptoms are significantly improved and disease scores decrease
markedly. The mechanism is that DHA increases the number of
Treg in the spinal cord, spleen, inguinal lymph nodes and
peripheral lymph nodes, promotes the differentiation of Treg
and the production of TGF-b and reduces Th cell infiltration
through inhibiting mTOR signaling pathway (96). In addition,
DHA alleviates LPS-induced neuroinflammation by inhibiting
PI3K/Akt signaling pathway and reducing the production of
IL-1b, IL-6 and TNF-a (97).

3.3 Inflammatory Bowel Disease (IBD)
It has been reported that the pathogenesis of IBD is closely
related to the over-activation of several signaling pathways (such
as NF-kB signaling pathway and p38-MAPK signaling pathway),
the production of pro-inflammatory cytokines and abnormal
intestinal mucosal immune system (127). Li et al. find that DHA
alleviates IBD in mice by inhibiting PI3K/Akt and NF-kB
signaling pathways and reducing the production of TNF-a, IL-
1b and IL-6 (98). It has been found that NLRP3 inflammasome,
which acts as a bridge between some inflammation-related
signaling pathways and pro-inflammatory cytokines, is often
overexpressed in IBD. Liang et al. find that in IBD mice, DHA
inhibits the phosphorylation of p65 and p38, down-regulates the
expression of NLRP3 inflammasome, and thereby reduces
the contents of IL-1b, IL-6 and TNF-a (99). Further to explore
the regulatory effect of DHA on immune cells, Yan and
colleagues demonstrate that DHA induces T cell apoptosis via
FIGURE 1 | The molecular mechanism of DHA in anti-tumor. ⊕ means the promoting effect of DHA. ⊖ means the suppressive effect of DHA.
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HO-1, thus reducing the number of Th1, Th9 and Th17 cells,
restoring the balance between Th cells and Treg, and improving
IBD symptoms (100). In addition to reducing inflammatory cell
infiltration and pro-inflammatory cytokine production in the
gut, DHA also improves IBD by regulating intestinal flora. Lei
et al. use 16S rDNA gene analysis and find that DHA restores the
abundance of Bacteroidetes, Verrucomicrobia, Firmicutes and
Proteobacteria, which are abnormal in mouse IBD (101).
Interestingly, DHA exerts a significant inhibitory effect on
IBD-induced bone loss by reducing osteoclast formation and
increasing bone mineral density (102). The inhibitory effect of
DHA on osteoclasts is not limited to IBD. In breast cancer (128)
and other diseases (129, 130), DHA inhibits the formation of
osteoclasts and relieves bone loss, suggesting that DHA seems to
have a relieving effect on bone loss caused by a variety of diseases.
DHA is expected to become an alternative therapeutic drug for
the treatment of osteolytic bone disease.

3.4 Rheumatoid Arthritis (RA)
RA is an autoimmune disease characterized by extensive production
of autoantibodies and severe damage of joints (131). Fan et al. use
DC32, aderivativeofDHA, to treat collagen-inducedarthritismouse,
and find that after DHA treatment, the content of rheumatoid factor
significantly decreases, cartilage damage is alleviated and arthritis is
improved. Its mechanism is that on the one hand DC32 activates
nuclear factor (erythroid-derived 2)-like 2 (Nrf-2)/HO-1 antioxidant
pathway and on the other handDC32 reduces IL-6 transcription and
restores Treg/Th17 cells balance (103, 104). In addition, Li et al.
demonstrate that DC32 reduces the expression of IL-6, IL-1b,
TNF-a, CXCL12 and CX3CL1 by activating Nrf-2/HO-1 signaling
pathway and inhibiting the phosphorylation of ERK and p65, thus
improving Osteoarthritic Synovium (105).

