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Abstract
Spermatocytic seminoma (SS) is a rare testicular neoplasm that occurs predominantly in older men. In this study,
we aimed to shed light on the histogenesis of SS by investigating the developmental expression of protein
markers that identify distinct subpopulations of human spermatogonia in the normal adult testis. We analysed
the expression pattern of OCT2, SSX2-4, and SAGE1 in 36 SS cases and four intratubular SS (ISS) as well as a
series of normal testis samples throughout development. We describe for the first time two different types of SS
characterized by OCT2 or SSX2-4 immunoexpression. These findings are consistent with the mutually exclusive
antigenic profile of these markers during different stages of testicular development and in the normal adult testis.
OCT2 was expressed predominantly in Adark spermatogonia, SSX2-4 was present in Apale and B spermatogonia
and leptotene spermatocytes, whilst SAGE1 was exclusively present in a subset of post-pubertal germ cells, most
likely B spermatogonia. The presence of OCT2 and SSX2-4 in distinct subsets of germ cells implies that these
markers represent germ cells at different maturation stages. Analysis of SAGE1 and SSX2-4 in ISS showed spatial
differences suggesting ongoing maturation of germ cells during progression of SS tumourigenesis. We conclude
that the expression pattern of OCT2, SSX2-4, and SAGE1 supports the origin of SS from spermatogonia and
provides new evidence for heterogeneity of this tumour, potentially linked either to the cellular origin of SS or
to partial differentiation during tumour progression, including a hitherto unknown OCT2-positive variant of the
tumour likely derived from Adark spermatogonia.
Copyright  2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
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Introduction

Spermatogenesis is an ongoing life-long process that
begins in fetal development from the specification of
primordial germ cells, which are termed gonocytes
when they have migrated into the developing testes
and become enclosed within seminiferous tubules.
During the second and third trimesters of gestation,
gonocytes gradually mature to infantile spermatogonia,
which acquire competence of transformation into hap-
loid gametes only after puberty. Mature post-pubertal
spermatogonia comprise a heterogeneous population of
germ cells that can be classified according to their

morphologies and correspond to three main maturation
stages: Adark spermatogonia, which are considered to
represent the reserve stem cell population; highly pro-
liferating Apale spermatogonia; and more mature B
spermatogonia that give rise to primary spermatocytes,
which enter meiosis and lead to the formation of hap-
loid spermatids [1].

Spermatocytic seminoma (SS) is a rare testicular
tumour which was first distinguished from other types
of testicular germ cell tumours (TGCTs) that occur in
adolescents and young men by Masson (1946) [2].
TGCTs of young men are derived from a precur-
sor condition, called carcinoma in situ (CIS) testis or
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intratubular germ cell neoplasia, unclassified (IGCNU),
considered to be derived from developmentally arrested
gonocytes [3–6]. By contrast, SS presents in men
with a later mean age of diagnosis; ∼54–59 years
in most studies [7–9]. However, SS is occasionally
diagnosed in men in their thirties or early forties,
suggesting that the real age of onset of this benign
tumour may be younger than generally believed. SS
is a slow-growing neoplasm that exceedingly rarely
metastasizes and has a characteristic cytomorphology
with the presence of nuclei of three different sizes
[9,10]. It is considered to have an early stage of pro-
gression in tumourigenesis: the so-called intratubular
spermatocytic seminoma (ISS), where abnormal cells
accumulate inside the tubules with partially preserved
spermatogenesis [11]. This stage should not be con-
fused with CIS/IGCNU, which has a completely dif-
ferent appearance and pathogenesis. Identification of
ISS alone—without the presence of a tumour—is
extremely rare [9,12] because this lesion is asymp-
tomatic and is not associated with infertility or tes-
ticular dysgenesis. Instead, in some SS cases, ISS can
be observed adjacent to the invasive tumour. However,
it is not clear whether the ISS tubules in the vicinity
of the tumour represent the pre-invasive stage of SS
or rather a pagetoid spread of invasive tumour within
surrounding tubules.

