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Abstract: The architecture of the human connectome changes with brain maturation. Pivotal to un-
derstanding these changes is defining developmental periods when transitions in network topology
occur. Here, using 110 resting-state functional connectivity data sets from healthy fetuses between 19
and 40 gestational weeks, we estimated optimal gestational-age (GA) cut points for dichotomizing
fetuses into ‘young’ and ‘old’ groups based on global network features. We computed the small-
world index, normalized clustering and path length, global and local efficiency, and modularity
from connectivity matrices comprised 200 regions and their corresponding pairwise connectivity.
We modeled the effect of GA at scan on each metric using separate repeated-measures generalized
estimating equations. Our modeling strategy involved stratifying fetuses into ‘young’ and ‘old’ based
on the scan occurring before or after a selected GA (i.e., 28 to 33). We then used the quasi-likelihood
independence criterion statistic to compare model fit between ‘old’ and ‘young’ cohorts and deter-
mine optimal cut points for each graph metric. Trends for all metrics, except for global efficiency,
decreased with increasing gestational age. Optimal cut points fell within 30–31 weeks for all metrics
coinciding with developmental events that include a shift from endogenous neuronal activity to
sensory-driven cortical patterns.

Keywords: resting-state; fetal connectome; graph theory; neurodevelopment; functional MRI;
functional connectivity

1. Introduction

Recent advances in brain imaging have enabled researchers to investigate in vivo hu-
man brain development. Resting-state functional connectivity MRI (RS-fMRI), specifically,
has allowed us to noninvasively probe developing functional connections across multiple
brain networks simultaneously in fetuses [1,2]. Understanding neural circuitry formation
in healthy fetuses is critical in recognizing early signs of functional alterations caused by
genetic or environmental insults. The timing of developmental events can help differenti-
ate aberrant from neurotypical processes. Thus, perinatal RS-fMRI aims to detect when
functional networks emerge (e.g., appearance of visual and sensorimotor RSNs) and to
identify when networks mature (e.g., become more similar to newborn architecture) [3–6].

While fetal imaging is a nascent field, findings over the past decade have begun to shed
light on patterns of neural circuitry formation: connectivity follows a mediolateral, postero-
anterior timing [4,7,8], occipital and sensorimotor circuits develop earlier than parietal
connections [4], lateralization appears in superior temporal cortices in utero [3], and intra-
and interhemispheric connectivity strength increase with maturity [9]. Age-related changes
are not restricted to localized or regional connections. Systems-wide changes in network
integration and segregation associated with brain maturation have been described using
graph-theoretic techniques, a quantitative framework for describing complex networks
such as the brain [10,11]. Studies have shown the emergence of small-world network
topology as early as the second trimester and reduced segregation with advancing GA
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based on decreasing modularity, normalized clustering, and local efficiency [5,12,13]. While
trends have been described, it is unclear when the transition to mature network patterns
occurs.

When studying brain development, individuals are commonly grouped into ‘young’
and ‘old’ cohorts [13–15]. In some cases, this boundary is clear, such as when comparing
the brains of adults versus children. Functional connectivity-based cut points are less
defined during gestation, for example, when comparing brain maturity at mid- and late-
fetal stages. The goal of our study was to estimate optimal gestational-age (GA) cut
points, or transition periods, where we can subdivide fetal groups based on age-associated
changes in network topology and perform meaningful between-group comparisons. In
this study, cut points were defined for global functional network metrics that we have
recently described; these metrics are normalized clustering and path length, global and local
efficiency, modularity, and the small-world index, metrics we have previously described in
this fetal cohort [5]. We selected GAs between 28 and 33 weeks as potential cut points based
on previous studies reporting transitional electrophysiologic events [16,17] and resting-
state studies that demonstrated significant connectivity changes around this period [4,9].
We hypothesized that optimal cut points would likely fall between 30 and 32 weeks
coinciding with the dissolution of the transient fetal compartments and consolidation of
thalamocortical connections.

