
polymers

Communication

Determination of the Degree of Crystallinity of
Poly(2-methyl-2-oxazoline)

Evgeniy M. Chistyakov 1,* , Sergey N. Filatov 1, Elena A. Sulyanova 2 and Vladimir V. Volkov 2

����������
�������

Citation: Chistyakov, E.M.; Filatov,

S.N.; Sulyanova, E.A.; Volkov, V.V.

Determination of the Degree of

Crystallinity of Poly(2-methyl-2-

oxazoline). Polymers 2021, 13, 4356.

https://doi.org/10.3390/

polym13244356

Academic Editors: Giulio Malucelli

and Zbigniew Bartczak

Received: 2 September 2021

Accepted: 10 December 2021

Published: 13 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; Filatovsn@list.ru
2 Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”,

Russian Academy of Sciences, 119333 Moscow, Russia; sulynova@gmail.com (E.A.S.);
volkicras@mail.ru (V.V.V.)

* Correspondence: ewgenijj@rambler.ru

Abstract: A new method for purification of 2-methyl-2-oxazoline using citric acid was developed and
living cationic ring-opening polymerization of 2-methyl-2-oxazoline was carried out. Polymerization
was conducted in acetonitrile using benzyl chloride—boron trifluoride etherate initiating system.
According to DSC data, the temperature range of melting of the crystalline phase of the resulting
polymer was 95–180 ◦C. According to small-angle X-ray scattering and wide-angle X-ray diffraction
data, the degree of crystallinity of the polymer was 12%. Upon cooling of the polymer melt, the
polymer became amorphous. Using thermogravimetric analysis, it was found that the thermal
destruction of poly(2-methyl-2-oxazoline) started above 209 ◦C.
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1. Introduction

Currently, polymeric materials based on polymers that have not been popular in the
past are employed more and more often to improve the living standards of people and
to develop advanced technologies. Some of these polymers were considered forgotten.
Today, such polymers are finding increasing practical use and are becoming the objects
of numerous studies. For example, highly efficient lithium ion batteries are produced
using chitosan, a natural renewable polymer [1]. Phosphazene-containing polybenzox-
azines and epoxy resins serve as binders for non-combustible polymer composites [2,3]
and condensation of some aryloxyphosphazenes results in the formation of thermally
stable matrix polymers [4,5]. Silsesquioxane–siloxanes are excellent modifying agents for
dental materials [6]. The vinyl sulfide polymer can efficiently extract Pd(II) from chloride
solutions [7]. Quite a few electrically conductive polymers are used in electronics [8].
Poly(vinyldiphenylphosphine) can serve for the synthesis of various olefins [9]. In the field
of biomedical research, the application of specific polymers such as polylactic acid [10],
polyaniline, and polypyrrole [11] was revived. Poly-2-oxazolines are also among such
polymers. They were used to prepare pH-sensitive and thermosensitive gels, drug delivery
agents, shells for magnetic particles, antibacterial films and coatings, liposomes, materials
for cell engineering, and for many other purposes [12–25]. Nevertheless, poly-2-oxazolines
have been poorly studied as yet. It is known that poly(2-alkyl-2-oxazolines) containing
more than two carbon atoms in the alkyl chain are crystalline [26–28]. Polymers with methyl
and ethyl side groups are considered to be amorphous [29,30]. However, we found that the
degree of crystallinity of poly(2-methyl-2-oxazoline) can reach 12%. This should be taken
into account for polymer processing, manufacture of polymer products, and evaluation of
the physicochemical and physicomechanical properties of polymer-based materials.
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2. Materials and Methods
2.1. Materials

Dichloromethane (anhydrous, ≥99.8%), acetonitrile (anhydrous, 99.8%), monoethanol-
amine (purified by redistillation, ≥99.5%), diethyl ether (anhydrous, ≥99.7%), benzyl
chloride (ReagentPlus®, 99%), boron trifluoride etherate (purified by redistillation, ≥46.5%
BF3 basis), citric acid (ACS reagent, ≥99.5%), zinc chloride (anhydrous, free-flowing, Redi-
Dri™, reagent grade, ≥98%), potassium carbonate (ACS reagent, ≥99.0%), and magnesium
sulfate (anhydrous, ReagentPlus®, ≥99.5%) were Sigma-Aldrich chemicals, Saint Louis,
MO, USA. The chemicals were used as received.

