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Growth in utero is largely a reflection of nutrient and oxygen supply to the foetus. We studied the effects of Mn restriction per
se, maternal Mn restriction, and postnatal high-fat feeding in modulating body composition, lipid metabolism and adipocyte
function in Wistar/NIN (WNIN) rat offspring. Female weanling, WNIN rats received ad libitum for 4 months, a control or Mn-
restricted diet and were mated with control males. Some restricted mothers were rehabilitated with control diet from conception
(MnRC) or parturition (MnRP), and their offspring were raised on control diet. Some restricted offspring were weaned onto
control diet (MnRW), while others continued on restricted diet throughout (MnR). A set of offspring from each group was fed
high-fat diet from 9 months onwards. Body composition, adipocytes function, and lipid metabolism were monitored in male
rat offspring at regular intervals. Maternal manganese restriction increased the susceptibility of the offspring to high-fat-induced
adiposity, dyslipidaemia, and a proinflammatory state but did not affect their glycemic or insulin status.

1. Introduction

Tissues and organs of the developing foetus go through
critical periods of development [1] which may coincide
with periods of rapid cell division. Exposure of the foe-
tus to maternal malnutrition causes intrauterine growth
retardation (IUGR) [2] leading to low birth weight whose
prevalence varies from 13% to 30% in India. However,
most animal models that studied the mechanistic basis of
this relationship considered only the maternal deficiency of
macronutrients.

Micronutrients, especially minerals, play an important
role in the structure and metabolic activities of animals and
are important in their reproduction [3]. Despite this, the
role of maternal micronutrient deficiencies in the etiology

of adiposity and lipid metabolism in the offspring has not
been studied well. We showed earlier that maternal mineral
restriction induced irreversible alterations in body fat% and
lipid metabolism in rat offspring, whereas maternal vitamin
restriction induced similar but reversible changes [4, 5].

Manganese (Mn), an essential micronutrient for humans
and animals, is an enzyme cofactor and a constituent of met-
alloenzymes [6]. It activates enzymes of fatty acid synthesis
[7], hepatic gluconeogenesis [8], and is a critical component
of manganese superoxide dismutase (MnSOD) involved in
mitochondrial oxidant defense system. Although reports on
Mn restriction per se are limited, many epidemiological
studies have reported the importance of Mn as a supplement
in reversing glucose intolerance induced by its deficiency [9].
However, the role of maternal manganese restriction on body
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Figure 1: Schematic representation of the feeding protocol of different groups of WNIN rat mothers and their offspring. MnC: control
group, MnR: manganese restricted group, MnRC: rehabilitation from conception group, MnRP: rehabilitation from parturition group,
MnRW: rehabilitation from weaning group.

composition and lipid metabolism in the offspring has not
been deciphered yet.

Increase in metabolic disorders is attributed primarily
to calorie-dense foods and decreased physical activity. Con-
sumption of high-fat (HF) diet leads to increased energy
intake, overweight, and obesity both in humans [10] and
animals [11, 12]. Ready availability of HF foods is likely
to contribute to the high prevalence of obesity in Western
countries [13] and in developing countries, where traditional
diets are being replaced by diets with HF content [14].

Excess of energy (more than required) is stored as fat,
and thus long-term overconsumption of energy-rich foods
leads to obesity. Several animal studies suggest that energy
density, rather than simply an increased percentage of dietary
fat, is the actual predisposing factor for weight gain [15].
Developmental programming may influence body compo-
sition through appetite regulation, epigenetic modification
of key regulatory genes, altered fat deposition, and adipocyte
metabolism [16]. Although body weight is tightly regulated,
it has been shown that when animals or humans consume
a diet with HF content on a regular basis, the amount of
stored fat they maintain increases [17]. Studies in animals
have shown that short-term HF feeding causes hepatic
insulin resistance preceding the subsequent more long-term
development of peripheral insulin resistance [18, 19].

In view of the foregone literature and unknown studies
on the effect of maternal Mn restriction on body adiposity,
the present study was conducted to validate/negate the
hypothesis that maternal Mn restriction per se predisposes
the WNIN rat offspring to altered body composition and
increases its susceptibility to HF-induced adiposity and
altered lipid metabolism in later life.