2. Materials and Methods
2.1. Participants

A total of 110 data sets from fetuses of 95 pregnant women with healthy pregnancies
were included in the study. RS-fMRI data were collected as part of a prospective, longitudi-
nal study at Children’s National in Washington DC investigating pre- and postnatal brain
development in the setting of complex congenital heart disease. We previously described
global network topology in this cohort in a recently published study [5]. Conventional
T2 for all fetuses revealed structurally normal brains. Pregnant women with known psy-
chiatric/metabolic/genetic disorders, complicated pregnancies (i.e., preeclampsia and
gestational diabetes), multiple pregnancies, alcohol and tobacco use, maternal medications,
and contraindications to MRI were excluded from the study. For fetuses, those with dys-
morphic features on antenatal ultrasound, chromosomal abnormalities by amniocentesis,
presentation after 28 weeks’ gestational age, and evidence of congenital infections were
excluded.

2.2. Acquisition of Resting-State Data

We used a 1.5 T GE MRI scanner (GE Healthcare, Milwaukee, WI) with an 8-channel
receiver coil to collect anatomical and resting-state fMRI data. The settings for single-shot
fast spin-echo anatomical T2-weighted images (i.e., sagittal, axial, and coronal slices) were
as follows: TR= 1100 ms, TE = 160 ms, flip angle = 90◦, and slice thickness = 2 mm. The
following were the resting-state echo planar images (EPI) scanning parameters: TR =
3000 ms, TE = 60 ms, voxel size = 2.578 mm × 2.578 mm × 3 mm, flip angle = 90◦, field
of view = 33 cm, matrix size = 128 × 128, and scan duration = 7 min (140 volumes). On
average, 5.35 min (25, 75 IQR: 4.6, 6) of resting-state data (107 volumes) were available after
preprocessing.

2.3. Preprocessing of Resting-State Data

Fetal RS-fMRI data were preprocessed to attenuate the effects of noise on the measured
blood oxygen level dependent (BOLD) signals. These steps were previously described
in [5,18]. EPI images were slice time corrected, followed by removal of the first four RS
volumes to allow for magnetic gradients to stabilize. The data were then oriented to
radiologic orientation and despiked. We also performed bias-field correction to address
image intensity nonuniformities due to variations in the magnetic field [19]. Next, we
corrected for head motion using an algorithm validated in fetuses and newborns [20,21].
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Then, RS images underwent intensity normalization to a global mode of 1000 [22]. This
was followed by smoothing using an isotropic 4.5 mm full-width half-maximum Gaussian
kernel. Band-pass filtering, retaining signals in the range 0.01 Hz–0.1 Hz, and nuisance
regression were then simultaneously performed. Along with regression, censoring of
high motion frames and volumes with a high number of voxel intensity outliers was
performed [23,24]. High motion was defined as frame-by-frame translational and rotational
motion >1 mm and >1.5◦ [7,25], respectively. Frames where more than 10% of voxels had
intensities deviating from the voxel time series’ median absolute deviation were also
censored from the time series. Regressors included in the general linear model were
white matter/CSF signals [26–28], linearly detrended rigid motion parameters, and their
temporal derivatives [29]. Residual BOLD signals from this regression were analyzed.

2.4. Graph Construction

The fetal functional connectome was formed from 200 regions of interest (ROIs, or
nodes) (see Supplementary Figure in [5]) defined using a widely used functional clustering
technique [30]. In this approach, a normalized-cut spectral algorithm was used to group
voxels into nonoverlapping, functionally homogenous ROIs. Clustering was performed
using the temporal correlation between voxel BOLD signals, followed by a 2-level clustering
approach to create group-level parcellations. As previously described [5], the BOLD signals
for each ROI were measured by averaging signals from high-quality voxels that make
up each region [31]. Then, all possible pairwise Pearson correlations for all ROIs were
computed yielding a 200 × 200 matrix (or 19,900 correlations). The correlation, r, between
an ROI pair is its functional connectivity. Only significant positive connections (pFDR < 0.05)
were included [32]. In addition, for reliable graph estimates, thresholds were applied such
that nodes of individual graphs were at least 95% connected and had average degree k > 2 *
ln (number of nodes) [33,34]. Resulting graphs had an edge density range between 0.10 and
0.51. Global network metrics were computed from each fetus’ 200 × 200 binary, undirected
graphs at a 0.01 interval. Metrics were averaged across the full density range [35].

