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3D echocardiography
The heart is a complex, moving, 3D shape and 

for many years operators of ultrasound have had 

to build up an image of the heart in their mind 

using a series of two-dimensional (2D) “cuts”. 

Live 3D echocardiography is a novel technique 

for evaluation of cardiac abnormalities without 

any of the assumptions made in 2D imaging. 

Recent guidelines on the acquisition and display 

of 3D datasets have been published to attempt 

to standardise the clinical application of this 

advanced echocardiographic modality.1

A 2D phased array transducer provides only 

one plane of imaging at a time whereas a 3D matrix 

array transducer functions in a similar way to a 

shower head, giving a 3D “shower” of ultrasound 

in both the lateral and elevation planes. The 2D 

imaging plane within the 3D dataset may therefore 

be “foreshortened” as the LV apex is captured 

within the data set. Post processing adjustments 

can then be made to obtain the true apex (Figures 

1 and 2) allowing for more accurate assessment of 

LV volumes and ejection fraction.

There are two types of 3D imaging; 

i) live 3D where a single beat volume can be 

acquired 

ii) multi-beat 3D; where the 3D dataset is acquired 

over multiple beats (usually from 2 to 7 beats). 

The advantage of a live 3D volume is that there 

is no “stitching” of beats together which may 

cause artifacts and misalignment of structures. 

In addition, single beat volume can be used in 
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Abstract
Echocardiography has advanced significantly since its first clinical use. The move towards more 
accurate imaging and quantification has driven this advancement. In this review, we will briefly focus 
on three distinct but important recent advances, three-dimensional (3D) echocardiography, contrast 
echocardiography and myocardial tissue imaging. The basic principles of these techniques will be 
discussed as well as current and future clinical applications.
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Figure 1: The imaging plane from a standard 2D probe demonstrating foreshortening with the LV apex being 
missed from the acquisition.
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the presence of arrhythmias such as atrial fibrillation which are 

common in the cardiac patient population. The downside is that 

the spatial and temporal resolution is compromised and can 

reduce accuracy in quantification. A multi-beat acquisition gives 

a much higher frame rate and is often the only type of 3D dataset 

that can be analysed in dedicated 3D quantification software 

packages. Despite these limitations, 3D echocardiography has 

significant advantages over cardiac magnetic resonance imaging 

(MRI) and computed tomography (CT) in that it is relatively 

inexpensive, portable and can be used for patients with metal 

implants and claustrophobia.

Left ventricular assessment
Left ventricular mass, volumes and ejection fraction (EF) are 

important prognostic parameters2–6 that are used for serial 

follow up of patients in various conditions including congestive 

cardiac failure, ischaemic heart disease, and valvular disease and 

for monitoring chemotherapy cardiac toxicity. Unfortunately, 

2D echocardiography has limited test-retest reliability with 

regards  to measuring LV parameters and has been reported to 

give a variation in EF between operators of as much as 11%.7,8 

Cardiac MRI is considered the gold standard as it overcomes 

the geometrical assumptions made in 2D echocardiography; 

however the cost and availability of MRI makes it more difficult 

in a clinical setting. 3D echocardiography has a lower cost 

than MRI and has been found to have a high reproducibility 

in regards to LV volumes, EF and mass and is comparable to 

MRI.9–25 There is a high test-retest reliability of 3D LV volume 

and EF measurements26 making it ideal for serial EF follow up, 

particularly when using a semi-automated border detection 

software which does not rely on geometric assumptions of a 

“normal” LV.14,16,27,28 It also improves the detection of regional 

wall motion abnormalities compared with 2D imaging.29 

Contrast imaging (discussed later) can also be used with 3D 

echocardiography to improve image quality and assist in 

assessment of EF and regional wall motion abnormalities.30

Recently, 3D echocardiography has been used to determine 

LV dyssynchrony.31–35 It has been found that a 3D derived 

dyssynchrony index can determine which chronic heart failure 

patients are more likely to respond to cardiac resynchronisation 

therapy.36 Contraction wave mapping is also thought to assist 

in determining the area of latest activation and therefore the 

optimal position for lead placement.37,38

3D echocardiography may also be used in the assessment of 

right ventricular39–43 and left atrial44–49 volumes and function 

but is beyond the scope of this review.