3.5 Systemic Lupus Erythematosus (SLE)
SLE is a chronic autoimmune disease characterized by the
production of autoantibodies and the involvement of multiple
organs (132). Following the discovery of DHA in malaria, Tu
Youyou’s team finds that DHA has a significant inhibitory effect
on SLE. In BXSB mice, DHA significantly reduces the production
of TNF-a by inhibiting the expression of p65 in peritoneal
macrophages and renal tissue (106). In addition, Huang et al.
confirm that DHA inhibits Toll-like receptor 4 (TLR4) and
reduces IRF3 and type I interferon (IFN-a and IFN-b)
production, thus alleviates SLE (107). Furthermore, Li et al.
find that DHA delays the progression of SLE by inhibiting the
senescence of myeloid-derived suppressor cells. In addition,
DHA restores Treg/Th17 cells balance and reduces serum IL-
1b, IL-6 and IL-8 levels in lupus mice (108).

Lupus nephritis is a complication of SLE and often leads
patients to death. Diao et al. use LPS stimulation glomerular
mesangial cell line MMC to build cell model of lupus nephritis
and give DHA treatment. After DHA treatment, the expression
of HMGB1, one of the genes closely associated with lupus
nephritis, is significantly reduced. In addition, DHA attenuates
the expression of TLR4 and p65 and reduces IL-1b, IL-8, IL-6
and TNF-a production in LPS-induced RAW264.7 cells (109). In
LPS-induced acute renal injury, DHA therapy reduces the serum
Frontiers in Oncology | www.frontiersin.org 7
Scr and BUN levels and restores renal function. The mechanism
is that DHA reduces the expression of IL-1b, IL-5, IL-6, IL-17A,
TNF-a, IFN-g, CXCL-1 and improves oxidative stress through
inhibiting the phosphorylation of p65 (110).

3.6 Allergic Asthma
Allergic Asthma is a chronic airway allergic disease. It has been
reported that Th2 cells, Th17 cells, mast cells and granulocytes are
all involved in the pathogenesis ofAsthma (133).Wei et al.find that
DHA significantly reduces inflammatory cell infiltration and
alleviates asthma-related airway hyper-responsiveness in
ovalbumin (OVA)-induced mouse asthma. The mechanism is
that DHA inhibits the activation of ERK, p38 and NF-kB and
reduces theOVA-specific IgE andTh2 cytokines secretion (111). In
addition to the above effects, Zhu et al. demonstrate that DHA also
relieves asthma by reducing the number of Th17 cells and the
production of IL-17, IL-21, IL-22, IL-1b, TNF-a and GM-CSF
(112). Furthermore, Ravindra et al. use Untargeted Proteomics to
analyze the targets of DHA treatment human bronchial epithelial
cells and find that DHA promotes the expression of forkhead box
protein O1 (FOXO1), Nrf-2, serum response factor (SRF), STAT3
and Smad (113). For other lung injury diseases, DHA reduces the
release of IL-1b, IL-6 andTNF-a by inhibiting the phosphorylation
of p65 and activating Nrf-2 in LPS-induced acute lung injury. In
addition, DHA also reduces the infiltration of macrophages and
neutrophils into lung tissue to alleviate lung injury (114).

In inflammatory diseases, an unbalanced immune system forms
a complex inflammatory immune network. The insufficiency of
Treg cell function leads to the continuous development of
inflammation with Th1/Th17 cells as the core. The release of pro-
inflammatory cytokines producing by Th1/Th17 cells further
inhibits the function of Treg. It forms a closed-loop structure of
positive feedback, which leads to the continuous development of
inflammatory disease and prolonged healing. DHA and its
derivative DC32 have shown alleviative effects in multiple
inflammatory diseases by regulating the signaling pathways
(inhibiting pro-inflammatory signaling pathways and activating
antioxidant signaling pathways), inhibiting pro-inflammatory
cytokine production (such as TNF-a, IL-1b, etc.), and restoring
immune cell balance. In addition to the aforementioned effect, in
autoimmune diseases, DHAmay also relieve symptoms and inhibit
progression by reducing the production of autoantibodies. In
laboratory studies, researchers have tentatively demonstrated the
potential of DHA as an alternative treatment for inflammatory
diseases, and further exploration of the underlying mechanisms of
DHA inhibiting inflammation and the clinical use of DHA in
treating inflammation needs to be performed (Figure 2).
4 SUMMARY AND FUTURE OUTLOOK

