ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients

Frederic Tissot,¹ Samir Agrawal,² Livio Pagano,³ Georgios Petrikkos,⁴ Andreas H. Groll,⁵ Anna Skiada,⁶ Cornelia Lass-Flörl,⁷ Thierry Calandra,¹ Claudio Viscoli⁸ and Raoul Herbrecht⁹

⁴Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland; ²Division of Haemato-Oncology, St Bartholomew's Hospital and Blizard Institute, Queen Mary University, London, UK; ³Hematology, Catholic University of Sacred Heart, Roma, Italy; ⁴School of Medicine, European University Cyprus, Engomi, Cyprus; ⁵Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany; ⁶1st Department of Medicine, University of Athens, Greece; ⁷Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria; ⁸University of Genova (DISSAL), Infectious Disease Division, IRCCS San Martino-IST, Genova, Italy and ⁹Oncology and Hematology, Hôpitaux Universitaires de Strasbourg and Université de Strasbourg, France

ABSTRACT

he European Conference on Infections in Leukemia (ECIL) provides recommendations for diagnostic strategies and prophylactic, pre-emptive or targeted therapy strategies for various types of infection in patients with hematologic malignancies or hematopoietic stem cell transplantation recipients. Meetings are held every two years since 2005 and evidence-based recommendations are elaborated after evaluation of the literature and discussion among specialists of nearly all European countries. In this manuscript, the ECIL group presents the 2015-update of the recommendations for the targeted treatment of invasive candidiasis, aspergillosis and mucormycosis. Current data now allow a very strong recommendation in favor of echinocandins for first-line therapy of candidemia irrespective of the underlying predisposing factors. Anidulafungin has been given the same grading as the other echinocandins for hemato-oncological patients. The beneficial role of catheter removal in candidemia is strengthened. Aspergillus guidelines now recommend the use of either voriconazole or isavuconazole for first-line treatment of invasive aspergillosis, while first-line combination antifungal therapy is not routinely recommended. As only few new data were published since the last ECIL guidelines, no major changes were made to mucormycosis recommendations.

Introduction

The European Conference on Infections in Leukemia (ECIL) is the result of a collaboration between the European Organization for Research and Treatment of Cancer (EORTC), the European Society for Blood and Marrow Transplantation (EBMT), the European Leukemia Net (ELN), and the International Immunocompromised Host Society (ICSH). First recommendations for the treatment of *Candida* and *Aspergillus* infections in hematologic patients were published in 2007 after the first conference (ECIL-1) and have then been updated at ECIL-2 and ECIL-3.^{1,2} First recommendations for the diagnosis and treatment of mucormycosis have been published after ECIL-3.³ ECIL-4 updates for antifungal therapy were only available as slides on the websites of these participating societies without publication of a manuscript in consideration of the lack of substantial new data and the

Haematologica 2017 Volume 102(3):433-444

Correspondence:

frederic.tissot@chuv.ch

Received: August 5, 2016. Accepted: December 20, 2016. Pre-published: December 23, 2016.

doi:10.3324/haematol.2016.152900

Check the online version for the most updated information on this article, online supplements, and information on authorship & disclosures: www.haematologica.org/content/102/3/433

©2017 Ferrata Storti Foundation

Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions:

https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions:

https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher.

limited modifications compared to the latest publication. With respect to the targeted treatment of fungal infections, the goals for ECIL-5 were to update the recommendations with analysis of the new data for invasive candidiasis, aspergillosis and mucormycosis in hematologic patients. The update was also necessary to change the prior 5-level grading (A to E) used during the ECILs 1 to 4 for the strength of recommendations for *Candida* and *Aspergillus* infections into the 3-level grading (A to C) already used during ECIL-3 for the first recommendation for mucormycosis (Table 1).¹³ The grading for quality of evidence has not been modified.

Methods

The ECIL-5 meeting was held in September 2013 and involved 57 experts from 21 countries, including 3 non-European countries. Slides of the conclusions of the ECIL-5 were made available on the websites of the EORTC, EBMT, ELN, and ICHS. The ECIL-6 meeting was held in September 2015 with the presence of 55 experts from 24 countries, including 4 non-European countries (see list of collaborators at the end of this Review).

At both the ECIL-5 and the ECIL-6 meetings, the antifungal therapy working group made a search for new publications regarding treatment of invasive candidiasis, aspergillosis and mucormycosis. The group was divided into three subgroups, each being responsible for one of each fungal infection type. The literature search was performed in Pubmed and Cochrane databases. Abstracts presented at major congresses during the previous two years were also retrieved and integrated into the ECIL recommendation. All recommendations referring to an abstract, however, were classified as provisional until the publication of the final manuscript.

The working group presented its recommendations during the plenary session at the ECIL-5 meeting and then incorporated the suggestions coming from the assembly. In cases in which full consensus was not obtained, the decision was put to the vote, and the final decision was based on a majority of votes from the full ECIL-5 assembly. The updated recommendations were presented on the next day during a second plenary session for final approval. Recommendations were graded on the basis of the strength of recommendations (3-level scale: A, B, or C) and quality of evidence (3-level scale: I, II, or III), as detailed in Table 1.

The manuscript of the ECIL-5 was put on hold after a debate arose on differences between ECIL and European Society for Clinical Microbiology and Infectious Diseases (ESCMID) / European Confederation of Medical Mycology (ECMM) recommendations on guidelines for prophylaxis and treatment of invasive aspergillosis (draft presented at the ECCMID 2014).⁴ Two joint meetings were subsequently held (December 2014 and April 2015) to identify the differences and the exact reasons for these differences. The aim was not to modify the recommendations made by each of the two groups but rather to add explanations on the differences in the manuscript. For further clarification, a joint presentation was given at the ECIL-6 by members of the ECIL group and of the ESCMID/ECMM group. This resulted in a delay in publication of the ECIL-5 recommendations and during the ECIL-6 plenary session, the ECIL assembly approved a new search for publications or abstracts until September 2015 with inclusion of all relevant data on aspergillosis, candidiasis and mucormycosis for a full update of the guidelines. Final approval by the majority of the members of the group was obtained in Autumn 2015. The current manuscript includes updates from both the ECIL-5 and the ECIL-6 and is called "ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients".

Invasive candidiasis

Like previous ECIL recommendations, the current guidelines for invasive candidiasis cover the hematologic population as well as the general population of patients. Although hematologic patients are the main focus of the recommendation, this distinction is maintained because available data from the original randomized controlled trials mainly include non-neutropenic patients. Chronic infections are not considered. Twenty-two major publications were identified (Tables 2 and 3).⁵⁻²⁶ Fifteen reported primary results from clinical trials.^{5-11,13-17,19,20} One publication analyzed results of a subgroup of cancer patients from a previously published trial.¹²One publication reported the analysis of pooled data from 2 trials previously published with a focus on patients with an underlying malignancy.²¹ All these studies were published before the ECIL-4. Since then, 5 studies have been identified, including one patientlevel quantitative review of 7 published trials on invasive candidiasis, one pooled patient-level data analysis from 5 prospective trials on anidulafungin, one systematic review of 17 randomized clinical trials focusing on invasive candidiasis in neutropenic patients, one prospective non-comparative trial evaluating a strategy of early oral switch from anidulafungin for invasive candidiasis, and one observational study comparing the initial use of echinocandin-based versus azole-based regimen for C. parapsilosis candidemia.²²⁻²⁶ These publications were the reasons for the change in guidelines. Characteristics of these studies and main results are shown in Tables 2 and З.

The number of neutropenic patients included in each of these studies was low and limited the level of evidence of the recommendation for this group of patients. The review published by Andes et al. showed that, in the univariate analysis, neutropenia was one of the factors significantly and negatively associated both with clinical outcome and with survival.²² In the multivariate analysis, however, the effect of neutropenia disappeared, but there was a significant association of immunosuppressive therapy (including steroids) with lower survival. Other factors significantly associated with lower survival were the APACHE score, infection by C. tropicalis and age, while treatment with an echinocandin [Odds Ratio (OR) 0.65, 95%CI: 0.45-0.94; P=0.02] and catheter removal were both significantly associated with better survival (OR 0.50, 95%CI: 0.35-0.72; P=0.0001).