Valvular assessment:
As a 3D dataset can be cropped and displayed in any orientation, 

direct visualisation or “enface” views can be obtained (depending 

on image quality) of all four valves. The development of 

3D transoesphageal echocardiography (TOE) has made 3D 

valvular assessment easier with superior resolution of images, 

particularly in mitral valve disease. The ability to display the 

mitral valve enface and in a surgical view (displayed as the 

surgeon would see the valve after opening up the left atrium) 

allows easier communication between cardiology and surgical 

teams (Figures 3 and 4). Note the resolution differences between 

the transthoracic (TTE) and TOE images.

Both 3D TOE and TTE have been shown to improve the 

detection of mitral valve disease, particularly where complex 

pathology such as a cleft or prolapse at the commissural level 

Figure 2: The probe 
is in the same position 
as in Figure 1, however 
because it is a 3D imag-
ing transducer the apex 
is now within the image 
acquisition.
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exists.50–54 The measurement of mitral valve area in mitral 

stenosis from 3D planimetry has a better correlation with 

invasively derived results than 2D alone55–62 (Figure 5).

Other cardiac valves can also be visualised and assessed using 

both 3D TTE and TOE. Estimation of aortic valve area in aortic 

stenosis via direct planimetry63–66 and continuity equation67,68 

can be performed using 3D and has been shown to be superior 

to 2D assessment alone.

Colour Doppler is also available using 3D;69,70 however 

single beat acquisition is not available in this mode due to poor 

temporal and spatial resolution. A 4 to 7 beat acquisition is 

required to obtain a 3D colour dataset and care must be taken 

to avoid “stitching” artifact. Quantification of both the vena 

contracta and the proximal isovelocity surface area (PISA) in 

mitral regurgitation has been shown to be more accurate and 

reproducible using 3D compared to 2D.71–74 The vena contracta 

in the assessment of aortic regurgitation can also be more 

accurately assessed with 3D echocardiography.75,76

Figure 3: A 3D trans-
thoracic image of the 
mitral valve enface in 
a surgical view dem-
onstrating a large 
mid posterior (P2) 
segment prolapse 
(arrow). AoV – aor-
tic valve, Ant MVL – 
anterior mitral valve 
leaflet, Post MVL – 
posterior mitral valve 
leaflet, TV – tricuspid 
valve.

Figure 4: A 3D trans-
oesophageal image 
of the mitral valve 
enface in a surgical 
view demonstrating 
a mid anterior (A2) 
segment prolapse 
(arrow). AoV – aor-
tic valve, Ant MVL – 
anterior mitral valve 
leaflet, Post MVL – 
posterior mitral valve 
leaflet, LAA – left 
atrial appendage.
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Other 3D uses
The same measurement package used for calculation of mitral 

valve area may also be used to size atrial septal defects prior 

to device closure and has been shown to be superior to 2D 

assessment alone77 (Figure 6).

Another less heralded but very clinically useful feature of 3D 

technology is multi–plane imaging which allows a structure to 

be displayed in simultaneous orthogonal views. Not only does 

this make interrogation of structures such as mitral valve and left 

atrial appendage quicker and more accurate, it plays an important 

role in guiding interventions such as septal punctures (Figure 

7), septal defect closure devices (Figure 8),78–80 percutaneous 

Figure 5: A 3D biplane 
transthoracic image 
of mitral valve steno-
sis demonstrating the 
line of measurement 
through the mitral 
valve on the para-
sternal long axis view 
(left pane) with the 
measurement of the 
mitral valve area on 
the right pane. AoV 
– aortic valve, MV – 
mitral valve.