It has been widely agreed that SS differs from other
types of TGCTs; however, the identity of the pro-
genitor cells of SS remains controversial. Previous
studies have suggested that SS derives from an adult
germ cell lineage that lacks any residual embryonic
traits, either from primary spermatocytes [13] or from
spermatogonia [14]. The pathogenesis has long been
unclear, and it was postulated that an amplification of
the DMRT1 locus on chromosome 9 could be involved
[13]. Recent molecular analysis of a large panel of SSs
provided new insights into the origin of SS, with onco-
genic mutations in either FGFR3 (encoding fibroblast
growth factor receptor 3) or HRAS (encoding v-Ha-ras
Harvey rat sarcoma viral oncogene homolog) present
in about 25% of SS specimens [8]. Interestingly, the
mutation-positive SSs occurred in a subset of rela-
tively older men (average age 74.9 years, compared
with 57.6 years for the mutation-negative samples).
These activating FGFR3 and HRAS mutations belong
to a category termed paternal-age-effect (PAE) muta-
tions, which are thought to originate from rare ran-
dom mutational events occurring in the spermatogonia
of the normal adult testis. Because of the gain-of-
function conferred by the particular mutation within
the signal transduction pathway involving FGFR3 and
HRAS, mutant spermatogonial cells are proposed to
become progressively enriched in the testis over time
through a selective proliferation of mutant spermato-
gonia, leading to clonal expansion which results in
the formation of SS tumours in some extreme cases
[8].

To gain further insights into the origin and pathogen-
esis of SS, we studied the protein expression of poten-
tial spermatogonial markers during tumour progres-
sion and normal testicular development. We selected
three candidate markers for detailed study compris-
ing the OCT2 (octamer binding protein 2; also known
as POU2F2) transcription factor, which was previ-
ously described as being expressed in B cells [15],
and two cancer testis antigens, SSX gene family (syn-
ovial sarcoma X chromosome breakpoint) and SAGE1
(sarcoma antigen 1) [16,17]. SSX has been previously
described in spermatogonia and SS [18,19]; OCT2 and
SAGE1 were chosen as potential novel spermatogonial
markers after a systematic search of the Human Protein
Atlas (http://www.proteinatlas.org) [20]. We report the
investigation of these three candidates in a panel of 36
overt SSs, four ISSs, normal adult testis, and a series of
testicular tissues representing different stages of germ
cell maturation during fetal and childhood develop-
ment. We found a heterogeneous phenotype of SS and
the presence of mutually exclusive subpopulations of
spermatogonia in the normal testis, as defined by OCT2
and SSX markers.

Materials and methods

Tissue collection

Permission for the anonymous analysis of all human
tissue was obtained from the Regional Committee for
Medical Research Ethics in Denmark and Oxford-
shire Research Ethics Committee A (C03.076) in the
UK. The SS samples were collected from the archives
of several departments of pathology in Denmark and
Sweden. Tumour samples were fixed in 4% buffered
formaldehyde and embedded in paraffin. For each SS,
representative tumour tissue was identified by a pathol-
ogist (GKJ) and used for the preparation of tumour
tissue microarrays (TMAs). The TMAs included 36 SS
samples, including one with ISS (mean age 63.8 years;
range 34–89 years) and control tissues. The latter con-
sisted of five adult testes (morphologically normal
tubules in the vicinity of SS), three embryonal carci-
nomas, one case each of classical seminoma and high
mitotic rate seminoma, as well as one sample each
of B-cell lymphoma, normal prostate, lung, and epi-
didymis. Each specimen contained a single core of
tumour tissue in the TMAs, except two SS samples that
were sampled twice. After TMAs were constructed, we
also obtained and examined three other ISSs located
adjacent to previously identified SSs. Controls addi-
tional to those included in the TMAs were three normal
adult testes with preserved complete spermatogene-
sis and without germ cell tumours (obtained follow-
ing orchidectomy for hernia repair or benign Leydig
cell tumour) and a B-cell lymphoma from an adult
testis. Twenty-three samples of morphologically nor-
mal fetal testicular tissue collected from induced or
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spontaneous abortion or autopsy of stillbirths rang-
ing from 16th to 42nd weeks of gestation (wg) and
without known chromosome or genetic disease, and
five samples of infantile and prepubertal testicular tis-
sues (age 2 months–4.5 years) were also included. The
tissue examination and determination of the fetal age
were performed by an experienced pathologist (NG),
as described in detail in previous studies using similar
samples [21,22].