Based on the patient-level quantitative analysis by Andes *et al.*, echinocandins must be considered as first-line choice for invasive Candida infections before species identification (Table 4).²² The strength of recommendation is the same (A) for anidulafungin, caspofungin and micafungin and is also the same for the overall and the hematologic population. However, the quality of evidence is lower for hematologic patients (II) compared to the overall population, as the number of neutropenic patients recruited in the clinical trials was low. A recent communication on a patient-level pooled analysis of one randomized clinical trial and 4 open label studies focusing on anidulafungin in 46 neutropenic patients with candidemia showed comparable response and survival rates to those observed with caspofungin and micafungin in other studies.²⁵ Therefore, the grading is now similar (A II) for all three echinocandins

Strength of recommendations						
Grade	ECIL-1 to 4	ECIL-5 and 6				
A	Strong evidence for efficacy and substantial clinical benefit:	Good evidence to support a recommendation for use				
P	strongly recommended					
В	Strong or moderate evidence for efficacy,	Moderate evidence to support a recommendation for use				
	but only limited clinical benefit: generally recommended					
С	Insufficient evidence for efficacy; or efficacy	Poor evidence to support a recommendation for use				
	does not outweigh possible adverse consequences					
	(e.g. drug toxicity or interactions) or cost of chemoprophylaxis					
	or alternative approaches: optional					
D	Moderate evidence against efficacy or for adverse outcome:	Omitted				
	generally not recommended					
Е	Strong evidence against efficacy or for adverse outcome:	Omitted				
	never recommended					
	Quality of evi	idence				
Grade	ECIL-1 to 6 (no change)					
Ι	Evidence from \geq 1 properly randomized, controlled trial					
II	Evidence from \geq 1 well-designed clinical trial, without randomization	ation; from cohort or case-controlled analytical studies				
	(preferably from > 1 center); from multiple time-series; or from	dramatic results from uncontrolled experiments				
III	Evidence from opinions of respected authorities, based on clinic	al experience, descriptive studies, or reports of expert committees				

Table 1. Evolution over time of the grading system used for treatment of invasive Candida and Aspergillus infections.

ECIL: European Conference on Infections in Leukemia.

for the treatment of invasive candidiasis in hematologic patients.

Liposomal amphotericin B has also been graded A I for the overall population and A II for hematologic patients due to similar efficacy in comparison to micafungin.^{15,21} However, its safety profile is less favorable and therefore liposomal amphotericin B should be considered as an alternative in case of contraindication to echinocandins. Fluconazole and voriconazole are potential alternatives for first-line treatment in the overall population provided there is no previous exposure to azoles and the infection is not severe (fluconazole).

After species identification, susceptibility testing should guide the treatment. In general, echinocandins remain the drug of choice, except for *C. parapsilosis* where fluconazole is more appropriate (Table 5). However, a recent observational study reported no difference in 30-day mortality and persistent candidemia at 72 hours of an echinocandinbased regimen compared to an azole-based therapy for patients with *C. parapsilosis* candidemia.²⁶ Therefore, the continuing use of echinocandins might be considered in patients with a clinical and microbiological response. When *Candida* species is azole-susceptible, step-down to fluconazole can be considered in stable patients after five days of intravenous (iv) therapy.²⁴ In patients with *Candida krusei* infection, switch to oral voriconazole is an option.

Although the role of catheter removal in the management of candidemia has long been controversial, most recent studies suggest a beneficial effect on outcome.^{6-8,10,11,15,16,20,26-33} Garnacho-Montero *et al.* showed in a large number of candidemia that early adequate therapy and removal of central venous line were independently associated with lower mortality.³⁴ The patient-level quantitative analysis by Andes *et al.* also demonstrated in a multivariate analysis that removal of catheter was associated with a decreased mortality (OR 0.50; 95%CI: 0.35-0.72; P=0.0001).²² The recommendation is, therefore, to rapidly remove the catheter in the overall population (grade A II) as well as in hematologic patients (grade B II) irrespective of the *Candida* species. If central venous catheter cannot be removed, treatment should include an echinocandin or a lipid formulation of amphotericin B due to their better activity on *Candida* biofilms.^{35:37}

Invasive Aspergillus infections

Nine prospective trials (only 4 being randomized comparative trials) had been published before the ECIL-4 and provided the basis of the previous guidelines for first-line therapy in invasive aspergillosis (Table 6).³⁸⁻⁴⁶ An additional paper reported a post-hoc analysis of the trial comparing standard dose of liposomal amphotericin B to high-dose liposomal amphotericin B.⁴⁷ This post-hoc analysis comparing outcome in possible versus mycologically documented aspergillosis underscored the limited number of mycologically documented infections but did not lead to any change in the grading for liposomal amphotericin B. A second post-hoc analysis was performed on the voriconazole *versus* amphotericin B deoxycholate trial.⁴⁸ Integration of the results of baseline galactomannan detection tests performed after primary analysis and re-categorization according to the 2008 EORTC/MSG definition criteria allowed more mycologically documented cases of invasive aspergillosis to be identified.⁴⁹ Conclusions of this post-hoc analysis were similar to those of the primary analysis and therefore its results did not affect the grading for voriconazole and for amphotericin B deoxycholate.

At the time of the ECIL-5, results from the comparative study of voriconazole plus anidulafungin *versus* voricona-