2. Materials and Methods

The animal experiments were carried out in adherence to
the “principles of laboratory animal care” (NIH publication

no. 85-23, revised 1985) and with the approval of the ethical
committee on animal experiments at National Institute of
Nutrition, Hyderabad, India.

Thirty, female, weanling WNIN rats obtained from the
National Centre for Laboratory Animal Sciences, National
Institute of Nutrition, Hyderabad, India, were divided into
2 groups of 6 and 24, housed individually in polypropylene
cages with wire mesh bottom, maintained at 22± 2◦C under
standard lighting conditions (12 hr light/dark cycle) and had
free access to deionised water. The group of 6 rats were fed
ad libitum, a basal diet (based on the American Institute of
Nutrition AIN-93G diet) [20] containing 8.92 mg of Mn/Kg
diet, whereas the group of 24 rats were fed a Mn-restricted
diet (same as basal diet but Mn salt was excluded from
mineral mixture) with 0.33 mg of Mn/Kg diet (96% of Mn
restriction compared to control diet). At the end of 4 months
of feeding, blood was collected from the supraorbital sinus
of rats fasted overnight to determine blood Mn levels and
plasma lipid profile in WNIN female rats.

After assessing Mn status, rats were mated with control
males (2 females to 1 male) and maintained on their
respective diets during mating. After confirming conception,
control rats received the control diet throughout their
growth, gestation, and lactation, and their offspring were
reared on control diet (MnC). On the other hand, one fourth
(n = 6) each of the pregnant MnR dams were shifted
to control diet from conception (MnRC) or parturition
(MnRP), and their offspring weaned on to control diet.
Remaining half of the pregnant MnR dams continued on
restricted diet throughout lactation, and at weaning, half
of their offspring were switched to control diet (MnRW),
while the other half continued on restricted diet (MnR). A
uniform litter size (8 offspring per mother—equal numbers
of males and females wherever possible) was maintained in
all groups from postnatal day 3. The feeding protocol is
depicted schematically in Figure 1. At 9 months of age, the
five groups of offspring, namely, MnC, MnR, MnRC, MnRP,
and MnRW as described earlier, were further divided into
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Table 1: Comparison of the composition of the AIN-93G diet and
the high-fat diet.

Diet ingredients
G/Kg diet in
AIN 93G diet

G/Kg diet in
high-fat diet

Starch 529.5 g 425 g

Sucrose 100 g 100 g

Cellulose 50 g 50 g

Casein (20%) 200 g 200 g

Groundnut oil 70 g 175 g

Mineral mix 35 g 35 g

Vitamin mix 10 g 10 g

L-cystine 3 g 3 g

Choline 2.5 g 2.5 g

Table 2: Comparison of energies obtained from different diets.

Diet component
Energy obtained

from AIN 93G diet
Energy obtained

from high-fat diet

Carbohydrates 64.8% 50.0%

Proteins 19.24% 19.24%

Fat 16% 32.72%

another subgroup which had the same diet composition as
the parent group but containing high fat in the diet. Body
composition, adipose tissue function, and lipid metabolism
were monitored in the offspring of both sexes at various
time points; however, due to the similarity of the changes,
the results pertaining only to the male offspring have been
reported in this paper.

2.1. Preparation of High-Fat Diet. To meet the criteria of a
“high-fat diet”, 32%–35% of the energy in the diet should
be derived from fats. In the preparation of the high-fat diet,
energy from the carbohydrate component of the diet was
reduced and added to that derived from fat as described
earlier [21]. All other diet components were similar to that
of the AIN-93G basal diet. The composition of the AIN
93G and the high-fat diet are given in Table 1. HF diet had
2 folds higher fat content compared to the AIN-93G diet.
Comparison of energies obtained from the two different diets
is given in Table 2.

2.2. Reproductive Performance. Percentage of animals con-
ceived, weight gain during pregnancy, number of pups deliv-
ered, number of still births, and body weight of the offspring
at birth/weaning were recorded to assess the effect(s) of
chronic dietary Mn restriction per se on reproduction.