2.5. Graph Analysis

We used the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/,
accessed on 2 June 2021) to compute normalized (i.e., relative to 100 reference random
graphs) values of clustering coefficient (γ) and path length (λ), global efficiency (GE), local
efficiency (LE), modularity (Q), and the small-world index (σ) [36,37]. Global metrics
related to network segregation and integration were computed. Clustering, local efficiency,
and modularity were used to describe network segregation. Normalized path length and
global efficiency were used to describe integration. Briefly, the clustering coefficient de-
scribes the tendency of neighbors of a node to also be linked to each other. Local efficiency
describes the ease of communication among neighbors of one node when that node is
removed [38]. Modularity captures the tendency of regions to form densely connected
subnetworks while being sparsely linked to other clusters [39]. Characteristic path length
is the average shortest distance between two nodes in a network. Global efficiency, the
inverse of path length, determines the ability to transmit information across the network.
The small-world index describes the balance between segregation and integration com-
monly found in complex networks such as the brain. A network is considered small-world
when σ > 1. For a detailed, mathematical description of these metrics, see [36].

2.6. Statistical Analysis

We modeled the effect of GA at scan on connectivity metrics using separate repeated-
measures generalized estimating equations (GEE). A repeated-measures approach was
utilized for GEE models, given that 15 patients had two scans. In fetuses with two scans,
the mean interval between scans was 7.38 ± 2.81 (mean ± SD) weeks. The interval range
was 3–12.86 weeks. Our modeling strategy took three approaches. First, separate overall
GEE models per metric were computed with estimated GA slopes at select GA cut points

https://sites.google.com/site/bctnet/
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(i.e., 28–33 weeks) calculated. Second, the first approach was repeated, with the participants
stratified by gender. Third, the first approach was again repeated with the fetuses grouped
into ‘young’ or ‘old’ cohorts based on each GA cut point (e.g., 28 weeks vs. 29+ weeks,
≤ 29 weeks vs. 30+ weeks, etc.), with models stratified by cohort. Lastly, we used the
quasi-likelihood independence criterion (QICu) statistic to compare model fit between ‘old’
and ‘young’ cohorts. The QICu is analogous to the Akaike Information Criterion (AIC), and
models with a smaller statistic are preferred. Had our data been binary, traditional cutoff
analyses would be based on a binary outcome with subsequent use of the Youden’s Index
or some other combined measure of sensitivity or specificity. Given that our connectivity
outcomes are continuous, we defaulted to the QICu for determining cutoff. The QICu
is generally used to distinguish between regression models with a working correlation
structure. For consistency, we used an identical correlation structure (exchangeable) across
models. Model fit indices such as the -2 loglikelihood (-2LL) utilized in logistic regression
are traditionally relied upon to build out or contract models by reducing or increasing
parameters. Unlike the -2LL function for binary outcomes data (e.g., logistic regression), the
QICu does not utilize a chi-square function that easily translates into statistically significant
testing of the addition or subtraction of parameters. There is no currently available way to
statistically test the QICu. For this exercise, we are not model building in a traditional way,
i.e., adding or subtracting covariates. Each model across each individual GA cut point was
identical to avoid issues of parsimony and fitting–we did not want any covariate effects
to essentially affect the GA–connectivity relationship. Our model fitting is essentially
static. GA cut points were then assessed following graphical depiction (see Figure 1). For
each approach, to test the robustness of our GEE connectivity models, GA estimates were
evaluated using a bootstrap approach with 1000 iterations (sampling rate = 75%) from
which 95% CIs were derived. Confidence intervals were derived using the 2.5 th and 97.5 th
percentiles generated from the bootstrapped estimates distribution. For each connectivity
metric, we then utilized a graphical approach to compare QICu fit indices for ‘young’ and
‘old’ cohorts at each GA cut point by plotting both groups against each other. All analyses
were performed using SAS (ver. 9.4, Cary, NC, USA).