1 st author,	Type of study and critical inclusion and exclusion criteria		l of ptsª		N of pts ^a	f ptsª with	
year, reference		(uany uose)	JUS	Cancer	IS therap	Neutrope y	enia
Rex, 1994 ⁵	RCT; candidemia; pts with neutropenia or hematologic cancer excluded	Fluconazole (400 mg)	103	33	22	0	
		d-AmB (0.5-0.6 mg/kg)	103	32	24	0	
Vguyen, 1995⁵	Prospective observational; candidemia; any <i>Candida</i> species		227 67	107 32	NA NA	NA NA	
Anaissie, 1996 ⁷	aissie, 1996 ⁷ RCT; candidemia and other acute invasive candidiasis Fluconazole (400 mg) 75 including urinary tract infections; any <i>Candida</i> species d-AmB (25-50 mg; 0.67 mg/kg for neutropenic pts)		43 42	NA NA	16° 20°		
Anaissie, 1996 ⁸	Matched cohort study; candidemia; any <i>Candida</i> species; only cancer pts		45 45	45 45	NA NA	11 ^b 11 ^b	
Phillips, 1997⁰	RCT; candidemia; C. krusei and	Fluconazole (800 on day 1 then 400 mg)	50	10	16	0	
	C. glabrata infections excluded		53	12	22	0	
Mora-Duarte, 2002 ¹⁰	RCT; candidemia or deep-seated infections; any <i>Candida</i> species; neutropenic pts excluded		109 115	30 38	28 18	14 10	
Dow 900911	DCT and identic C have infactions evoluted	Eluconorale (200 mg)	107	20	20	0	
Rex, 200311	RCT; candidemia; <i>C. krusei</i> infections excluded; neutropenic pts excluded		107 112	20 21	29 26	0 0	
DiNubile, 2005 ¹²	Invasive candidiasis in cancer pts; subgroup analysis of #6; numbers of pts not consistent with primary manuscript	vasive candidiasis in cancer pts; subgroup analysis Caspofungin (70 on day 1 then 50 mg) 41 #6; numbers of pts not consistent d-AmB (0.6-1.0 mg/kg) 33		41 33	NA NA	14 10	
Kullberg, 2005 ¹³	RCT; candidemia; any <i>Candida</i> species;	Voriconazole (12 on day 1 then 6 mg/kg)	248	NA	NA	0	
	neutropenic pts excluded	d-AmB (0.7-1.0 mg/kg) then fluconazole (400 mg)	122	NA	NA	0	
Ostrosky- Zeichner, 2005¹⁴	Prospective, non-comparative; monotherapy for <i>de novo</i> candidemia (n=72); monotherapy (n=25) or combination (n=29) for salvage therapy	Micafungin (>50->200 mg)	72 25 29	NA NA NA	NA NA NA	10 10 9	
Kuse, 2007 ¹⁵	RCT; candidemia or deep-seated infections;	Micafungin (100 mg)	264	85	111	34	
	any Candida species		267	90	111	28	
Pappas, 2007 ¹⁶	RCT; candidemia or deep-seated infections; any <i>Candida</i> species	Micafungin (150 mg)	191 199 188	68 56 52	NA NA NA	22 17 11	
Reboli, 200717	RCT; candidemia or deep-seated infections;	Anidulafungin (200 on day 1 then 100 mg)	127	28	18	3	
nd Reboli, 2011 ¹⁸	<i>C. krusei</i> infections excluded; second publication on factors associated with improved outcome in <i>C. albicans</i> infections	Fluconazole (800 on day 1 then 400 mg)	118	27	27	4	
Queiroz-Telles, 008 ¹⁹	RCT; candidemia or deep-seated infections; any <i>Candida</i> species; only pediatric pts	Micafungin (2 mg/kg limited to 100 mg) L-AmB (3 mg/kg)		48 50	NA NA	NA NA	6 13
Betts, 2009 ²⁰	RCT; candidemia or deep-seated infections;	Caspofungin (70 on day 1 then 50 mg)		104	27	29	7
	safety as primary objective; any <i>Candida</i> species	Caspofungin (150 mg)		100	33	29	8
Cornely 2011 ²¹	Analysis of pooled data from #12 and 13 restricted to cancer pts	Micafungin (100 mg), micafungin (150 mg), caspofungin (70 on day 1 then 50 mg), L-AmB (3 mg/kg)		1067	359	NA 1	114
undes, 2012 ²²	A pt-level quantitative review of #1, 6, 7, 8, 11, 12, 13;	Fluconazole, d-AmB, L-AmB, d-AmB		1915	410	440	139
	candidemia and deep-seated infections;	+ fluconazole, d-AmB then fluconazole,					
	any Candida species	voriconazole, caspofungin anidulafungin, micaf	ungin				
Kanji, 2013 ²³	Systematic review of 17 RCT; focus on candidemia and deep-seated infections in neutropenic pts	d-AmB, d-AmB + flucytosine, L-AmB, ABLC, ketoconazole, fluconazole, voriconazole, caspofungin, micafungin, anidulafungin		5675	NA	NA 3	342

Table 2. Trials for first-line therapy of invasive candidiasis: critical inclusion and exclusion criteria, treatment and relevant characteristics of the patients.

Vasquez, 2014 ²⁴	Prospective, non-comparative, evaluating iv to oral step-down strategy; candidemia or deep-seated infections; any <i>Candida</i> species	Anidulafungin (200 on day 1 then 100 mg), possible switch to oral fluconazole (400 mg) or voriconazole (200 mg bid) after day 5	250	NA	NA	9
Herbrecht, 2014 ²⁵	Pooled analysis of an RCT and 4 non-comparative open label studies; candidemia; focus on neutropenic pts treated with anidulafungin	Anidulafungin (200 on day 1 then 100 mg)	46	NA	NA	46
Fernandez-Ruis, 2015 ²⁶	Prospective non-interventional population -based study; <i>C. parapsilosis</i> candidemia.	Azole-based (42%), echinocandin-based (24.7%), amphotericin B-based (19%), combination therapy (14.4%). Dose not specified.	194 ^d	61 ^d	72 ^d	7 ^d

^aNumbers of patients refer to the modified intent to treat population when available or to the intent to treat population; for this reason and due to some inconsistencies numbers may be different in primary manuscript and in pooled analysis. ^bNeutropenia defined by less than 1000/µL; ^cneutropenia defined by less than 500/µL; ^anumber of episodes. pts: patients; IS: immunosuppressive (including steroids therapy); iv: intravenous; ABLC: amphotericin B lipid complex; d-AmB: deoxycholate amphotericin B; L-AmB: liposomal amphotericin B; RCT: randomized controlled trial.

zole plus placebo were only available in abstract form. The results have been discussed with a provisional grading that could be transformed in a definite grading, as no additional data available in the full paper suggested a need for change in provisional recommendations.⁵⁰ This study failed to reach the primary endpoint of decreased all-cause mortality at week 6 (difference of -8.2% in favor of combination; P=0.087). However, in a subgroup of patients with an invasive aspergillosis documented by positive galactomannan in either serum or bronchoalveolar lavage, 6-week all-cause mortality was lower in patients receiving combination therapy (difference of -11.6% in favor of combination; P=0.037). A large majority of the ECIL members felt that this subgroup analysis, that had not been originally planned, was not sufficient to give a stronger recommendation although this subgroup included 80% of the modified intent-to-treat population. Therefore, the combination of voriconazole plus anidulafungin was graded C I for primary therapy of invasive aspergillosis while all other combinations were graded C III in the absence of well-designed studies for first-line therapy.

Table 6 summarizes the main characteristics and results of the various studies. Importantly, very few studies had a large number of patients with a mycological documentation.^{40,41,50} As shown by the 2 post-hoc analyses, survival was substantially lower in mycologically-documented infections compared to possible cases.^{47,48} Therefore, studies with a limited number of documented cases cannot lead to the strongest recommendations. As no study specifically addressed management of breakthrough aspergillosis after failure of posaconazole or voriconazole prophylaxis, no recommendation could be made on this issue.

The clinical trial comparing the new triazole isavuconazole *versus* voriconazole for primary therapy of invasive aspergillosis could not be discussed during the ECIL-5 as results were only presented as an abstract in 2014. However, the group could review the data from these abstracts during the ECIL-6 meeting. Isavuconazole appears to be as effective as voriconazole for the treatment of invasive aspergillosis and has a better safety profile. Therefore, a grade A I similar to the grading for voriconazole has been given to isavuconazole (Table 7). As the full paper was published shortly after the meeting, and confirms the results, the provisional grading attributed during the meeting has been transformed into a definite grading in this manuscript.⁵¹ Currently, amphotericin B deoxycholate is considered to have no role in the treatment of invasive aspergillosis when more effective and less toxic agents are available. Its limited efficacy and its poor safety profile led to a recommendation against its use. No substantial change has been made for second-line therapy in the absence of new data (Table 8).

Mucormycosis

Diagnostic and therapeutic strategies were discussed during the ECIL-5 and the ECIL-6. *Rhizopus, Mucor, Lichtheimia* (previously classified as *Absidia*), *Cunninghamella*, *Rhizomucor, Apophysomyces*, and *Saksenaea* are the genera most frequently involved in human disease.⁵² *Cunninghamella* species is more virulent in experimental models and may be associated with a higher mortality rate in patients.⁵³ So far, there has not been enough evidence that identification of mucormycosis to the genus and/or species level helps guide antifungal treatment.^{54,55} Species identification remains, nevertheless, important for outbreak investigations.⁵⁶ However, the differentiation between mucormycosis and other invasive mold infection is of critical importance as it has major therapeutic implications.

While epidemiological aspects and some clinical (sinus disease, concomitant diabetes, occurrence under voriconazole therapy) and radiological (reverse halo sign on chest CT-scan) factors may help to suspect mucormycosis, the diagnosis remains difficult and biopsy of the lesion is often required. Identification of the pathogen most often comes from microscopic, culture and/or histopathological examination of relevant samples. New diagnostic approaches include molecular testing on serum and various other clinical samples including formalin-fixed tissues, MALDI-TOF and *Mucorales*-specific T-cell detection.⁵⁷⁻⁶⁴ Although these new approaches are very promising for an earlier diagnosis, no grading for their use can be given yet due to the lack of data.