2.2. Synthesis of 2-Methyl-2-oxazoline

Anhydrous zinc chloride (6.82 g, 0.05 mol) was poured into a 250-mL one-necked
round-bottom flask with a magnetic stir bar. Acetonitrile (70 mL, 1.34 mol) and mo-
noethanolamine (100 mL, 1.66 mol) were added. A reflux condenser equipped with an
argon inlet (argon flow rate of 10 mL/min) was inserted into the neck of the flask. The
reaction mixture was heated to 82 ◦C with stirring. The synthesis was carried out until the
evolution of ammonia from the outlet tube ceased (determined using litmus paper strips).
Crude 2-methyl-2-oxazoline was isolated from the reaction mixture by distillation to collect
the fraction boiling at 108–112 ◦C. The yield of the monomer was 82 g (72% yield of the
theoretical amount). For purification, citric acid (2 g) was dissolved in the monomer, the so-
lution was kept for 2 h and then poured with stirring into dichloromethane (150 mL). After
the formation of a precipitate, the liquid phase was transferred into a 250 mL flat-bottom
flask and potassium carbonate (3 g) and magnesium sulfate (3 g) were added. The flask
was tightly closed, the dispersion was stirred for 4 h, then the precipitate was filtered off,
and the liquid phase was distilled to collect the fraction boiling at 110 ◦C. The yield of pure
2-methyl-2-oxazoline was 92 wt % relative to the starting crude material. The refractive
index of the monomer was n20D = 1.430.

2.3. Synthesis of Poly(2-methyl-2-oxazoline)

2-methyl-2-oxazoline (2 g, 0.023 mol) and acetonitrile (5 mL) were loaded into a 15 mL
round-bottom flask, which was equipped with a reflux condenser and a magnetic stir bar.
Then boron trifluoride etherate (0.028 g, 0.0002 mol) and benzyl chloride (0.025 g, 0.0002 mol)
were added with stirring. The reaction was conducted under argon flow (10 mL/min)
without stirring for 24 h at the solvent boiling point. Then, the reaction mixture was cooled
down to room temperature and acetonitrile (5 mL) and distilled water (0.1 mL) were added.
The solution was stirred for 20 min and poured into diethyl ether. This resulted in the
separation of a yellow resinous liquid, which was dried in vacuo at 60 ◦C to a constant
weight. The polymer was obtained as a foamed solid in a yield of 1.2 g (65%).

The polymerization was stopped before the monomer conversion was complete to
restrict the polymer molecular weight. Otherwise, it was impossible to prepare samples for
small-angle X-ray scattering measurements because of too high viscosity.

2.4. Sample Preparation for Determining the Degree of Crystallinity of the Polymer

A portion (0.1 g) of the synthesized polymer was dissolved in dichloromethane
(0.5 mL), the solution was taken into a syringe and deposited dropwise onto a heated
(35 ◦C) Teflon substrate, with the solvent being evaporated between drops. The sample
diameter was controlled within 5–7 mm. After the whole solution had been deposited, the
substrate was cooled down and placed into a vacuum oven, in which the sample was kept
for 5 h at room temperature and a residual pressure of 0.5 bar. After that, the pressure was
decreased to 0.1 bar and the sample was kept for 5 h, then the temperature was raised first
to 35 ◦C (10 h) and then to 45 ◦C (10 h). The dry film was separated from the substrate and
its thickness was measured to be ~0.1 mm.
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2.5. Methods

Differential scanning calorimetry (DSC) measurements were performed using a NET-
ZSCH STA 449F1 instrument (Erich NETZSCH GmbH & Co. Holding KG, Selb, Germany).
A ~10 mg portion of the polymer was placed into an aluminum crucible, which was then
pressurized. The crucible was placed into the measuring cell. A reference crucible was
placed into the second cell. The heating and cooling mode (10 ◦C min–1) was specified with
the Proteus Analysis software. Argon was used as a purge gas. The results were processed
using the Proteus® software.

Thermogravimetric analysis (TGA) was carried out on a Derivatograph-C instrument
(MOM SZERVIZ KFT., Budapest, Hungary) under argon, using ~10 mg samples and
heating rate of 10 ◦C min–1 (the TGA curve is presented in the Supplementary Materials).

1H and 13C NMR spectra were recorded on a Bruker AV-400 spectrometer, Bruker
Corporation, Billerica, MA, USA (the spectra are given in the Supplementary Materials).

Gel permeation chromatography (GPC) was performed using a Waters system com-
prising a Waters 1525 gradient pump, a Waters 1500 column thermostat, a Waters 2414
refractive index detector, and a Waters 2707 cooled autosampler (Waters Corporation, Mil-
ford, MA, USA), and a 300 × 7.8 mm TSKgel-G-Oligo-PW chromatographic column filled
with a hydroxylated polymethacrylate gel (7 µm) (Tosoh Corporation, Shiba, Minato-ku,
Tokyo, Japan). Polyethylene glycol standards with peak-average molecular weights (Mp)
of 106, 430, 1030, 2130, 3450, and 6530 Da (PSS) were used. A 0.1 M aqueous solution of
NaNO3 served as the mobile phase. The concentration of the test aqueous solution was
2 mg/mL. The GPC curve and the obtained characteristics of the polymer are given in the
Supplementary Materials.