2.3. Blood Manganese Levels. Manganese levels were deter-
mined, using graphite furnace atomic absorption spectrom-
eter (GFS97 SOLAAR AA Series; Thermo Electron, Cheshire,
Conn, USA) according to Mahalingam et al. [22] in the whole
blood of the WNIN female rats (mothers just before mating)
and in the offspring at quarterly intervals between 3 and 18
months of age.

2.4. Body Composition. Body composition of the offspring
was determined at the time points mentioned above, by
total body electrical conductivity (TOBEC) measurement,
and body fat% was computed as described by us earlier [5].

2.5. Adiposity Index. Adiposity index (AI), a measure of
the total weight of the visceral fat depots (epididymal,
retroperitoneal, and mesenteric) in the body, was determined
according to Taylor and Phillips [23], using the formula: AI
= (sum of the weights of the visceral fat depots/body weight)
× 100.

2.6. Plasma and Tissue Adipocytokines. Adipocytokines were
quantified in plasma and adipose tissue lysate [24] using the
Milliplex MAP kits (7 plex kit) procured from M/S Millipore
Corporation Ltd according to Allan et al. and Alvarez et al.
[25, 26] on a Bioplex platform (M/S Biorad Laboratories
Ltd). Protein was estimated in both plasma and adipose
tissue lysate by Bicinchoninic acid method [27].

2.7. Plasma Lipid Profile. Levels of total cholesterol, HDL
cholesterol, and triglycerides were estimated in fasting
plasma using assay kits from Biosystems (Barcelona, Spain).
Levels of plasma free fatty acids were determined using the
enzymatic kit from Randox (Antrim, UK).

2.8. Fat Staining of Liver. Oil Red “O” staining of the frozen
liver sections was used to demonstrate fat deposition in the
liver of MnC and MnR groups of animals according to the
protocol described earlier [28].

2.9. Fasting Plasma Glucose and Insulin. After an overnight
fast, blood was withdrawn from the supraorbital sinus, and
plasma glucose and insulin concentrations were determined
using an enzymatic kit from Biosystems (Barcelona, Spain)
and a radioimmunoassay kit from BRIT (Mumbai, India),
respectively.

2.10. Insulin Resistance (HOMA-IR). Insulin resistance was
assessed from fasting plasma glucose and insulin concen-
trations by computing the homeostasis model assessment
of insulin resistance (HOMA IR) values according to the
following formula:

HOMA-IR

=
[
Fasting insulin

(
μU/mL

)× Fasting glucose (mM)
]

22.5
.

(1)

2.11. Statistical Analysis. Data was analysed using SPSS
version 15. Comparisons between control and MnR female
WNIN rats (mothers before mating) were made by Student’s
t-test. Data collected from the offspring after weaning
were analysed using one-way ANOVA followed by the post
hoc multiple range test/least significance difference (LSD)
test as appropriate. Wherever heterogeneity of variance
was observed, differences between groups were tested by
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Table 3: Food intake and body weight gain of WNIN female rats
fed control and Mn-restricted diets for 16 weeks before mating.

Parameters MnC MnR

Food intake (g) 10.5± 0.323 10.1± 0.173

Body weight gain (g) 107± 1.79 107± 0.76

Blood Mn conc (μg/L) 14.2± 4.02 9.01± 2.31∗

Values are means ± SE, n = 6; ∗P < 0.05 using Student’s t-test.

Table 4: Plasma lipid profile of WNIN female rats fed control and
Mn-restricted diets for 16 weeks before mating.

Parameters MnC MnR

Cholesterol (mmol/L) 1.60± 0.058 1.51± 0.086

HDL cholesterol (mmol/L) 1.15± 0.076 1.02± 0.054

Triglycerides (mmol/L) 0.653± 0.057 0.543± 0.028

Values are means ± SE (n = 6).

Table 5: Reproductive performance of the female WNIN rats fed
different diets.