Identification of potential spermatogonial markers
from the Human Protein Atlas

OCT2 and SAGE1 were chosen based on two key
selection criteria designed to identify potential candi-
dates from the database available in the Human Protein
Atlas (http://www.proteinatlas.org). These require-
ments were strong immunopositivity in cells within
the seminiferous tubules of the normal testis and
negative expression in other TGCT tissues includ-
ing embryonal carcinoma and classical seminoma. In
addition, the candidates were preferably present in a
subpopulation of spermatogonia in the normal adult
testis.

Immunohistochemistry

Antibodies

The antibodies used were mouse monoclonal (MAb)
anti-OCT2 (clone Oct-207; Novocastra Laboratories
Ltd, Newcastle, UK); mouse MAb anti-SSX, which
recognizes SSX2, SSX3, and SSX4 [18], thus it is
thereafter named SSX2-4 (clone E3AS; a kind gift
from Professor Dr A Geurts van Kessel, Department
of Human Genetics, University Hospital, Nijmegen,
The Netherlands); rabbit polyclonal (PAb) anti-SAGE1
(code HPA003033; Sigma-Aldrich, Pool, UK); mouse
MAb anti-Ki67 (clone MIB-1; Dako, Glostrup, Den-
mark); rabbit PAb anti-GPR125 (G protein-coupled
receptor 125) (codes ab51705 and GB-10 400; Abcam,
Cambridge, UK and Genesis Biotech Inc, Taipei, Tai-
wan, respectively); mouse MAb anti-OCT3/4 (clone
C-10; Santa Cruz Biotechnology Inc, Santa Cruz, CA,
USA); mouse MAb anti-PLAP (placental-like alkaline
phosphatase) (clone 8A9; Dako, Glostrup, Denmark)
and mouse MAb anti-MAGEA4 (clone 57B; a kind gift
from Professor Giulio C Spagnoli, Department of Urol-
ogy, University Hospital of Zurich, Zurich, Switzer-
land). Staining with anti-MAGEA4 was used as a con-
trol for the integrity of tissues, due to its strong expres-
sion in SS and spermatogonia. All antibodies have been
extensively validated and optimized for immunohis-
tochemistry in previous studies [18,20,22,23,24]. The
test results with GPR125, previously described as a
surface marker of spermatogonia [23], showed non-
specific high cytoplasmic background staining after
incubating at different dilutions with both antibodies,
so studies with this marker were not pursued fur-
ther.

Single immunostaining procedure

Five-micrometre deparaffinized and rehydrated
sections were processed for immunohistochemistry.
All incubations were performed at room tempera-
ture unless stated otherwise. For antigen retrieval,
microwave heat treatment was conducted in citrate
buffer (10 mM, pH 6) for 16 min. Samples were
allowed to cool to room temperature before incu-
bation with 3% H2O2 in Tris-buffered saline (TBS)
for 10 min to quench endogenous peroxidase activ-
ity. Subsequently, sections were incubated overnight
at 4 ◦C with primary antibodies including anti-OCT2
(1 : 100), anti-SSX (1 : 100), anti-SAGE1 (1 : 3000),
anti-GPR125 (1 : 100–1 : 5000), anti-Ki67 (undiluted)
anti-PLAP (1 : 100), anti-OCT3/4 (1 : 100), and anti-
MAGEA4 (1 : 500). For negative controls, primary
antibodies were replaced with TBS. Primary antibodies
were detected using the EnVision + DualLink System,
Peroxidase (DAB+) kit (code K5007, Dako), accord-
ing to the manufacturer’s recommendations. Stain-
ing was completed by a 10 min incubation with
3,3′-diaminobenzidine (DAB+) substrate–chromogen
buffer before counterstaining with haematoxylin. The
staining was assessed independently by three investiga-
tors (JL, GDHT, and ERDM) using a systematic semi-
quantitative scoring system based on the approximate
proportion of cells stained and the staining intensity
(adapted from a previous study [25]), with the excep-
tion of Ki67 (a cell proliferation marker), where the
numbers of stained cells were counted in one to four
representative areas (in most cases two, because the
core size was quite small) comprising approximately
100 cells per area. An unbiased estimate of the stan-
dard deviation (SD) was calculated using Microsoft
Excel when more than two counts were taken. The
proportions of large, intermediate, and small cells were
similarly quantitated. Statistical comparisons of stain-
ing patterns, age of the subjects with SS, and mutation
status of the SS employed two-tailed Fisher’s exact test
or Student’s t-test as appropriate.