With the development of anti-tumor and inhibition of
inflammation effects of DHA, in recent years, more and more
studies have focused on how to improve the efficacy of DHA. The
main strategies to enhance the efficacy of DHA include modifying
the chemical structure of DHA (55), developing new DHA
derivatives (134), building multimeric DHA conjugates (135), and
October 2021 | Volume 11 | Article 722331
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coupling other drugs with DHA to achieve targeted tumor therapy
(37, 59, 136–138). Liu et al. construct the R8 modified epirubicin-
dihydroartemisinin liposomes for the treatment of NSCLC, and
find R8 modified epirubicin-dihydroartemisinin liposomes have a
stronger killing effect on A549 cells. R8 modified epirubicin-
dihydroartemisinin liposomes attenuate the metastasis of A549
cells by inhibiting the production of TGF-b, MMP2 and HIF-1a.
In vivo, R8 modified epirubicin-dihydroartemisinin liposomes
accumulate in tumor and show the targeted functions, indicating
that it is an effective treatment method for NSCLC (139).

Moreover, DHA and artemisinin-based drugs are also
increasingly reported in clinical oncology trials. For clinical
treatment, DHA is widely used in the treatment of malaria
which provides a solid and effective basis for its safety. In
laboratory studies, appropriate concentration of DHA has low
toxicity to normal cells, but some studies have reported that even
though DHA is a high safety drug, excessively high concentration
of DHA (≥100mmol/L) can still cause damage to normal cells
(140, 141), which also suggests that the clinical concentration of
DHA should not be too high. And, when using large doses of
DHA, clinician should be aware of its toxic effects. Jansen and
colleagues treat advanced cervical cancer patients with
Artenimol-R, hemi-succinate ester of DHA, for 28 days and
find that Artenimol-R significantly alleviates cervical cancer and
has no toxic effects. The mechanism of Artenimol-R improves
cervical cancer is that Artenimol-R treatment results in
significant reductions of p53, epidermal growth factor receptor
(EGFR), Ki-67 (a marker of tumor proliferation) and
angiogenesis (142). Deeken et al. recruit 19 patients with
refractory solid tumors for a phase I clinical trial of ART and
find that the maximum tolerated dose (MTD) of intravenous
ART administration is 18mg/kg with a disease control rate of
27% (143). The above clinical studies provide the basis for the
efficacy and safety of DHA in the treatment of malignant tumors.
Frontiers in Oncology | www.frontiersin.org 8
In conclusion, DHA has demonstrated significant anti-tumor
and inhibition of inflammation effects and is a promising drug
with a wide range of targets. In recent years, studies on the
genomics (64), proteomics (72, 113), metabolomics (58, 90) and
network pharmacology (43) of DHA therapy have provided a
basis for elucidating the specific pharmacological mechanism
and targets of DHA, but there are few clinical studies on DHA.
Further phase II and III clinical trials are required for DHA. To
address the limitations and challenges of DHA in experimental
research and clinical application, we consider that the
mechanisms of DHA anti-tumor and inflammation inhibition
need to be deeply elucidated, for example to explore the genetic
or protein targets of DHA. Further, clinical trials of DHA as a
therapeutic agent for tumor and inflammatory diseases need to
be expanded. Although there have been few reports of serious
adverse reactions to DHA, the safety of DHA in clinical use still
needs to be monitored by clinicians. With the development of
research on the pharmacological effects of DHA, it is certain that
DHA will one day become an alternative treatment for tumors
and inflammatory diseases.
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FIGURE 2 | The molecular mechanism of DHA in inflammation inhibition. ⊕ means the promoting effect of DHA. ⊖ means the suppressive effect of DHA.
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