Amphotericin B, posaconazole and isavuconazole are the most potent agents *in vitro*.⁶⁵⁻⁶⁷ Currently, no validated minimum inhibitory concentration breakpoints for any of the drugs are available and thus determination of susceptibility categories is not possible for the agents of mucormycosis. The ECIL-3 recommendations for the treatment of mucormycosis were mostly based on retrospective studies, registry data and small prospective non-controlled studies.^{3,68-77} Few new data are available for the treatment of mucormycosis since the ECIL 4 and, therefore, the current recommendations are very similar (Table 9).

1 st author, year, referenc	e Treatment I	Response rate at end of thera	py Other efficacy outcomes	Safety profile
Rex, 1994 ⁵	Fluconazole	No difference	No difference	Fluconazole
.,	d-AmB	in response rates	in survival	better tolerated
Nguyen, 1995	Fluconazole	Fluconazole	No difference	Fluconazole
	d-AmB	as efficacious	in survival	better tolerated
		as d-AmB		
Anaissie, 1996 ⁷	Fluconazole	Similar for	No difference	Fluconazole
	d-AmB	fluconazole	in survival	better tolerated
		and d-AmB		
Anaissie, 1996 ⁸	Fluconazole	Similar for fluconazole	No difference	Fluconazole
	d-AmB	and d-AmB	in time to defervescence	better tolerated
		relapse and survival rates		
Phillips, 1997º	Fluconazole	Similar for fluconazole	No difference	Fluconazole
	d-AmB	and d-AmB	in survival rates	better tolerated
Mora-Duarte, 200210	Caspofungin	Caspofungin	Similar survival	Less clinical and
	d-AmB	not inferior to d-AmB	and relapse rate	laboratory drug-related
				adverse events with caspofungin
Rex, 2003 ¹¹	Fluconazole	Improved success rate	Similar time	Fluconazole
ACA, 2000	Fluconazole + d-AmB	for the combination		
	riuconazore + u-AIIID		to failure and survival; higher rate of blood	monotherapy better tolerated than
		therapy	0	
			culture clearance with	combination therapy
			combination	
DiNubile, 2005 ¹²	Voriconazole d-AmB then fluconazole	Voriconazole not inferior to d-AmB/fluconazole	Similar survival and time to clear blood	Less all-cause adverse
	d-AIIIB then huconazoie		receiving voriconazole	events in patients receiving voriconazole
Kullberg, 2005 ¹³	Caspofungin	Similar for	Response	Caspofungin
Autocig, 2000	d-AmB	caspofungin and	rate lower in	better tolerated
	u-Allib	d-AmB		
		U-AIIID	neutropenic than in	than d Amp
		TT* 1	non-neutropenic cancer pts	d-AmB
Ostrosky-Zeichner, 2005 ¹	⁴ Micafungin Micafungin +	High success rate for first-line	High success rate in neutropenic pts	No unexpected adverse event
	other agent	and salvage therapy	in neutropenic pts	auverse event
Kuse, 200715	Anidulafungin	Higher response	Similar 6-week survival;	More drug-related elevation
		rate for	higher microbiological	in liver enzymes
	Fluconazole	anidulafungin	response rate for anidulafungin;	in patients receiving
		-	same conclusion for subgroup	fluconazole
			of <i>C. albicans</i> infections	
Pappas, 200716	Micafungin	Micafungin	Similar survival and time	Less clinical and
. appao, = 001	L-AmB	not inferior to L-AmB	to clear blood cultures	biological drug-related
			adverse events in pts	adverse events in pts
			receiving micafungin	receiving micafungin
Reboli, 200717 and	Micafungin (100 mg)	Similar for the	No significant	Same safety profile
Reboli, 2011 ¹⁸	Micafungin (150 mg)	three arms in	difference in survival;	for both doses
	Caspofungin	neutropenic pts	similar response rates	of micafungin
			and caspofungin	and caspofungin
Queiroz-Telles, 200819	Micafungin	Similar for both	Similar survival;	More adverse events
	L-AmB	treatments	efficacy independent	leading to treatment
		of the age	discontinuation in L-AmB arm	discontinuation in L-AmB arn
Betts, 2009 ²⁰	Caspofungin (50 mg)	Similar for both	Similar	Safety not inferior
	Caspofungin (150 mg)	doses of caspofungin	survival and time	for high-dose
			to clear blood cultures	caspofungin
Cornely, 2011 ²¹	Micafungin (100 mg),	Similar response rate across		NA
	micafungin (150 mg),	the two trials and all	for all treatments	
	caspofungin, L-AmB	treatment arms or pts with or without malignar	groups for pts with or ncy without malignancy	
Andes, 2012 ²²	Fluconazole,	Higher response rate	Higher mortality when older age,	NA
111111111111111111111111111111111111111	d-AmB, L-AmB,	when use of	greater Apache II score,	INA
	d-AmB + fluconazole,	echinocandin or central	immunosuppressive therapy,	
d-An	nB then fluconazole, voriconazole,	catheter removed;	or <i>C. tropicalis</i> infection;	
GTH	caspofungin anidulafungin,	lower response rate	lower mortality when	
	micafungin	when greater Apache II score		
	-	· -	or central venous	
			catheter removed	

catheter removed

Kanji, 2013 ²³ c	d-AmB, d-AmB + flucytosine, L-AmB, ABLC, ketoconazole, fluconazole,voriconazole, aspofungin micafungin, anidulafungin	Trends favoring non-polyene compounds	NA	NA
Vasquez, 2014 ²⁴	Anidulafungin, then fluconazole or voriconazole	Similar success rate for early switch (<7d) and MITT	No difference in survival	Nausea and vomiting as the most frequent drug-related
	ро	pulation across all <i>Candida</i> specie	es	adverse events
Herbrecht, 2014 ²⁵	Anidulafungin	Overall 52% success rate, lower when persistent neutropenia	24% all-cause mortality at day 28	NA
Fernandez-Ruis, 2015	²⁸ Echinocandin-basedNA Azole-based	day 3	No difference in clinical are (all-cause mortality betwee and 30 and persistent candide h after start of antifungal thera	emia

NA: not available; MITT: modified intention-to-treat; d-AmB: deoxycholate amphotericin B; L-AmB: liposomal amphotericin B; pts: patients

A prospective non-comparative trial assessed the efficacy and safety of first-line therapy with high-dose liposomal amphotericin B given at 10 mg/kg/day combined with surgery when appropriate.⁷⁸ This trial demonstrated efficacy of high-dose liposomal amphotericin B plus surgery in mucormycosis with a survival rate of 62% at week 12. The only factor associated with mortality was the presence of hematologic malignancy or cancer (HR: 3.15; 95%CI: 1.12-8.91; P=0.02). Renal impairment of any degree was observed in 40% of the patients but was transient in most of them. These results confirm the beneficial role of liposomal amphotericin B but do not yet allow any recommendation for the administration of such a high dose of 10 mg/kg/day.

A short paper presented data from a retrospective analysis of a combination of posaconazole and a lipid formulation of amphotericin B.⁷⁹ Thirty-two patients received this combination of posaconazole with liposomal ampho
 Table 4. ECIL-6 recommendations for initial first-line treatment of candidemia.

	Overall population	Hematologic patients
Antifungal therapy		
Micafungin ^a	ΑI	A II
Anidulafungin	ΑI	$A II^{b}$
Caspofungin	ΑI	A II
Liposomal amphotericin B	ΑI	A II
Amphotericin B lipid complex	B II	B II
Amphotericin B colloidal dispersion	n BII	B II
Amphotericin B deoxycholate ^c	CI	C II
Fluconazole ^{d,e}	ΑI	C III
Voriconazole ^d	ΑI	B II
Catheter removal ^r	A II	B II

"See warning box in European label; ^bprovisional grading; ^cclose monitoring for adverse event is required; ^dnot in severely ill unstable patients; ^onot in patients with previous azole exposure; ^lif the catheter cannot be removed, use of an echinocandin or a lipid formulation of amphotericin B is recommended.