Figure 6: A 3D trans-
oesophageal image of 
an atrial septal defect 
viewed from the left 
atrial aspect. ASD – 
atrial septal defect, 
AoV – aortic valve, 
SVC – superior vena 
cava.
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valve repairs,81 percutaneous repair of prosthetic mitral valve 

paravalvular regurgitation,82–85 balloon valvuloplasty81 and 

placement of left atrial appendage occluder devices.86

Contrast echocardiography
Contrast echocardiography is an important arsenal in any 

echo laboratory in improving image quality. Its uptake into the 

Australian setting has been slow but has gained momentum 

since the introduction of second generation contrast agents. 

This technique has special relevance in Australia with increasing 

obesity and co-morbidities such as airway diseases making 

optimal imaging difficult in up to 10–15% of patients.87

Contrast echo relies on different ultrasound properties 

exhibited by the contrast agents and human tissue enabling 

better delineation of the endocardium. Agitated saline injected 

into peripheral veins has long been used as a simple and readily 

available contrast agent to opacify right heart structures as well 

as identify intracardiac shunts and improve Doppler signals 

(i.e. tricuspid regurgitation). However, left heart contrast 

agents require that the microbubbles are small (4–5 μm) and 

Figure 7: A 3D biplane 
t r a n s e s o p h a g e a l 
image of the inter-
atrial septum dem-
onstrating a needle 
tenting the septum 
pre septal puncture. 
The biplane image 
ensures that the 
septal puncture will 
occur in the mid sep-
tum. AV – aortic valve, 
LA – left atrium, RA – 
right atrium.

Figure 8: A 3D trans-
esophageal image of 
an atrial septal defect 
closure device. ASD – 
atrial septal defect, LA 
– left atrium, RA – right 
atrium.
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Figure 9: An apical 4 
chamber view of the 
left ventricle without 
contrast – note that 
the lateral wall is 
poorly visualised. LV 
– left ventricle.

Figure 10: The same 
image as Figure 8 
with the addition of 
contrast – note the 
improvement of lateral 
wall endocardial/ cav-
ity border definition. LV 
– left ventricle.
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Figure 11: A contrast 
image demonstrat-
ing an apical throm-
bus (seen as black 
against the white 
contrast). LV – left 
ventricle.

Figure 12: A contrast 
image demonstrating 
apical hypertrophy 
– note the degree of 
left ventricular cavity 
obliteration (arrow).
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resilient enough to pass through the pulmonary circulation.87 

Commercially available contrast agents are small microbubbles 

consisting of an inert gas encapsulated by a surface shell, often a 

lipid or polymer coat. When subjugated to ultrasound waves they 

oscillate (normal tissues don’t), creating multiple frequencies 

that can create a stronger signal intensity in comparison to 

tissue which causes the blood pool to opacify hence improving 

endocardial definition. Furthermore, current ultrasound 

machines use various processes to suppress tissue signals while 

enhancing the signal from the contrast agents.87

Contrast safety
The Food and Drug Administration (FDA) and European 

licensing authority in the recent past have raised safety concerns 

based on a higher than usual incidence of deaths in critically 

ill patients who have undergone contrast echo.88 However, 

subsequent studies using a larger numbers of patients have 

demonstrated conclusively that contrast is very safe.87–89 The 

half life of contrast echo is short and it is excreted from the body 

through the lungs within a few minutes. Unlike other contrast 

agents used in imaging, echo contrast does not affect the kidneys 

and has a very low incidence of allergic reactions. The most 

common side-effects that patient may experience are minor and 

include flushing headache, nausea, chest or back pain. The only 

absolute contra-indication to contrast would include previous 

allergy to the agent and known intra-cardiac shunting.87

Administration of contrast
All major ultrasound companies have a contrast package that 

can be purchased as an option. The mechanical index (the power 

of the ultrasound beam) needs to be reduced to avoid destroying 

the microbubbles and the focal zone should be lowered to the 

base of the heart (around the mitral valve level). The near field 

gain needs to be reduced as the contrast is particularly bright in 

the LV apex. The contrast agent is injected into a peripheral vein 

very slowly along with a saline flush or for sustained imaging. 