Figure 1. Plot of generalized estimating equation QICu fit indices below (dashed lines) and above (solid lines) the
threshold for each metric against gestational age in weeks. Intersecting lines represent the estimated optimal GA binary
stratification point.
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3. Results

A total of 110 fetal resting-state scans from 95 healthy fetuses (49 females, 46 males)
between 19.14 and 39.71 gestational weeks (median: 34.93; 25, 75 IQR: 31.29, 36.57) were
analyzed. All fetuses in the study were eventually born full term, with a median GA
of 39.57 (25, 75 IQR: 39.71, 40.29). After rigorous preprocessing, an average of 108 ± 17
volumes were available for analysis. Of these, we only included 80 volumes (i.e., 4 min scan
duration) for each participant to reduce bias introduced by variability in time series length.
Nevertheless, for this cohort, global metrics for partial time series data closely estimated
metrics computed from all available time points (Supplementary Figure S1). Average and
maximum frame-by-frame head displacement [24] did not correlate with GA at scan or
any of the global network metrics. Demographic and motion findings were previously
reported in [5].

3.1. GEE Modeling

Trends for normalized clustering and path length, local efficiency, modularity, and the
small-world index decreased with increasing GA (Table 1); global efficiency showed an
increasing pattern. Age-related trends were consistent for both males and females. Average
bootstrapped estimated slopes ranged from βGA = 0.01 (GE) to βGA = 0.22 (σ). Average
change in bootstrapped estimated slope from 28 to 33 weeks GA ranged from 3.52% to
17.81%. Among female fetuses (see Supplementary Table S1), following bootstrapping,
average bootstrapped estimated slopes ranged from βGA = 0.01 (GE) to βGA = 0.30 (γ).
Average change in bootstrapped estimated slope (GA = 28 to GA 33) ranged from 3.54%
to 17.92%, with the least change observed for λ (3.78% to 17.87%) and greatest change,
GE (3.08% to 18.46%.). Among male fetuses (see Supplementary Table S2), following
bootstrapping, bootstrapped estimated slopes ranged from βGA = 0.2 (GE) to βGA = 0.15
(Q). Average change in bootstrapped estimated slope (GA = 28 to GA 33) ranged from
3.61% to 17.83% with the least change observed for λ (3.49% to 17.76%) and greatest change,
GE (3.80% to 17.72%.)

Table 1. Overall modeled bootstrapped estimates and 95% confidence intervals at select gestational-age cut points.

Metric GA at Scan = 28 GA at Scan = 29 GA at Scan = 30 GA at Scan = 31 GA at Scan = 32 GA at Scan = 33

Q −0.12 −0.1243 −0.1286 −0.1328 −0.1371 −0.1414
(−0.3497–0.0477) (−0.3622−0.0494) (−0.3747−0.0511) (−0.3871−0.0528) (−0.3996−0.0545) (−0.4121−0.0562)

GE
0.0056 0.0058 0.006 0.0062 0.0064 0.0066

(−0.0102−0.0196) (−0.0105−0.0203) (−0.0109−0.0210) (−0.0113−0.0217) (−0.0116−0.0224) (−0.0120−0.0231)

LE
−0.0179 −0.0185 −0.0192 −0.0198 −0.0205 −0.0211

(−0.0466−0.0315) (−0.0483−0.0326) (−0.0500−0.0337) (−0.0516−0.0349) (−0.0533−0.0360) (−0.0550−0.0371)

γ −0.2449 −0.2537 −0.2624 −0.2712 −0.2799 −0.2887
(−0.5488−0.4955) (−0.5684−0.5132) (−0.5880−0.5309) (−0.6076−0.5486) (−0.6272−0.5662) (−0.6468−0.5839)

λ
−0.0283 −0.0293 −0.0303 −0.0313 −0.0323 −0.0333

(−0.0788−0.0447) (−0.0816−0.0463) (−0.0845−0.0479) (−0.0873–0.0495) (−0.0901−0.0511) (−0.0929–0.0527)

σ
−0.2027 −0.2099 −0.2171 −0.2244 −0.2316 −0.2389

(−0.4537–0.3698) (−0.4699–0.3830) (−0.4861–0.3962) (−0.5023–0.4095) (−0.5185–0.4227 (−0.5347–0.4359)