Parameter MnC MnR MnRC

Body wt before mating 182± 6.52 180± 2.39 198± 6.05

% conceived 100 100 100

Wt gain during
pregnancy (g)

90.9± 6.20 96.1± 1.85 92.5± 6.75

% aborted Nil Nil Nil

Litter size 3–11 6–13 5–11

Still births Nil Nil Nil

Deaths during lactation Nil Nil Nil

Mean birth wt (g) 5.60± 0.204 5.56± 0.086 5.63± 0.120

Values are mean ± SE, n = 6.

nonparametric Mann-Whitney U test as well as after log
transformation of the data appropriately. Comparisons con-
sidered were control (MnC) versus MnR and MnR versus
MnRC, MnRP, and MnRW. All values are reported as mean
± SE. Differences were considered significant only if “P” was
<0.05.

3. Results

3.1. In the Mothers (WNIN Female Rats)

3.1.1. Growth, Mn Status, and Lipid Profile. Food intake was
comparable among rats fed MnC or MnR diets, and in line
with this, there was no significant difference between the two
groups in their body weight gain. As expected, there was a
significant decrease in blood Mn levels in MnR compared to
MnC rats (Table 3). Mn restriction per se had no effect on
plasma lipid profile compared to controls (Table 4).

3.1.2. Reproductive Performance. There was 100% concep-
tion in both MnC and MnR rats, which had comparable
weight gains during pregnancy. Litter size, number of still
births, mean birth weight of pups, and percentage of deaths

during lactation were comparable between the two groups
(Table 5).

3.2. In the Offspring

3.2.1. Body fat%. MnR offspring had significantly higher
body fat% than MnC only at 3 months of age but not later
(Figure 2(a)), and rehabilitation did not correct this change.
Indeed there were no changes in body fat% of the HF-
fed animals of all five groups at all the time points studied
(Figure 2(b)).

3.2.2. Adiposity Index. The wet weights of the three major
fat depots, namely, epididymal (EP), retroperitoneal (RP),
and mesenteric (Mes) as well as the adiposity index (AI),
were comparable among the five different groups of off-
spring fed normal fat diets (Figure 3(a)). Interestingly, the
wet weight of the RP fat pad was significantly higher in
HFMnR than HFMnC rats but was correctable by all the
rehabilitation regimens. However, wet weight of mesenteric
and epididymal fat pads were comparable between HFMnR
and HFMnC offspring. In line with this, adiposity index was
significantly increased in the HFMnR than HFMnC offspring
(Figure 3(b)).

3.2.3. Plasma Adipocytokines. TNF-α levels were significantly
higher in MnR than MnC offspring and rehabilitation
corrected the change albeit partially. Levels of MCP-1,
Leptin, IL-6, IL-1β and PAI-total were comparable among
the offspring of all groups. Interestingly circulating levels of
MCP-1, Leptin, IL-6 and TNF-α were significantly higher
and that of IL-1β significantly lower in HFMnR compared
to HFMnC offspring (Table 6).

3.2.4. Adipocytokines in Adipose Tissue. Adipocytokine levels
in the adipose tissue lysate were in general comparable
among the offspring of both the diet types (data not shown).

3.2.5. Plasma Lipid Profile. Maternal Mn restriction sig-
nificantly increased total cholesterol in the offspring at 6
months of age and the change was corrected by MnRC
and MnRP but not MnRW (Figure 4(a)). Indeed at 18
months of age MnRC and MnRP offspring had significantly
lower total cholesterol levels among all the groups. HDL
cholesterol was significantly lower in MnR offspring albeit
only at 18 months of age and surprisingly this was corrected
only by MnRW (Figure 4(c)). The levels of total cholesterol
and HDL cholesterol were not different among different
groups of offspring fed HF diet (Figures 4(b) and 4(d)).
Plasma triglycerides were significantly higher in MnR than
MnC offspring only at 6 months of age but not later and
here again only MnRW corrected the change (Figure 4(e)).
HFMnR rats had significantly higher plasma triglyceride
levels at 15 and 18 months of age (not earlier) than HFMnC
which was only partially corrected by rehabilitation. Indeed
at 18 months of age, HFMnRW group had significantly
higher triglyceride levels than all other groups (Figure 4(f)).
The levels of plasma free fatty acids were, in general,
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Figure 2: Body fat% in normal fat-fed (a) and HF-fed offspring (b) at different time points. Values are mean + SE (n = 6). Bars without a
common letter (“a” and “b”) are significantly different at P < 0.05 by one-way ANOVA followed by post hoc LSD (least significant difference)
test. MnC: control group, MnR: manganese restricted group, MnRC: rehabilitation from conception group, MnRP: rehabilitation from
parturition group, and MnRW: rehabilitation from weaning group.
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Figure 3: Adiposity index in normal fat-fed and HF-fed offspring at 18 mon of age. Values are mean + SE (n = 6).