An infusion pump may be used.87 Any remaining contrast is 

discarded. The agents have a six-month shelf life and needs to be 

refrigerated. The current American Society of Echocardiography 

(ASE) and European Association of Echocardiography (EAE) 

guidelines suggest that the use of contrast agents are indicated 

when greater than two of the 17 LV wall segments are poorly 

visualised87 (Figures 9 and 10). Currently there are no specific 

Australian guidelines available on the use of contrast agents in 

echocardiography.

If there is not enough contrast in the LV (noted as contrast 

“swirling” in the LV) you can either inject more contrast or 

reduce the mechanical index. If attenuation of the beam occurs 

you usually have to wait for some of the contrast to leave the LV 

or increase your mechanical index.87

Clinical indications
The most common use of contrast is to better assess LV function 

in patients whose images are suboptimal with normal harmonic 

imaging, known as LV opacification (LVO).90–94 It can also 

be used for stress and dobutamine echocardiography95–98 to 

increase the number of wall segments visualised enabling 

greater accuracy in diagnosing coronary artery disease. It 

is also particularly useful in assessing for apical thrombus99 

which appears black in comparison to the white blood pool 

(Figure 11). Rare conditions such as apical hypertrophy100 can 

be distinguished from foreshortening using contrast (Figure 

12). Non-compaction cardiomyopathy which is characterised by 

deep recesses within the endocardium can also be highlighted 

Figure 13: Tissue 
Doppler imaging dem-
onstrating velocity 
curves. The peak sys-
tolic velocity is labeled 
as s’, the peak early 
diastolic velocity is 
labeled as e’ and the 
atrial kick diastolic 
velocity is labeled as a’.
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by contrast echo.101 Contrast can also be used to enhance the 

quality of Doppler signals and is particularly useful in difficult 

aortic stenosis cases.102,103 Assessment of myocardial perfusion 

can also be performed but its use for this purpose has not yet 

been approved by the FDA and therefore is still in the research 

and development phase.104,105

Myocardial tissue Imaging
One of the newer and exciting advances in echocardiography is 

the ability to use imaging techniques which are based on tissue 

Doppler or myocardial speckles to directly assess LV function and 

mechanics. These techniques unlike EF and visual estimation of 

LV function, which look at volume displacement, directly assess 

the mechanics of the myocardial tissue. They can measure the 

velocity of myocardial motion or the deformation (also known as 

strain). This technique is more commonly used to assess mitral 

annular velocities to assist in the determination of diastolic 

function. Tissue Doppler imaging (TDI) uses the same principle 

as pulsed wave Doppler except that it detects myocardial motion 

in relationship to the transducer rather than blood flow (Figure 

13). The best profile is obtained when the motion of the tissue 

is directly aligned to the ultrasound beam. Hence TDI is best 

suited for myocardial motion in the longitudinal plane using an 

apical window. This angle dependency of TDI is this techniques’ 

greatest limitation. Strain or myocardial deformation differs 

from myocardial velocity in that it is not affected by tethering, 

i.e. being pulled along or affected by other myocardial segments 

(discussed later). Strain using TDI is more accurate in assessing 

regional wall motion than myocardial velocity alone.106,107

TDI velocity data has been used extensively for the detection 

of mechanical dyssynchrony with excellent results in predicting 

response to cardiac resynchronisation therapy in single centres 

with proficiency in this technique108–112; however a recent multi-

centre trial (PROSPECT) using TDI dyssynchrony analysis has 

disappointing results indicating that this technique was subjective 

and needed expertise in image analysis.113 Speckle tracking strain 

Figure 14: A schematic 
representation of tis-
sue Doppler theory in 
a normal heart show-
ing an apical 4 cham-
ber view with the left 
ventricular apex at the 
top of the image with 
diastole in A and sys-
tole in B. See text for 
details.

Figure 15: A schematic 
representation of tis-
sue Doppler theory 
in an abnormal heart 
showing an apical 4 
chamber view with the 
left ventricular apex at 
the top of the image 
with diastole in A and 
systole in B. See text 
for details.
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Figure 16: A tissue 
Doppler graph with 3 
myocardial sample 
volumes on the sep-
tal wall. The yellow 
sample volume is the 
most basal point with 
the red sample volume 
the most apical point. 
The corresponding 
graphs demonstrate a 
higher velocity in sys-
tole of the more basal 
myocardial point (yel-
low arrow) than the 
more apical point (red 
arrow).