3.2. Optimal GA Cut Point

For each GA cut point, we then stratified the cohort into ‘young’ or ‘old’ groups
based on values below or above the GA threshold of interest (Table 2) and subsequently
separately modeled the GA on metric association. The proportion of fetuses allocated
to the ‘younger’ cohort based on GA ranged from 11.8% (GA = 28) to 30.9% (GA = 33).
Across all metrics, among fetuses classified to the ‘younger’ cohort, the percent change in
estimated GA slope ranged from a low of -9.84% (Q) to a high of -39.21% (σ). Lastly, we
present model performance QICu metrics (Table 3, Figure 1) for each metric stratified by
younger and older cohorts for each GA cut point. For each metric, at each GA cut point, we
compared younger and older QICu scores using a modified Youden index to determine the
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optimal cut point. Optimal cut points fell within the range of 30–31 weeks for all metrics.
Supplementary Figure S2 shows global metrics relative to this cut point.

Table 2. Stratified modeled bootstrapped estimates and 95% confidence intervals at select gestational-age cut points.

Metric Exceed GA at Scan = 28 GA at Scan = 29 GA at Scan = 30 GA at Scan = 31 GA at Scan = 32 GA at Scan = 33

Cut Point N = 13/97 N = 14/96 N = 20/90 N = 24/86 N = 30/80 N = 34/76

Q No −0.0061 −0.0064 −0.0048 −0.0063 −0.0048 −0.0055

(−0.0144–−0.0010) (−0.0139–−0.0017) (−0.0095−
−0.0011) −0.0072 (−0.0077–−0.0024) (−0.0082–−0.0031)

Yes −0.0014 −0.0014 0.0013 0.0008 0.0027 0.0019
(−0.0120–0.0075) (−0.0120–0.0075) (−0.0066–0.0088) (−0.0036–0.0203) (−0.0033–0.0204) (−0.0047–0.0204)

GE No 0.0005 0.0006 0.0004 0.0007 0.0008 0.0007
(−0.0015–0.0032) (−0.0012–0.0030) (−0.0007–0.0018) (−0.0003–0.0018) (0.0000–0.0016) (0.0001–0.0015)

Yes −0.0001 −0.0001 −0.0004 −0.0006 −0.0003 −0.0002
(−0.0010–0.0005) (−0.0010–0.0005) (−0.0020–0.0004) −0.0027–0.0002) (−0.0010–0.0005) (−0.0011–0.0007)

LE No −0.0016 −0.0019 −0.0015 −0.0019 −0.0017 −0.0018
(−0.0060–0.0018) (−0.0059–0.0012 (−0.0041–0.0006) (−0.0041–−0.0001) −0.0033–−0.0002) (−0.0031–−0.0005)

Yes 0 −0.0001 0.0001 0.0006 0.0003 0
(−0.0016–0.0020) (−0.0016–0.0020) (−0.0026–0.0031) (−0.0008–0.0031) (−0.0012–0.0015) (−0.0057–0.0014)

γ No −0.0312 −0.0348 −0.0243 −0.0263 −0.0176 −0.0208
(−0.0510–−0.0149) (−0.0543–−0.0172) (−0.0406–−0.0064) (−0.0386–−0.0134) (−0.0266–−0.0054) −0.0298–−0.0083)

Yes 0.0048 0.0041 0.0021 0.0056 0.0144 0.012
(−0.0111–0.0341) (−0.0128–0.0341) (−0.0102–0.0384) (−0.0161–0.1078) (−0.0147–0.1081) (−0.0167–0.1082)

λ No −0.0044 −0.0044 −0.0026 −0.003 −0.003 −0.0029
(−0.0130–0.0022) (−0.0123–0.0016) (−0.0079–0.0021) (−0.0075–0.0009) (−0.0064–0.0001) (−0.0056–−0.0001)

Yes −0.0004 −0.0005 0.0004 0.0007 −0.0005 −0.0009
−0.0036–0.0023) (−0.0038–0.0022) (−0.0019–0.0060) (−0.0020–0.0085) (−0.0021–0.0015) (−0.0028–0.0015)

σ No −0.0281 −0.0295 −0.0186 −0.0188 −0.0102 −0.0128
(−0.0492–−0.0139) (−0.0484–−0.0163) (−0.0296–−0.0072) (−0.0265–− 0.0106) (−0.0166–−0.0000) (−0.0202–−0.0035)

Yes 0.0006 −0.0007 −0.0015 0.001 0.0103 0.0079
(−0.0148–0.0344) (−0.0167–0.0344) (−0.0153–0.0344) (−0.0199–0.1047) (−0.0177–0.1049) (−0.0231–0.1050)

Table 3. Generalized estimating equation fit indices for stratified modeled bootstrapped estimates and 95% confidence
intervals at select gestational-age cut points.