comparable among the groups of both the diet types (data
not given).

3.2.6. Fat Staining of Liver. Oil red “O” staining of the frozen
liver sections showed no significant difference between the
MnC and MnR animals; however, the HFMnR offspring
showed significantly higher fat deposition in liver compared
to HFMnC (Figures 5(a) and 5(b)).

3.2.7. Fasting Plasma Glucose, Insulin, and HOMA-IR. The
levels of fasting plasma glucose and insulin were comparable
among the offspring of different groups fed normal fat diet at
all the time points tested. A representative plot of the same at
9 months of age of the offspring is shown in Figures 6(a) and
6(b). In line with these findings, HOMA-IR values were also
comparable among the groups (data not given). On the other
hand, in the HF diet-fed offspring, fasting plasma glucose,
insulin, and HOMA IR were significantly higher in HFMnR

than HFMnC at 18 months of age, and the change was only
partially corrected by rehabilitation (Figures 6(c) and 6(d)).

4. Discussion

Maternal undernutrition predisposes the offspring to
metabolic diseases in later life. Animal models developed
so far have focused mostly on macronutrient deficiencies
to understand the mechanistic basis of this relationship.
In addition, the role of maternal micronutrient status in
programming the foetus to adult onset diseases has not been
well studied. Previous studies from our lab have shown that
offspring born to micronutrient restricted rat dams were
predisposed to high body adiposity and insulin resistance
in their later life [4]. The present study assessed the effects
of maternal, peri/postnatal Mn deficiency and effect of
postnatal high-fat feeding on the development of adiposity
and modulation of adipocyte metabolism in the offspring.
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Figure 4: (a, b) Total cholesterol in normal fat-fed (a) and HF-fed (b) offspring at different ages. Values are mean + SE (n = 6). Bars
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Table 6: Plasma adipocytokines status in offspring at 18 months of age.

Normal-fat-fed offspring

MnC MnR MnRC MnRP MnRW

MCP-1 (pg/mL) 174± 51.4 197± 88.9 811± 555 78.9± 4.69 255± 131

Leptin (pg/mL) 2727± 705 2226± 391 2553± 708 3279± 1445 2399± 533

IL-1β (pg/mL) 31.5± 9.14 78.9± 27.9 84.3± 48.2 27.3± 10.5 30.6± 9.15

IL-6 (pg/mL) 12.9± 0.036 35.3± 11.2 68.6± 32.5 33.6± 0.69 24.5± 6.47

TNF-α (pg/mL) 1.62± 0.380a 16.3± 0.880b 13.0± 0.023b 2.33± 0.330a 12.3± 0.330b

High-fat-fed offspring

MnC MnR MnRC MnRP MnRW

MCP-1 (pg/mL) 36.3± 0.850a 54.1± 2.07b 98.8± 1.34c 51.0± 0.640b 119± 30.9c

Leptin (pg/mL) 2344± 315a 4742± 164b 3315± 603a 1898± 956a 2376± 1028a

IL-1β (pg/mL) 44.9± 9.54a 13.3± 1.96b 24.8± 2.78b,c 23.3± 6.75b 94.5± 3.22c

IL-6 (pg/mL) 20.9± 0.580a 74.4± 1.80b 10.7± 0.650c 44.6± 5.88c 49.9± 0.570c

TNF-α (pg/mL) 1.33± 0.330a 4.67± 0.880b 2.33± 0.330a,b 2.00± 0.580a 1.67± 0.670a

Values are mean ± SE (n = 6). Values bearing different superscript in a given row are significantly different from others by one-way ANOVA/multiple
range test/least significant difference test. MnC: control group, MnR: manganese restricted group, MnRC: rehabilitation from conception group, MnRP:
rehabilitation from parturition group, and MnRW: rehabilitation from weaning group. a,b and c: means without a common superscript are significantly
different by One way ANOVA. b: P < 0.01 and c: P < 0.001.