Candida species	Overall population		Hematologic patients	
C. albicans	Echinocandins ^a	ΑI	Echinocandins	A II
	Fluconazole ^b	ΑI	Fluconazole	C III
	Liposomal amphotericin B	ΑI	Liposomal amphotericin B	B II
	Amphotericin B lipid complex	AII	Amphotericin B lipid complex	B II
	Amphotericin B colloidal dispersion	AII	Amphotericin B colloidal dispersion	B II
	Amphotericin B deoxycholate	CI	Amphotericin B deoxycholate	C II
C. glabrata	Echinocandins ^a	AI	Echinocandins	A II
	Liposomal amphotericin B	ΒI	Liposomal amphotericin B	B II
	Amphotericin B lipid complex	B II	Amphotericin B lipid complex	B II
	Amphotericin B colloidal dispersion	B II	Amphotericin B colloidal dispersion	B II
	Amphotericin B deoxycholate	CI	Amphotericin B deoxycholate	C II
C. krusei	Echinocandins ^a	AII	Echinocandins ^a	A III
	Liposomal amphotericin B	ΒI	Liposomal amphotericin B	B II
	Amphotericin B lipid complex	B II	Amphotericin B lipid complex	B II
	Amphotericin B colloidal dispersion	B II	Amphotericin B colloidal dispersion	B II
	Amphotericin B deoxycholate	CI	Amphotericin B deoxycholate	C II
Oral stepdown	Voriconazole	ΒI	Voriconazole	C III
C. parapsilosis	Fluconazole	A II	Fluconazole	A III
	Echinocandins ^c	B II	Echinocandins	B III

Table 5. ECIL-6 recommendations for first-line treatment of candidemia after species identification.

"Same grading for anidulafungin, caspofungin, micafungin; "not in severely ill patients; 'if echinocandin-based regimen introduced before species identification and patient responding clinically and microbiologically (sterile blood cultures at 72 h), continuing use of echinocandin might be considered. tericin B (n=27) or amphotericin B lipid complex (n=5). Only 3 of them were treated with this combination in first line. Overall response rate was 56% but a large proportion of patients (59%) died before day 90. The low number of patients, the retrospective nature of the study, and the high mortality rate at day 90 only allowed for a B III recommendation for this combination for salvage therapy of mucormycosis (Table 10).

Discussion and conclusions

An update of the ECIL antifungal treatment recommendations was needed as there were important new data, and also because of necessary changes in the ECIL grading system so as to be in harmony with other ECIL recommendations. The most important data for invasive candidiasis came from a large review of patients included in 7

Table 6. Trials for first-line therapy of invasive aspergillosis: main characteristics and outcome.

1 st author, year, reference	Type of study	Patient population	Antifungal agent (daily dose)	N of ptsª	Mycological documentation [®]	Favorable ^c response rate	12-week survival
Ellis, 1998 ³⁸	RCT	Hematologic malignancy, HSCT	L-AmB (1 mg/kg) L-AmB (4 mg/kg)	41 46	8 (20%) 12 (26%)	58% 54%	58% ^d 51% ^d
Caillot, 2001 ³⁹	Prospective, non-comparative	Hematologic malignancy, HSCT, other IS condition	Itraconazole (iv, 2x200 for 2 days then 200 for 12 days then oral 2x200 mg)	31	14 (45%)	48%	87%
Bowden, 2002 ⁴⁰	RCT, double blind	Hematologic malignancy, HSCT, other IS condition, COPD	d-AmB (1-1.5 mg/kg) ABCD (6 mg/kg)	86 88	81 (94%) 75 (85%)	35% ^d 35% ^d	45% ^d 50% ^d
Herbrecht, 200241	RCT	Hematologic malignancy, HSCT, other IS conditions	d-AmB (1-1.5 mg/kg) Voriconazole (iv, 2x6 mg/kg on day 1 then 2x4 mg/kg then oral 2x200 mg)	133 144	84 (63%) 98 (68%)	32% 53%	58% 71%
Candoni, 2005 ⁴²	Prospective, non-comparative	Hematologic malignancy, HSCT	Caspofungin	32	NA	56%	53% ^e
Cornely, 200743	RCT, double blind	Hematologic malignancy, HSCT, other IS condition	L-AmB (3 mg/kg) L-AmB (10 mg/kg for 14 days then 3 mg/kg)	107 ^f 94 ^f	41 (40%) ^g 36 (39%) ^g	50% 46%	72% 59%
Viscoli, 200944	Prospective, non-comparative	Hematologic malignancy	Caspofungin (70 on day 1 then 50 mg)	61	61 (100%)	33%	53%
Herbrecht, 201045	Prospective, non-comparative	Allogeneic HSCT	Caspofungin	24	24 (100%)	42%	50%
Cornely, 2011 ⁴⁶	Prospective dose-escalation study	Hematologic malignancy, HSCT, other IS condition	Caspofungin (70-200 mg)	46	26 (57%)	57%	72%
Herbrecht, 2015 ⁴⁸	Post-hoc analysis of study published in 2002	Hematologic malignancy, HSCT, other IS conditions	d-AmB (1-1.5 mg/kg) Voriconazole (iv, 2x6 mg/kg on day 1 then 2x4 mg/kg then oral 2x200 mg)	164 179	113 (69%) 124 (69%)	19% 51%	55% 70%
Marr, 2015®	RCT, double blind	Hematologic malignancy, HSCT	Voriconazole (iv, 2x6 mg/kg on day 1 then 2x4 mg/kg then oral 2x300 mg) Voriconazole (iv, 2x6 mg/kg on day 1 then 2x4 mg/kg then oral 2x300 mg) + Anidulafungin (200 on day 1 then 100 mg)	142 135	142 (100%) 135 (100%)	43% 33%	61% 71%
Maertens, 2015 ⁵¹	RCT, double blind	Hematologic malignancy, HSCT, other IS condition	Isavuconazole (2x200 on day 1 and 2 then 200 mg) Voriconazole (iv, 2x6 mg/kg on day 1 then 2x4 mg/kg then oral 2x200 mg)		143 129 ^h	62% 60%	70% 66%

"Numbers of patients refer to the modified intent to treat population when available or to the intent to treat population; "includes positive microscopy or culture from relevant sites, positive histopathology, or positive galactomannan in serum, BAL or CSF as defined by EORTC/MSG 2008 criteria⁴⁰; "favorable response rate includes only complete and partial responses; "two-month survival rates; "intent to treat population; "time point not specified (median follow up 10 months); "includes also other mold infections (4 and 2 in 3 mg/kg and 10 mg/kg arm, respectively); "after exclusion of the 6 other mold infections; "includes also a few *non-Aspergillus* invasive mold diseases (5 in isavuconazole arm and 6 in voriconazole arm) and non-identified invasive mold disease (14 in isavuconazole arm and 15 in voriconazole arm). ABCD: amphotericin B colloidal dispersion; ABLC: amphotericin B lipid complex; COPD: chronic obstructive pulmonary disease; (4-AmB: deoxycholate amphotericin B; HSCT: hematopoietic stem cell transplant; IS: immunosuppressive (including steroids therapy); L-AmB: liposomal amphotericin B; pt(s): patient(s); RCT: randomized controlled trial.

Table 7. ECIL-6 recommendations for first-line treatment of invasive aspergil	losis.
---	--------

	Grade	Comments
Voriconazoleª	ΑI	Daily dose: 2x6 mg/kg on day 1 then 2x4 mg/kg
		(initiation with oral therapy: C III)
Isavuconazole	A I	As effective as voriconazole and better tolerated
Liposomal amphotericin B	BI	Daily dose: 3 mg/kg
Amphotericin B lipid complex	B II	Daily dose: 5 mg/kg
Amphotericin B colloidal dispersion	CI	Not more effective than d-AmB but less nephrotoxic
Caspofungin	C II	
Itraconazole	C III	
Combination voriconazole ^a + anidulafungin	CI	
Other combinations	C III	
Recommendation against use		
Amphotericin B deoxycholate	A I	Less effective and more toxic

*Monitoring of serum levels is indicated. In the absence of sufficient data for first-line monotherapy, anidulafungin, micafungin and posaconazole have not been graded.