Metric Exceed GA at Scan = 28 GA at Scan = 29 GA at Scan = 30 GA at Scan = 31 GA at Scan = 32 GA at Scan = 33

Cut Point N = 13/97 N = 14/96 N = 20/90 N = 24/86 N = 30/80 N = 34/76

Q No 11.867 12.634 17.145 20.132 24.664 27.635
(9.0000−14.0000) (9.5000−15.0000) (14.0000−20.0000) (16.0000−24.0000) (21.0000−28.0000) (23.0000−32.0000)

Yes 75.1168 74.3619 69.7688 66.7001 62.0553 59.2125
(72.0004−78.0001) (74.0000−76.5054) (66.0000−73.0002) (62.0002−71.0000) (57.0405−66.0000) (55.0000−63.0004)

GE No 11.867 12.634 17.145 20.132 24.664 27.635
(9.0000−14.0000) (9.5000−15.0000) (14.0000−20.0000) (16.0000−24.0000) (21.0000−28.0000) 23.0000−32.0000)

Yes 75.1168 74.4058 69.7883 66.6606 62.2288 59.4004
(72.0014−78.0001) (71.0013−78.0000) (65.5393−74.0000) (62.0000−71.0000) (57.9407−67.0256) (55.0000−64.5115)

LE No 11.867 12.634 17.145 20.132 24.664 27.635
(9.0000−14.0000) (9.5000−15.0000) (14.0000−20.0000) (16.0000−24.0000) (21.0000−28.0000) (23.0000−32.0000)

Yes 74.9755 74.1004 68.6799 64.0572 57.8721 57.0111
(72.0000−78.0037) (71.10003−78.0000) (26.1065−74.0000) (25.8099−71.0012) (26.0766−71.9152) (29.0706−95.2327)

γ No 11.867 12.634 17.145 20.132 24.664 27.635
(98.0000−14.0000) (9.5000−15.0000) (14.0000−20.0000) (16.0000−24.0000) (21.0000−28.0000) (23.0000−32.0000)

Yes 75.1457 74.3887 69.8371 66.8617 62.2667 59.3355
(72.0003−78.0002) (71.0000−78.0000) (66.0000−73.0003) (63.0000−71.0000) (58.1335−66.0000) (55.0000−63.4042)

λ No 11.867 12.634 17.145 20.132 24.664 27.635
(9.0000−14.0000) (9.5000−15.0000) (14.0000−20.0000) (16.0000−24.0000) (21.0000−28.0000) (23.0000−32.0000)

Yes 74.9952 74.228 70.154 67.6423 63.6002 59.8447
(72.0004−78.0003) (71.0007−77.0000) (65.9967−74.0195) (62.0000−74.8341) (57.6592−69.9663) (55.0000−64.0018)

σ No 11.867 12.634 17.145 20.132 24.664 27.635
(9.0000−14.0000) (9.5000−15.0000) (14.0000−20.0000) (16.0000−24.0000) (21.0000−28.0000) (23.0000−32.0000)

Yes 75.2052 74.3849 69.8515 66.8673 62.3361 59.3695
(72.0002−78.0002) (71.5005−78.0000) (66.4253−73.0002) (63.0000−71.0000) (59.0000−66.0004) (55.0000−64.0000)