MnC MnR

HFMnC HFMnR
(a)

(b)

Figure 5: Oil red “O” staining in normal fat-fed (a) and HF-fed (b) MnC and MnR offspring at 18 months of age.

Using low-trace casein (which contains negligible
amounts of all trace elements) in the MnR diet, 96%
deficiency of Mn was created in the restricted diet. That
daily food intake was comparable between the WNIN female
rats fed control and MnR diet groups is in line with

the observations of Venu et al., who reported no change
in food intake in Mg restricted WNIN female rats [29].
Notwithstanding, the significantly lower blood Mn levels in
MnR than MnC female rats appears to be due to very low
Mn content of the MnR diet and is in line with Wood who
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Figure 6: (a) Levels of fasting plasma glucose in different groups of NF-fed rat offspring at 9 months of age. (b) Levels of fasting plasma
insulin in different groups of NF-fed rat offspring at 9 months of age. (c) Levels of fasting plasma glucose in different groups of HF-fed rat
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reported lower blood Mn levels in the mothers of IUGR
babies [30]. Though Mn is reported to have strong causal
relationship with birth, congenital, and teratogenic defects
in various animal species [31, 32], that body weight gain
was comparable between MnC and MnR female WNIN rats
appears to be in line with studies where rat growth was not
affected by Mn deficiency [33]. Although in vitro studies
show that Mn stimulates cholesterol synthesis [34], it was
surprising that cholesterol levels were comparable between
the two groups of rats. Maternal Mn restriction did not
influence weight gain during pregnancy, neonatal mortalities
or litter size, which is in line with our observations in Mg-
restricted rats reported earlier [24].

High body adiposity, particularly visceral adiposity, is the
known forerunner of IR [35, 36]. However, chronic maternal
Mn restriction showed only transient changes in body fat%
in the NF-fed offspring and was not associated with any
changes in visceral adiposity (adiposity index). It is expected
that consuming high-fat diet results in obesity [37]. In line
with this, it was observed in the present study that although

there was no effect on body fat% per se, there was an increase
in retroperitoneal fat pad weight as also the central/visceral
adiposity in the HFMnR offspring compared to HFMnC.
The increased central adiposity observed in these animals
is indeed in agreement with our previous studies where
maternal chromium restriction increased central adiposity
in the rat offspring [38]. This observation of ours has for
the first time shown the higher susceptibility of the MnR
rat offspring to increased central adiposity on HF feeding in
their later life as compared to their control counterparts.

Adipose tissue is an active secretor of metabolically
important molecules called adipocytokines which regulate
lipid/carbohydrate metabolism. In adipose tissue, TNF-α
represses genes involved in uptake and storage of nonessen-
tial fatty acids and glucose, genes for transcription factors
involved in adipogenesis and lipogenesis, and modulates the
expression of several adipocytokines including adiponectin
and IL-6 [39]. Leptin, which regulates the amount of body
fat [40] is expressed/secreted in proportion to adipose
mass, and its plasma levels are highly correlated to body
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fat mass [41, 42]. IL-6 expression in adipose tissue and
its circulating levels are positively correlated with obesity,
impaired glucose tolerance, and IR [43]. It was surprising
that despite no change observed in the visceral adiposity
of MnR offspring, there was a considerable increase in
circulating levels of TNF-α in them, and this was corrected
partially by rehabilitation. The proinflammatory state seen
here is in line with similar changes in adipocytokine profile
we reported recently in Cr-restricted rat offspring [38]. That
such changes in adipocytokine profile were not seen in the
adipose tissue was, however, perplexing. Taken together with
the transient nature of the changes in body fat% and lack of
changes in visceral adiposity, these findings appear to suggest
that maternal Mn restriction may affect only the adipocyte
function but not its development in the offspring. To the best
of our knowledge, these are the first reports to show that
maternal Mn restriction induced a proinflammatory state
in the offspring although their adiposity was not affected,
indicating its probable importance in regulating adipocyte
function.