Table 8. ECIL-	6 recommendations	for salvage	therapy of	invasive	aspergillosis.

	Grade	Comments
Liposomal amphotericin B	B II	No data on voriconazole failure
Amphotericin B lipid complex	ipid complex B II No data on voriconazole failure	
Caspofungin	B II	No data on voriconazole failure
Itraconazole	C III	Insufficient data
Posaconazole ^a	B II	No data on voriconazole failure
Voriconazoleª	B II	If not used in first-line
Combination	B II	Various studies and conflicting results

^aMonitoring of serum levels is indicated, especially if posaconazole oral suspension is used.

major trials.²² The multivariate analysis now allows a very strong recommendation in favor of an echinocandin for the first-line therapy of candidemia irrespective of the underlying predisposing factors. The controversy on the beneficial role of catheter removal can now be considered to be resolved. The most interesting new data were the publication of a first-line combination study in invasive aspergillosis and the results of a randomized comparative trial comparing isavuconazole to voriconazole. Aspergillus guidelines now include the results of these 2 clinical trials and should help clinicians in their treatment decision making. Since few new data have been published since the last ECIL guidelines, no major changes were made to mucormycosis management. Importantly, the posology and indication of antifungal agents reported in the current guidelines do not necessarily reflect those licensed by the European Medicines Agency (EMA), but are the result of a consensus-based analysis of available literature within the ECIL group.

There has been controversy about some discrepancies between the ECIL-5 and the ESCMID recommendations for invasive aspergillosis in hematologic patients. These differences were identified during a joint meeting and an ESCMID representative was invited to discuss them at the ECIL-6 meeting. Most differences were minor and mostly reflected a difference in grading system. The ECIL *Aspergillus* recommendations are restricted to hematologic patients who represent more than 90% of the patients included in the major clinical trials.^{41,43,50,51} No subgroup of hematologic patients deserving specific recommendation for Aspergillus infection treatment has been identified by the ECIL group. In contrast, the ESCMID group had a broader approach considering all other conditions predisposing to invasive aspergillosis, grading the diagnostic procedures, and including environmental measures in the prevention, also providing a grade for specific infection sites. In addition, the ESCMID group also segregated the hematologic patients into subgroups and provided specific grading for each of them, with usually weaker recommendations when there was not a sufficient number of patients with these specific underlying conditions included in the clinical studies. Finally, and importantly, some data were not available at the time of the ECIL-5 meeting but were in the public domain when the ESCMID group met. In September 2015, the ECIL-6 group was able to incorporate the new data, and this has helped to reduce the apparent differences with the ESCMID guidelines. Therefore, neither the ECIL group nor the ESCMID group felt any change other than this update was required.

Collaborators: Agrawal Samir, United Kingdom; Akova Murat, Turkey; Alanio Alexandre, France; Aljurf Mahmoud, Saudi Arabia; Averbukh Dina, Israel; Barnes Rosemary, United Kingdom; Blennow Ola, Sweden; Bochud Pierre Yves, Switzerland; Bouza Emilio, Spain; Bretagne Stephane, France; Bruggemann Roger, Netherlands; Calandra Thierry, Switzerland;

Table 9. ECIL-6 recommendations for first-line therapy of mucormycosis.

	Grade	Comments
Management includes antifungal therapy, surgery		
and control of underlying conditions	A II	Multidisciplinary approach is required
Antifungal therapy		
Amphotericin B deoxycholate	C II	
Liposomal amphotericin B	B II	Daily dose: 5 mg/kg. Liposomal amphotericin B should be preferred in CNS infection and/or renal failure
Amphotericin B lipid complex	B II	
Amphotericin B colloidal dispersion	C II	
Posaconazole	C III	No data to support its use as first-line treatment. Alternative when
		amphotericin B formulations are absolutely contraindicated.
Combination therapy	C III	
Control of underlying condition	A II	Includes control of diabetes, hematopoietic growth factor if neutropenia, discontinuation/tapering of steroids, reduction of immunosuppressive therapy
Surgery		
Rhino-orbito-cerebral infection	A II	
Soft tissue infection	A II	
Localized pulmonary lesion	B III	
Disseminated infection	C III	Surgery should be considered on a case by case basis, using a
	.	multi-disciplinary approach
Hyperbaric oxygen	C III	
Recommendation against use		
Combination with deferasirox	A II	
CNS: central nervous system.		

Table 10. ECIL-6 recommendations for salvage and maintenance therapy of mucormycosis.

	Grade	Comments
Salvage therapy		
Management includes antifungal therapy, control	AII	
of underlying disease and surgery		
Posaconazole	B II	
Combination of lipid amphotericin B and caspofungin	B III	
Combination of lipid amphotericin B and posaconazole	B III	
Maintenance therapy		
Posaconazole	B III	Overlap of a few days with first-line therapy to obtain appropriate serum
		levels. Monitoring of serum levels might be indicated ^a

^aBoth comments apply to the oral solution but may not apply to the solid oral formulation.

Carratalà Jordi, Spain; Castagnola Elio, Italy; Cesaro Simone, Italy; Cordonnier Catherine, France; Cornely Oliver, Germany; Dalianis Tina, Sweden; De La Camara Rafael, Spain; Donnelly Peter Joseph, Netherlands; Drgona Lubos, Slovakia; Duarte Rafael, Spain; Einsele Hermann, Germany; Engelhard Dan, Israel; Ferreira Isabelina, Portugal; Fox Christopher, United Kingdom; Girmenia Corrado, Italy; Groll Andreas, Germany; Hauser Philippe, Switzerland; Heldal Dag, Norway; Helweg-Larsen Jannik, Denmark; Herbrecht Raoul, France; Hirsch Hans, Switzerland; Hubacek Petr, Czech Republic; Johnson Elizabeth M, United Kingdom; Kibbler Christopher, United Kingdom; Klyasova Galina, Russian Federation; Koskenvuo Minna, Finland; Kouba Michal, Czech Republic; Kullberg Bart-Jan, Netherlands; Lagrou Katrien, Belgium; Lewis Russel, Italy; Ljungman Per, Sweden; Maertens Johan, Belgium; Mallet Vincent, France; Marchetti Oscar, Switzerland; Martino Rodrigo, Spain; Maschmeyer Georg, Germany; Matos Olga, Portugal; Melchers Willem, Netherlands; Mikulska Malgorzata, Italy; Munoz Patricia, Spain; Nucci Marcio,

Brazil; Orasch Christina, Switzerland; Padoin Christophe, France; Pagano Livio, Italy; Pagliuca Antonio, United Kingdom; Penack Olaf, Germany; Petrikkos Georgios, Greece; Racil Zdenek, Czech Republic; Ribaud Patricia, France; Rinaldo Christine H, Norway; Robin Christine, France; Roilides Emmanuel, Greece; Rovira Montserrat, Spain; Schellongowski Peter, Austria; Sedlacek Petr, Czech Republic; Sinko Janos, Hungary; Skiada Anna, Greece; Slavin Monica, Australia; Styczynski Jan,Poland; Tissot Frédéric, Switzerland; Van Boemmel Florian, Germany; Viscoli Claudio, Italy; Von Lilienfeld-Toal Marie, Germany; Ward Katherine, United Kingdom.

Acknowledgments

The authors and contributors thank the group GL-Events, Lyon, France, for the organization of the meeting. They also thank Valérie Rizzi-Puechal (Pfizer), France; Markus Rupp (MSD), Germany; Sonia Sanchez (Gilead Sciences), UK; Anne-Therese Witschi (Basilea), Switzerland; Lorraine Tweddle (Astellas), UK.