Double immunostaining procedure

Sequential double-staining for OCT2 and SSX2-
4 (or OCT3/4, PLAP) was performed using the
EnVision G| 2 Doublestain System, Rabbit/Mouse
(DAB+/Permanent Red) kit (code K5361, Dako),
according to the manufacturer’s recommendations. Fol-
lowing heat-induced epitope retrieval, the endogenous
peroxidase, alkaline phosphatase (AP), and pseudo-
peroxidase activities were inhibited with Dual Endoge-
nous Enzyme Block reagent and sections were incu-
bated with the OCT2 antibody overnight at 4 ◦C. After
the detection with Polymer/HRP (horseradish perox-
idase) and visualization by DAB+ chromogen, the
sections were blocked with Doublestain Block reagent
before incubation with SSX, PLAP or OCT3/4 anti-
body at 4 ◦C overnight. Sections were incubated with
Rabbit/Mouse (LINK), followed by Polymer/AP, and
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Figure 1. Distribution of OCT2, SSX2-4, and SAGE1 in the normal
adult testis. (A) OCT2: note the strong nuclear staining in a minority
of spermatogonia located adjacent to the basement membrane of
the tubules (arrowheads). (B) SSX2-4 was detected mainly in Apale/B
spermatogonia but was absent in Adark (arrows) spermatogonia.
Some of the primary spermatocytes (arrowheads) showed weak
staining. (C) SAGE1 was found predominantly in B spermatogonia,
characterized by a large circular shape and more internal position
in tubule (arrowheads). (D) OCT2 and SSX2-4 double-staining
revealed that OCT2 (brown nuclei) and SSX2-4 (red nuclei) were
present in two distinct subpopulations of spermatogonia. OCT2 was
mainly found in the Adark spermatogonia (arrowheads). Scale bar
= 100 µm.

the reaction was visualized with Permanent Red chro-
mogen. All the specified reagents, except the primary
antibodies, were provided with the kit. Double-stained
sections were then counterstained with haematoxylin
and mounted with Aquatex


(Merck KGaA, Darm-

stadt, Germany). Washing steps using TBS/Tween-20
buffer were conducted between each step of antibody
incubation, detection, and colour development.

Mutation analysis of FGFR3 and HRAS in tumour
associated with ISS

DNA was extracted from 5 µm paraffin-embedded
sections of bulk tumour present in three ISS samples
(ISS2, ISS3, and ISS4) using the Nucleon


Genomic

DNA Extraction Kit for hard tissue (code SL 8509;
Tepnel Life Sciences, Manchester, UK) according to
the manufacturer’s recommendations. Tumour samples
were screened for mutations in exons 15 and 3 of the
FGFR3 and HRAS genes respectively, using the pre-
viously described PCR primer pairs and conditions [8].
Mutations previously identified in SS [8] were sought
in the amplified products by restriction digestion with
Alw26I (1948G+) or BpI1 (1948G−) (Fermentas, St.
Leon-Rot, Germany) for the FGFR3 1948A>G substi-
tution and BstNI (New England Biolabs, Ipswich, Mas-
sachussets, USA) for the HRAS 181C>A and 182A>G
substitutions. Digestion products were analysed on 3%
agarose gels.