Previous data has suggested that circulating leptin levels
not a reflection of adiposity or energy balance, but also
are strongly affected by dietary macronutrient content [44].
Most forms of rodent obesity are characterized by increased
serum leptin levels and increased leptin mRNA expression in
the adipose tissue [45]. The increase in leptin gene expression
in rats consuming a high-fat diet has also been previously
reported [46]. It was interesting that the increased visceral
adiposity of HFMnR rats was associated with increased circu-
lating levels of leptin, TNF-α, IL-6, and MCP-1 compared to
HFMnC. Surprisingly, here again, the adipose tissue levels of
adipocytokines were comparable among different groups of
HF diet-fed rat offspring. Thus, this study appears to suggest
that maternal Mn restriction may increase the susceptibility
of the offspring to the ill effects of high-fat feeding in their
later life.

Our observation that Oil Red “O” staining of liver
was comparable between the MnC and MnR groups is
in line with the comparable body fat% between the two
groups of rats. It was, however, interesting to note that the
increased adiposity in the HFMnR rats was associated with
increased lipid accumulation in liver compared to HFMnC
rats, creating a “fatty liver” like condition. The increased fat
deposition in the liver of HFMnR group of animals is in
line with studies wherein tissues of Mn-deficient mice were
shown to have enlarged deposits of abdominal fat and fatty
livers [47]. Our present findings thus seem to suggest that Mn
indeed has a role in determining the degree of fat deposited
under high-fat fed conditions.

The transient increase in total cholesterol levels in MnR
offspring (at 6 months of age) and decrease in HDL choles-
terol at 18 months of age compared to controls suggest that
maternal Mn restriction induces dyslipidemia and alters lipid
metabolism in the offspring albeit transiently. It is, however,
not very surprising, since studies have suggested that the
HDL abnormalities in Mn-deficient rats may be in the
structure of the protein component and not the cholesterol
concentration per se [48]. It was indeed interesting to note
higher plasma triglyceride levels in HFMnR compared to

HFMnC rats which strongly supports the increased adiposity
observed in these animals.

Robust evidence suggests that Mn deficiency results in
a diabetes-like glucose intolerance in experimental animals.
This may result from alterations in pancreatic insulin
synthesis, secretion, and degradation as well as modulation
of insulin action on peripheral target tissues. In contrast
to these reports, we observed comparable fasting plasma
glucose and insulin levels between MnC and MnR offspring
fed NF diets. Interestingly, this observation is in line with
our previous report that multimineral restriction per se in
the mothers had no discernible effect on glucose tolerance
or insulin resistance in the WNIN rat offspring [4] although
it increased their body fat%, specially the visceral adiposity.
Indeed, it is interesting that MnR offspring fed HF diet had
significantly higher fasting glucose and insulin levels than
corresponding controls, suggesting that maternal Mn restric-
tion probably increased the susceptibility of the offspring
to the ill effects of HF feeding specially the modulation of
glucose and insulin homeostasis.

Central obesity and alteration of adipokine secretion,
together with fat accumulation in different metabolically
active tissues such as liver, muscle, and pancreas, constitute
the pathophysiologic basis of the metabolic syndrome [49,
50]. It can thus be concluded that maternal restriction of
dietary Mn, an essential trace element, is important in
regulating adipocyte function in the offspring and increasing
their susceptibility to increased visceral adiposity in addition
to modulating their glucose and insulin homeostasis spe-
cially when superimposed with a high-fat diet in their later
life.

5. Conclusion

This study has, for the first time, demonstrated that maternal
Mn restriction predisposes the offspring to increased central
adiposity, fat deposition in liver, induction of a proin-
flammatory state, altered adipocyte function, dyslipidemia,
and altered homeostasis of glucose and insulin possibly
leading to a metabolic syndrome-like situation specially
when challenged with high-fat diet in later life, a situation
that prevails currently in a developing country like India.
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