The small-angle X-ray scattering intensities were measured with the AMUR-K auto-
mated small-angle X-ray diffractometer (FRC Crystallography and Photonics, Moscow,
Russia) with a linear position-sensitive detector (3300 channels) at a fixed wavelength
λ = 0.1542 nm (CuKα line of a fine-focus tube, a pyrolytic graphite monochromator) and
a Kratky collimation system. The X-ray beam cross-section was 0.2 by 8 mm and the
angular range was 0.07◦ < 2θ < 7.05◦. The sample was placed into a vacuum chamber
with a sample to detector distance of 700 mm. The time of the measurement was 1 h. The
experimental data were normalized to the intensity of the incident beam, after which a
correction for collimation distortions was applied [31]. Crystallite sizes were estimated
using the Debye–Scherrer formula [32]

L =
K·λ

∆(2θ)· cos θ

where ∆(2θ) is full width at half maximum, θ is the Bragg angle, K is the Scherrer constant
in the range 0.89–1.2, depending on the outer shape and packing type of the crystalline
grain. The calculations were performed using the PEAK program from the ATSAS pack-
age [33]. Before processing the scattering curves, noise filtering was performed using the
nonparametric adaptive smoothing program.

The wide-angle diffraction pattern up to 2θ = 40◦ was measured on the single-crystal
X-ray diffractometer Xcalibur S Agilent Technologies equipped with the Kappa geometry
KM-4 goniometer (Oxford Diffraction Limited, Abingdon, Oxfordshire, UK). The X-ray
source was Mo Kα, λ = 0.71073 Å, with the beam cross-section 0.5 × 0.5 mm. Two-
dimensional CCD detector Sapphire S3 (2048 × 2048 pixels) was used with the distance to
the sample 41.5 mm. The measurements were carried out with the rotation of the sample
by 360 degrees for better averaging.

The lattice parameters of the sample were calculated with DICVOL14 program [34].
Then the space group P2/m was chosen during full-profile analysis using FullProf soft-
ware [35]. The shape of MoKα peaks of the sample was adequately described by the
pseudo-Voigt function using Thompson–Cox–Hastings approximation [36]. The back-
ground was adjusted with the 4th degree polynomial. Le Bail fitting [37] with constant
scale factor was performed with the following parameters having been refined: scale factor,
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the zero-point shift, unit cell parameter, pseudo-Voigt peak profile parameters, and the
overall isotropic temperature factor.

3. Results and Discussion

Poly(2-methyl-2-oxazoline) was synthesized by cationic ring-opening polymeriza-
tion according to the scheme depicted in Figure 1. The initiating system comprised two
components, benzyl chloride and boron trifluoride etherate.
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Figure 1. 2-methyl-2-oxazoline polymerization scheme.

The monomer for this reaction was additionally purified by a specially developed
procedure using citric acid to remove all basic impurities.

A differential scanning calorimetry study of the resulting polymer demonstrated
that, apart from the heat capacity step at 40–60 ◦C corresponding to the glass transition
temperature, the curve shows a broad endotherm in the range of 95–180 ◦C (Figure 2a).
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Figure 2. DSC curves of poly(2-methyl-2-oxazoline): first heating (a), cooling (b), and repeated
heating (c).

It was suggested that the peak corresponds to the melting of the crystalline phase of
poly(2-methyl-2-oxazoline). This hypothesis was verified by measuring the intensity of
small-angle X-ray scattering of a polymer film produced by a solution method.

The radial scattering functions measured on the AMUR-K small-angle diffractometer
and Xcalibur S diffractometer are shown in Figure 3. To determine the packing parameters
and the degree of crystallinity, the diffuse scattering background line was calculated as an
18th degree approximating polynomial passing through the selected background regions of
the scattering curve. To ensure the monotonicity of the background curve, the calculations
were performed in a double logarithmic scale followed by conversion of the result to
the original scale. The degree of the polynomial was chosen under the condition of the
minimum integral curvature of the background line. The obtained baseline and the result
of its subtraction from the experimental data are shown in Figure 3. After accounting
for the diffuse background, the areas under the peak at 2θ = 6.8◦ in both measurements
coincided with an accuracy of 12%. The larger width of the peaks on the wide-angle part
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of the curve is due to the large beam cross section in the Xcalibur S diffractometer, which
was set to increase the signal-to-noise ratio.
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As a result, two groups of diffraction peaks corresponding to two systems of crystal-
lites with interplanar spacings, shown in Table 1, were detected. The resulting baseline and
the result of its subtraction from the experimental data are shown in Figure 3. The angular
scale is expressed in the scattering vector moduli

∣∣∣S∣∣∣= 4π· sinθ
λ , where 2θ is the scattering

angle in radians.