Results

Analysis of the ontogeny of OCT2, SSX2-4,
and SAGE1 expression in normal testis
In the normal adult testis, OCT2, SSX2-4, and SAGE1
nuclear staining was detected in distinct subpopulations
of spermatogonia (Figures 1A–1C). GPR125 did not
yield satisfactory staining (see Materials and methods
section) and was not analysed in detail.

OCT2 was present predominantly in the Adark sper-
matogonia recognized by the presence of the vacuole-
like cavity in the nucleus, whilst the immunoreactivity
of SSX was detected mainly in Apale/B spermatogo-
nia, with a weak reaction also observed in a subset of
leptotene spermatocytes. SAGE1 was seen in a small
subset of A spermatogonia but was localized predom-
inantly to more differentiated B spermatogonia, dis-
tinguished by their larger and more circular nucleus
compared with Adark and Apale spermatogonia (which
have smaller, ovoid nuclei). Notably, the staining pat-
tern of OCT2 and SSX2-4 in spermatogonia was mutu-
ally exclusive and this was further confirmed by dual
immunohistochemistry (Figure 1D).

We extended our study to outline the antigenic pro-
file of OCT2, SSX, and SAGE1 during different stages
of testis development. In our series starting from the
16th week of gestation (wg) to 4.5 years, we found
that OCT2 was present in most of the cases stud-
ied. However, OCT2 was not detected in gonocytes,
which were identified by double staining with OCT3/4
or PLAP protein (Figure 2B). As a control for tissue
integrity, MAGEA4 was detected in the prespermato-
gonia from the 20th wg onwards, but not in the gono-
cytes, which express OCT3/4 and PLAP, in agreement
with the previously established pattern [21,22,26]. In
mid-gestation, we identified single germ cells (possibly
prespermatogonia) with strong OCT2 expression only
in the 17th and 18th wg. By the 33rd wg, the intense
OCT2-immunopositive cells reappeared and these cells
were then consistently observed in postnatal testicular
tissue. Only a few representative cases were investi-
gated for SSX because this antigen has been studied
previously [19]. Weak expression of SSX2-4 was first
noted at the 16th wg but a subset of cells showing
strong immunoreactivity was found from the 21st to
the 33rd wg and also in testicular tissue from a 3-
month-old child. By comparing adjacent serial sections
(Figure 2A), we established that SSX2-4 and OCT2
immunopositive staining was always observed in mutu-
ally exclusive subsets of germ cells. The expression
of SAGE1 protein was absent at all ages during pre-
pubertal development, suggesting that up-regulation of
this protein occurs after puberty.

Analysis of OCT2, SSX2-4, and SAGE1 expression
in spermatocytic seminoma and intratubular
spermatocytic seminoma
Having established the pattern of expression in the
normal testes, we analysed the expression of the

Copyright  2011 Pathological Society of Great Britain and Ireland. J Pathol 2011; 224: 473–483
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk www.thejournalofpathology.com



Heterogeneity of spermatocytic seminoma 477

OCT2 SSX2-4

Fetal testis Positive control

A

B

16th wg

33rd wg

33rd wg

33rd wg CIS tubule and normal testis

3 months

3 months

OCT2 &
PLAP

Figure 2. Comparative staining of OCT2, SSX2-4, and PLAP in distinct germ cell subpopulations during testis development. (A) The presence
of SSX2-4 was first noted at the 16th wg. OCT2 and SSX2-4 are expressed distinctively in two different subsets of germ cells, starting
from the 33rd wg to adulthood including at the age of 3 months. Note that horizontally paired images, taken from adjacent sections of
the same testis, allow comparison of the staining of individual germ cells for each protein. (B) Left: double labelling of fetal testis at the
33rd wg demonstrates that PLAP is not detected in germ cells expressing OCT2 (brown nuclei). Right: positive control showing strong
membranous and cytoplasmic immunoreactivity of PLAP in carcinoma in situ (CIS) cells (red) and OCT2-positive spermatogonia (brown) in
the adjacent tubule. Scale bars = 100 µm (all images).
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Table 1. Summary of the immunohistochemical analysis in relation to the mutation status in the series of spermatocytic seminoma (SS)
Case No∗ Age (years) Mutation found∗ OCT2 SSX2-4 SAGE1 Ki67 (% positive ± SD)