References

- Herbrecht R, Flückiger U, Gachot B, Ribaud P, Thiebaut A, Cordonnier C. Treatment of invasive Candida and invasive Aspergillus infections in adult haematological patients. Eur J Cancer Suppl. 2007;5(2):49-59.
- Maertens J, Marchetti O, Herbrecht R, et al. European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: summary of the ECIL 3--2009 update. Bone Marrow Transplant. 2011;46(5):709-718.
- Skiada A, Lanternier F, Groll AH, et al. Diagnosis and treatment of mucormycosis in patients with hematological malignancies: guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica. 2013;98(4):492-504.
- Haematologica. 2013;98(4):492-504.
 Ullmann AJ. ESCMID guidelines for the diagnosis and treatment of Aspergillus diseases. Invasive aspergillosis in haematology and oncology. European Congress of Clinical Microbiology and Infectious Diseases. Barcelona, Spain, 2014: Abstract EW081.
- Rex JH, Bennett JE, Sugar AM, et al. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. Candidemia Study Group and the National Institute. N Engl J Med. 1994;331(20):1325-1330.
- Nguyen MH, Peacock JE Jr, Tanner DC, et al. Therapeutic approaches in patients with candidemia. Evaluation in a multicenter, prospective, observational study. Arch Intern Med. 1995;155(22):2429-2435.
- Anaissie EJ, Darouiche RO, Abi-Said D, et al. Management of invasive candidal infections: results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin Infect Dis. 1996;23(5):964-972.
- Anaissie EJ, Vartivarian SE, Abi-Said D, et al. Fluconazole versus amphotericin B in the treatment of hematogenous candidiasis: a matched cohort study. Am J Med. 1996; 101(2):170-176.
- Phillips P, Shafran S, Garber G, et al. Multicenter randomized trial of fluconazole versus amphotericin B for treatment of candidemia in non-neutropenic patients. Canadian Candidemia Study Group. Eur J Clin Microbiol Infect Dis. 1997;16(5):337-345.
- Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347(25):2020-2029.
- Rex JH, Pappas PG, Karchmer AW, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis. 2003;36(10):1221-1228.
- DiNubile MJ, Hille D, Sable CA, Kartsonis NA. Invasive candidiasis in cancer patients: observations from a randomized clinical trial. J Infect. 2005;50(5):443-449.
- Kullberg BJ, Sobel JD, Ruhnke M, et al. Voriconazole versus a regimen of amphotericin B followed by fluconazole for candidaemia in non-neutropenic patients: a randomised non-inferiority trial. Lancet. 2005;366(9495):1435-1442.
- Ostrosky-Zeichner L, Kontoyiannis D, Raffalli J, et al. International, open-label, noncomparative, clinical trial of micafungin

alone and in combination for treatment of newly diagnosed and refractory candidemia. Eur J Clin Microbiol Infect Dis. 2005;24(10):654-661.

- Kuse ER, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369(9572):1519-1527.
- Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45(7):883-893.
- Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356(24):2472-2482.
- Reboli AC, Shorr AF, Rotstein C, et al. Anidulafungin compared with fluconazole for treatment of candidemia and other forms of invasive candidiasis caused by Candida albicans: a multivariate analysis of factors associated with improved outcome. BMC Infect Dis. 2011;11:261.
- Queiroz-Telles É Berezin E, Leverger G, et al. Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: substudy of a randomized doubleblind trial. Pediatr Infect Dis J. 2008;27(9):820-826.
- Betts RF, Nucci M, Talwar D, et al. A Multicenter, double-blind trial of a highdose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48(12):1676-1684.
- Cornely OA, Marty FM, Stucker F, Pappas PG, Ullmann AJ. Efficacy and safety of micafungin for treatment of serious Candida infections in patients with or without malignant disease. Mycoses. 2011;54(6):e838-847.
- 22. Andes DR, Safdar N, Baddley JW, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012;54(8):1110-1122.
- Kanji JN, Laverdiere M, Rotstein C, Walsh TJ, Shah PS, Haider S. Treatment of invasive candidiasis in neutropenic patients: systematic review of randomized controlled treatment trials. Leuk Lymphoma. 2013;54(7):1479-1487.
- 24. Vazquez J, Reboli AC, Pappas PG, et al. Evaluation of an early step-down strategy from intravenous anidulafungin to oral azole therapy for the treatment of candidemia and other forms of invasive candidiasis: results from an open-label trial. BMC Infect Dis. 2014;14:97.
- 25. Herbrecht R, Conte U, Biswas P, Capparella MR, Aram J. Efficacy of anidulafungin in the treatment of invasive candidiasis in neutropenic patients: analysis of pooled data from five prospective studies. European Conference on Clinical Microbiology and Infectious Diseases. Barcelona, Spain, 2014: Abstract R692.
- Fernandez-Ruiz M, Aguado JM, Almirante B, et al. Initial use of echinocandins does not negatively influence outcome in Candida parapsilosis bloodstream infection: a propensity score analysis. Clin Infect Dis. 2014;58(10):1413-1421.
- Chalmers C, Gaur S, Chew J, et al. Epidemiology and management of candidaemia--a retrospective, multicentre study in five hospitals in the UK. Mycoses. 2011;54(6):e795-800.
- 28. Horn DL, Ostrosky-Zeichner L, Morris MI,

et al. Factors related to survival and treatment success in invasive candidiasis or candidemia: a pooled analysis of two large, prospective, micafungin trials. Eur J Clin Microbiol Infect Dis. 2010;29(2):223-229.

- Nucci M, Anaissie E. Should vascular catheters be removed from all patients with candidemia? An evidence-based review. Clin Infect Dis. 2002;34(5):591-599.
- Rodriguez D, Park BJ, Almirante B, et al. Impact of early central venous catheter removal on outcome in patients with candidaemia. Clin Microbiol Infect. 2007;13(8):788-793.
- Velasco E, Portugal RD. Factors prompting early central venous catheter removal from cancer patients with candidaemia. Scand J Infect Dis. 2011;43(1):27-31.
- Rex JH, Bennett JE, Sugar AM, et al. Intravascular catheter exchange and duration of candidemia. NIAID Mycoses Study Group and the Candidemia Study Group. Clin Infect Dis. 1995;21(4):994-996.
- Raad I, Hanna H, Boktour M, et al. Management of central venous catheters in patients with cancer and candidemia. Clin Infect Dis. 2004;38(8):1119-1127.
- 34. Garnacho-Montero J, Diaz-Martin A, Garcia-Cabrera E, Ruiz Perez de Pipaon M, Hernandez-Caballero C, Lepe-Jimenez JA. Impact on hospital mortality of catheter removal and adequate antifungal therapy in Candida spp. bloodstream infections. J Antimicrob Chemother. 2013;68(1):206-213.
- 35. Kucharikova S, Sharma N, Spriet J, Maertens J, Van Dijck P, Lagrou K. Activities of systemically administered echinocandins against in vivo mature Candida albicans biofilms developed in a rat subcutaneous model. Antimicrob Agents Chemother. 2013;57(5):2365-2368.
- Seidler M, Salvenmoser S, Muller FM. Liposomal amphotericin B eradicates Candida albicans biofilm in a continuous catheter flow model. FEMS Yeast Res. 2010;10(4):492-495.
- Shuford JA, Rouse MS, Piper KE, Steckelberg JM, Patel R. Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. J Infect Dis. 2006;194(5):710-713.
- Ellis M, Spence D, de Pauw B, et al. An EORTC international multicenter randomized trial (EORTC number 19923) comparing two dosages of liposomal amphotericin B for treatment of invasive aspergillosis. Clin Infect Dis. 1998;27(6):1406-1412.
- Caillot D, Bassaris H, McGeer A, et al. Intravenous itraconazole followed by oral itraconazole in the treatment of invasive pulmonary aspergillosis in patients with hematologic malignancies, chronic granulomatous disease, or AIDS. Clin Infect Dis. 2001;33(8):e83-90.
- Bowden R, Chandrasekar P, White MH, et al. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis. 2002;35(4):359-366.
- Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408-415.
- Candoni A, Mestroni R, Damiani D, et al. Caspofungin as first line therapy of pulmonary invasive fungal infections in 32 immunocompromised patients with hematologic malignancies. Eur J Haematol. 2005;75(3):227-233.