Table 1. Parameters of leading diffraction peaks of crystallite systems. The crystalline sizes for
low-resolution wide-angle diffractometry are not presented due to instrumental broadening.

Peak Position, Å−1 Interplanar Bragg Spacing, Å

Coherence Length (Size of the
Crystalline Grain) Found by

the Debye–Scherer Formula, Å
at K = 1.11

0.0743 ± 0.0003 85 ± 1 -

0.0885 ± 0.0003 71 ± 1 -

0.0981 ± 0.0005 64 ± 2 -

1.0424 ± 0.0003 6.03 ± 0.02 430 ± 30

1.0574 ± 0.0003 5.94 ± 0.02 480 ± 40

1.3502 ± 0.0003 4.64 ± 0.02 -

The group of peaks with large interplanar spacings corresponds to the packing of
polymer globules with interplanar distances of about 70 Å; peaks at large scattering
angles correspond to the packing of polymer chains. The fact that the crystallite sizes
of about 450 Å are much larger than the interplanar distance in the globule packing, it
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may be proposed that the crystalline phase does not correlate with the inner structure of
the globules.

Background scattering corresponds to scattering from the disordered phase of the
sample and atomic scattering. There are several approaches to calculating the degree
of crystallinity ([38], Chapter 3). The simplest approach is to calculate the ratio of the
areas under the diffraction peaks after subtracting the amorphous background curve to
the background area in the maximum available range of angular measurements. This
approximation is independent of the lattice parameters and is given under the assumption
that the shape of the amorphous phase does not change with changing amorphous content.
The difference between the absorption coefficients of crystalline and amorphous polymers is
assumed to be the same. To more adequately account for the atomic scattering background,
the atomic background curve was extrapolated to an angle of 2θ = 24◦ using the atomic
scattering curves published in [39]. The estimate gives the degree of crystallinity about
0.12. In these calculations, we did not take into account the low-angle group of peaks from
the packing of polymer globules at 2θ = 0.55◦, combining it with the background curve.

Because of the small number of peaks in the wide-angle region, the identification of the
spatial group is ambiguous. A full-profile analysis showed the best agreement between the
theoretical scattering and the experimental one (presented in Figure 4) for the monoclinic
P2/m group with cell parameters a = 10.75(2), b = 7.512(9), c = 5.79(1) Å, and β = 92.56(9)◦.
χ2 = 1.5.
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It is noteworthy that the cooling of the polymer heated above the melting point of the
crystalline phase is not accompanied by sample crystallization (Figure 2b). The DSC curve
shows only a heat capacity step at 40–60 ◦C, corresponding to the polymer glass transition.
During repeated heating of the sample, devitrification of poly(2-methyl-2-oxazoline) takes
place at the same temperature (40–60 ◦C); however, no melting peak for the crystalline
phase is present in the curve (Figure 2c). This implies that ordering of the polymer structure
occurs only during the polymer synthesis, which is apparently due to the coordination
effect of the initiating system.
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4. Conclusions

Poly(2-methyl-2-oxazoline) demonstrated a relatively high degree of crystallinity
when the sample was prepared by casting from solution. However, like isotactic polystyrene,
poly(2-methyl-2-oxazoline) irreversibly transforms into an amorphous state after melting
and does not crystallize during subsequent cooling. Nevertheless, the crystalline phase of
the polymer can still be preserved by polymer processing from solutions. In any case, the
glass transition temperature of poly(2-methyl-2-oxazoline) is approximately 50 ◦C and the
thermal stability is about 209 ◦C, which should be taken into account for the heat treatment
and application of this polymer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13244356/s1, Figure S1: 1H NMR spectrum 2-methyl-2-oxazoline, Figure S2: 13C
NMR spectrum 2-methyl-2-oxazoline, Figure S3: 1H NMR spectrum poly(2-methyl-2-oxazoline),
Figure S4: 13C NMR spectrum poly(2-methyl-2-oxazoline), Figure S5: GPC curve of the synthesized
poly(2-methyl-2-oxazoline), Figure S6: TGA curve poly(2-methyl-2-oxazoline), Table S1: Molecular
weight characteristics of the synthesized poly(2-methyl-2-oxazoline).
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