Figure 17: An apical 
4ch view with 2 myo-
cardial points high-
lighted and enlarged 
to demonstrate the 
unique speckle “fin-
gerprint” at each point.

Advanced echocardiographic techniques
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detection of dyssynchrony may overcome some of these reliability 

issues but this is yet to be verified on a larger scale.114–117

The key differences between tissue velocity, strain and strain 

rate are illustrated in Figure 14. There are two myocardial 

“muscle bundles” shown in red (1) and green (2). In a normal 

heart the base of the heart descends to the apex during systole. 

The more basal muscle bundle (green) is pulled along by the 

more apical myocardium and therefore has a velocity even 

without contracting; however this green muscle bundle also has 

its own intrinsic contraction. 

Because of this intrinsic contraction the velocity of the 

green muscle bundle is higher than that of the more apical 

red muscle bundle. To further illustrate this Figure 15 shows 

a heart with myocardial damage in the green muscle bundle. 

You can see that this damaged muscle bundle still has a velocity 

(this movement is known as tethering) however it is the same 

as the more apical red muscle bundle – indicating that there is 

no intrinsic contraction.

This velocity gradient from the base to the apex is how strain 

and strain rate are calculated from TDI data (Figure 16). Strain 

is calculated from the TDI data by comparing the velocity of two 

myocardial points and normalising this to the distance between 

these two points. Strain rate is simply the rate at which these two 

points move towards or away from each other.118

Speckle tracking like tissue Doppler techniques also assess 

myocardial velocities and strain. This technique relies on tracking 

unique speckles found within the ultrasound image accentuated 

by harmonic imaging. These speckles are like unique fingerprints 

that can be tracked using complex algorithms to determine 

myocardial velocities or strain119–122 (Figure 17). However unlike 

Doppler techniques, they are angle independent and hence are 

not restricted to assess longitudinal function but can also assess 

circumferential and radial motion as well as rotation and twist 

of the myocardium (Figure 18). Speckle tracking requires high 

quality imaging with good spatial resolution so that the speckles 

are able to be tracked. The deformation (or strain) within the 

speckle fingerprint can be assessed directly rather than be 

converted from velocity information as the TDI technique 

does.119–122

Strain imaging using both TDI and speckle tracking has been 

shown to be of benefit in patients with ischaemic heart disease 

for detection of regional wall motion abnormalities123–127 and 

in the detection of myocardial viability.128,129 Strain imaging 

has been shown to detect subclinical changes in patients with 

hypertrophic cardiomyopathy,130–134 amyloid heart disease,135–138 

chemotherapy cardiac toxicity139 and may also assist in timing 

of surgery in valvular heart disease by detecting subtle changes 

prior to any decrease in ejection fraction (Figure 19).140–146

Figure 18: The three directions of myocardial strain as measured by echocardiography. Panel A shows longitudinal strain, with positive strain as a 
lengthening of the myocardium (L1), zero strain as no change (L2) and negative strain as a shortening of the myocardium (L3). Panel B shows radial 
strain, with negative strain as a thinning of the myocardium (L1), zero strain as no change (L2) and positive strain as a thickening of the myocardium 
(L3). Panel C shows circumferential strain, with positive strain as a lengthening of the myocardial circle, zero strain as no change and negative 
strain as a shortening of the myocardial circle.
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Conclusions
Though these new and evolving techniques are very different, 

they have a common purpose which is to improve the diagnostic, 

prognostic and therapeutic utility of echo in patients with cardiac 

disease. While competing imaging modalities such as cardiac 

MRI and CT have made rapid progress, echocardiography 

particularly with these new techniques still remains the primary 

imaging modality in cardiology. 3D imaging for LV volumes 

and EF and contrast imaging in difficult patients have become 

standard practice in many echocardiography labs and continue 

to assist in daily clinical practice. Myocardial image with strain 

and strain rate however still remains within the realm of research 

at this stage but holds significant future promise.
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