- 43. Cornely OA, Maertens J, Bresnik M, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis. 2007;44(10):1289-1297.
- 44. Viscoli C, Herbrecht R, Akan H, et al. An EORTC Phase II study of caspofungin as first-line therapy of invasive aspergillosis in haematological patients. J Antimicrob Chemother. 2009;64(6):1274-1281.
- 45. Herbrecht R, Maertens J, Baila L, et al. Caspofungin first-line therapy for invasive aspergillosis in allogeneic hematopoietic stem cell transplant patients: an European Organisation for Research and Treatment of Cancer study. Bone Marrow Transplant. 2010;45(7):1227-1233.
- Cornely OA, Vehreschild JJ, Vehreschild MJ, et al. Phase II dose escalation study of caspofungin for invasive Aspergillosis. Antimicrob Agents Chemother. 2011; 55(12):5798-5803.
- Cornely OA, Maertens J, Bresnik M, et al. Efficacy outcomes in a randomised trial of liposomal amphotericin B based on revised EORTC/MSG 2008 definitions of invasive mould disease. Mycoses. 2011;54(5):e449-455.
- 48. Herbrecht R, Patterson TF, Slavin MA, et al. Application of the 2008 Definitions for Invasive Fungal Diseases to the Trial Comparing Voriconazole Versus Amphotericin B for Therapy of Invasive Aspergillosis: A Collaborative Study of the Mycoses Study Group (MSG 05) and the European Organization for Research and Treatment of Cancer Infectious Diseases Group. Clin Infect Dis. 2015;60(5):713-720.
- 49. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813-1821.
- Marr KA, Schlamm HT, Herbrecht R, et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med. 2015;162(2):81-89.
- Maertens JA, Raad, II, Marr KA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet. 2016;387(10020):760-769.
- Kwon-Chung KJ. Taxonomy of fungi causing mucormycosis and entomophthoramycosis (zygomycosis) and nomenclature of the disease: molecular mycologic perspectives. Clin Infect Dis. 2012;54(Suppl 1):S8-S15.
- 53. Petraitis V, Petraitiene R, Antachopoulos C, et al. Increased virulence of Cunninghamella bertholletiae in experimental pulmonary mucormycosis: correlation with circulating

molecular biomarkers, sporangiospore germination and hyphal metabolism. Med Mycol. 2013;51(1):72-82.

- Rodriguez MM, Pastor FJ, Sutton DA, et al. Correlation between in vitro activity of posaconazole and in vivo efficacy against Rhizopus oryzae infection in mice. Antimicrob Agents Chemother. 2010;54(5):1665-1669.
- 55. Salas V, Pastor FJ, Calvo E, et al. In vitro and in vivo activities of posaconazole and amphotericin B in a murine invasive infection by Mucor circinelloides: poor efficacy of posaconazole. Antimicrob Agents Chemother. 2012;56(5):2246-2250.
- Rammaert B, Lanternier F, Zahar JR, et al. Healthcare-associated mucormycosis. Clin Infect Dis. 2012;54 (Suppl 1):S44-54.
- Bernal-Martinez L, Buitrago MJ, Castelli MV, Rodriguez-Tudela JL, Cuenca-Estrella M. Development of a single tube multiplex realtime PCR to detect the most clinically relevant Mucomycetes species. Clin Microbiol Infect. 2013;19(1):E1-7.
- Buitrago MJ, Aguado JM, Ballen A, et al. Efficacy of DNA amplification in tissue biopsy samples to improve the detection of invasive fungal disease. Clin Microbiol Infect. 2013;19(6):E271-277.
- 59. Millon L, Herbrecht R, Grenouillet F, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin Microbiol Infect. 2016;22(9):810.e1-810.e8.
- Lass-Florl C, Mutschlechner W, Aigner M, et al. Utility of PCR in diagnosis of invasive fungal infections: real-life data from a multicenter study. J Clin Microbiol. 2013; 51(3):863-868.
- Walther G, Pawlowska J, Alastruey-Izquierdo A, et al. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia. 2013;30:11-47.
- De Carolis E, Posteraro B, Lass-Florl C, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012; 18(5):475-484.
 Schrodl W, Heydel T, Schwartze VU, et al.
- Schrodl W, Heydel T, Schwartze VU, et al. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry. J Clin Microbiol. 2012;50(2):419-427.
- 64. Potenza L, Vallerini D, Barozzi P, et al. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood. 2011; 118(20): 5416-5419.
- 65. Verweij PE, Gonzalez GM, Wiedrhold NP, et al. In vitro antifungal activity of isavuconazole against 345 mucorales isolates collected at study centers in eight countries. J Chemother. 2009;21(3):272-281.

- Vitale RG, de Hoog GS, Schwarz P, et al. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J Clin Microbiol. 2012;50(1):66-75.
- Drogari-Apiranthitou M, Mantopoulou FD, Skiada A, et al. In vitro antifungal susceptibility of filamentous fungi causing rare infections: synergy testing of amphotericin B, posaconazole and anidulafungin in pairs. J Antimicrob Chemother. 2012;67(8):1937-1940.
- Greenberg RN, Mullane K, van Burik JAH, et al. Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother. 2006;50(1):126-133.
- Herbrecht R, Letscher-Bru V, Bowden RA, et al. Treatment of 21 cases of invasive mucormycosis with amphotericin B colloidal dispersion. Eur J Clin Microbiol Infect Dis. 2001;20(7):460-466.
- Oppenheim BA, Herbrecht R, Kusne S. The safety and efficacy of amphotericin B colloidal dispersion in the treatment of invasive mycoses. Clin Infect Dis. 1995; 21(5):1145-1153.
- Reed C, Bryant R, Ibrahim AS, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis. 2008;47(3):364-371.
- Roden MM, Zaoutis TE, Buchanan WL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41(5):634-653.
- Ruping MJ, Heinz WJ, Kindo AJ, et al. Fortyone recent cases of invasive zygomycosis from a global clinical registry. J Antimicrob Chemother. 2010;65(2):296-302.
- Spellberg B, Ibrahim AS, Chin-Hong PV, et al. The Deferasirox-AmBisome Therapy for Mucormycosis (DEFEAT Mucor) study: a randomized, double-blinded, placebo-controlled trial. J Antimicrob Chemother. 2012; 67(3):715-722.
- van Burik JA, Hare RS, Solomon HF, Corrado ML, Kontoyiannis DP. Posaconazole is effective as salvage therapy in zygomycosis: a retrospective summary of 91 cases. Clin Infect Dis. 2006;42(7):e61-65.
- 76. Xhaard A, Lanternier F, Porcher R, et al. Mucormycosis after allogeneic haematopoietic stem cell transplantation: a French Multicentre Cohort Study (2003-2008). Clin Microbiol Infect. 2012; 18(10):E396-400.
- Yohai RA, Bullock JD, Aziz AA, Markert RJ. Survival factors in rhino-orbital-cerebral mucormycosis. Surv Ophthalmol. 1994;39(1):3-22.
- Lanternier F, Poiree S, Elie C, et al. Prospective pilot study of high-dose (10 mg/kg/day) liposomal amphotericin B (L-AMB) for the initial treatment of mucormycosis. J Antimicrob Chemother. 2015; 70(11):3116-3123.
- 79. Pagano L, Cornely OA, Busca A, et al. Combined antifungal approach for the treatment of invasive mucormycosis in patients with hematologic diseases: a report from the SEIFEM and FUNGISCOPE registries. Haematologica. 2013;98 (10):e127-130.