4. Discussion

We statistically defined optimal gestational-age cut points that can be used to di-
chotomize human fetuses into ‘young’ and ‘old’ subgroups based on resting-state func-
tional connectivity. Most network measures’ trends, except for global efficiency, decreased
with advancing gestational age. Statistically, optimal GA cut points for small-world index,
normalized clustering and path length, global and local efficiency, and modularity were at
30–31 weeks, coinciding with transitional physiologic events that have been shown to be
critical to the development of fetal neural circuitry.
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That network organization evolves during gestation is not surprising, given how
rapidly the brain changes in the third trimester [40]. For example, reduced network
segregation with advancing fetal gestational age, demonstrated by decreasing modularity,
normalized clustering, and local efficiency, has previously been reported [5,9]. In our
previous work, we focused on identifying trends in global network metrics across gestation;
here, we focused on identifying transition points where we could meaningfully split fetal
cohorts when examining age-related changes in the fetal connectome. The late second
to early third trimester of gestation marks a transition in the neural circuitry of the fetal
brain, from immature, autonomously generated neuronal bursts to a more sensory-driven
pattern [16,41]. The neurobiological underpinnings of the identified inflection points in the
network metrics are undetermined, but we speculate that the reported changes in the fetal
connectome may be related to maturing electrical patterns. Before 30–32 weeks, electrical
activity in the brain is centered around the subplate [42–44]. During the midfetal period, or
around 15 weeks GA, transient fetal compartments essential to the formation of the fetal
neural circuitry have already been formed. The subplate, specifically, serves as a waiting
area where postmigratory neurons temporarily connect with subcortical afferents [45]. The
establishment of these neural circuits has been linked to the emergence of spontaneous
activity transients (SATs), oscillatory neuronal activity that predates evoked brain responses,
on electroencephalography recordings in extremely premature infants [46,47]. At around
28–30 weeks, with subcortical afferents synapsing with the cortical plate and refinement of
these developing circuits, there is eventual dissolution of the subplate. Electrical activity
gradually shifts to the more permanent thalamocortical (subcortical–cortical plate) circuitry,
and SATs are replaced by complex cortical EEG patterns [46,48]. The histologic and
electrical events described coincide with the identified cut points providing a potential
substrate for the transitions seen in the fetal connectome at around 30–31 weeks.

The link between physiologic events and age-related changes in the connectome
is currently speculative, but a previous study by Jakab and colleagues [4], where they
examined resting-state connectivity in 32 healthy fetuses, also emphasized the relevance of
this period. They showed that functional connectivity rapidly increased between 24 and
31 weeks’ gestation and gradually stabilized thereafter, likely due to the third-trimester
consolidation of thalamocortical connections.

It is important to point out the limitations of our study. First, we had few late
second- to early third-trimester fetuses in our group. A uniformly distributed sample
across gestational weeks would enable more robust statistical testing of optimal cut points.
Nevertheless, we based our transition points on more than 100 resting-state data sets,
a substantially large sample that we think provide reasonable baseline cut points for
future investigations. Second, the coupling between the BOLD signal and neural activity,
especially in utero, is poorly understood [49]. More studies are needed to elucidate the
neural mechanisms underlying the relationship between gestational age, BOLD signal
changes, and global network topology. A methodological consideration that bears mention
is node selection. Here, we opted to use a functional clustering algorithm to define brain
regions. Studies have suggested that global and intermediate metrics are stable across
different parcellation strategies, but future studies that systematically test the influence of
atlas choice on cut points would help refine our current estimates. In-scanner fetal head
motion remains a challenging issue in MRI, and excessive head motion led to the exclusion
of a substantial number of otherwise healthy fetuses from our study cohort. To minimize
the effect of motion on functional connectivity, we performed a rigorous visual quality
assessment, used motion correction algorithms optimized for fetuses, and censored high
motion volumes from the hemodynamic time series. Of note, and as previously reported,
we did not observe any association between the metrics reported in this study and head
motion and gestational age at scan [5]. Lastly, here, we only focused on identifying
transition points in global network features which may be related to brain maturation. We
did not address whether global network metrics changed in a linear fashion throughout
gestation [5,9], an important avenue to explore in future studies.
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5. Conclusions

We identified GA cut points based on global network topology that could potentially
be used for future analyses comparing ‘young’ and ‘old’ fetuses. The period between 30
and 31 weeks coincides with a period in neural circuitry formation where spontaneous
activity of early circuit transitions to sensory-driven activity. Additional studies are needed
to understand the mechanisms underlying the association between gestational age, neural
circuitry changes, and global network topology.
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