SS4 75 − Neg + (w) Neg 7.0, 11.5
SS5 76 − Neg + (w) Neg 42.2†

SS7 50 − Neg ++ (str) Neg n/a
SS8 86 − Neg +++ (str) + (w) 0, 9.1
SS9 87 FGFR3 (K650E) Neg + (w) Neg 5.4, 0.9
SS10 61 − Neg ++ (str) Neg 6.4, 6.8
SS11 64 − + (w) Neg Neg 24.2†

SS13 34 − + (w) ++ (str) +++ (str) 4.3, 5.4
SS14 71 n/r Neg + (str) + (w) 0, 0.9
SS15 53 − + (w) +++ (str) ++ (str) 8.1, 6.1
SS16 40 − Neg +++ (str) Neg 30.8, 26.1
SS17 61 n/r Neg Neg§ Neg 18.5, 19.8
SS19 44 − Neg ++ (str) + (w) 3.3, 17.2
SS20 37 − Neg ++ (str) Neg§ (w) 15.8, 19.6
SS21 67 HRAS (Q61R) Neg +++ (str) + (w) 28.6, 13.7
SS22 41 − Neg + (w) Neg 46.0, 59.5
SS23 69 HRAS (Q61R) Neg ++ (str) Neg 44.3, 43.2
SS24 79 n/r Neg + (w) ++ (w) 13.5, 7.6
SS25 89 n/r Neg ++ (str) Neg 0, 0‡

SS26 n/a − Neg +++ (str) ++ (str) 31.5, 24.4
SS27 55 − Neg +++ (str) +++ (str) 22.8, 17.2
SS28 63 n/r Neg + (str) +++ (str) n/a
SS29 75 n/r Neg + (str) Neg 2.2, 0
SS30 79 HRAS (Q61K) Neg +++ (str) Neg 0, 1.1
SS31 75 FGFR3 (K650E) Neg +++ (str) Neg 32.1, 44.2
SS32 44 n/r + (w) ++ (str) +++ (str) 9.2 ± 3.5
SS33 52 − Neg + (w) Neg 2.7, 6.0
SS35 80 HRAS (Q61R) Neg +++ (str) Neg 22.0, 19.0
SS37 47 − Neg +++ (str) ++ (str) 46.4, 39.1
SS38 74 − ++ (str) Neg Neg 51.3, 62.0
SS39 43 n/r Neg +++ (str) ++ (w) 24.8, 23.5
SS40 67 HRAS (Q61K) Neg ++ (str) Neg 6.2, 2.9
SS41 61 n/r Neg Neg Neg 3.8, 2.9
SS42 73 n/r Neg ++ (w) Neg 15.5, 9.6
SS43 87 n/a Neg ++ (str) + (w) n/a
SS44 75 n/a Neg + (w) Neg n/a

∗Most of the tumours were investigated for candidate gene mutations in the previous study [8], so the original numbering is retained. †Only a very small number of
cells were available in the tissue core. ‡Ki67 antigen negative but some mitotic figures visible in the core. −, no mutation found; n/r, no results owing to the low
quality of tumour DNA; n/a, not available. Staining score describes the proportion of positive cells as +++, nearly all cells stained; ++, approximately half of the
cells stained; +, a low percentage of cells stained; Neg, no positive cell detected; or §, only single cells stained. Staining intensity is categorized as str, strong; or w,
weak. Ki67 results are presented as a percentage (%) of stained cells, when one to two separate counts were taken, or as % of stained cells ± unbiased estimate of
SD, when four separate counts were taken (staining intensity was strong in all specimens).

Table 2. Intratubular spermatocytic seminoma (ISS) samples included in the study. Staining score and the Ki67-based proliferation score
are the same as in Table 1
Case No Age (years) Mutation found Cell type OCT2 SSX SAGE1 Ki67 (% positive ± SD)

ISS1 75 FGFR3 K650E Overt SS (SS31) − +++ − 32.1, 44.2
ISS − +++ ++ 36.6, 25.8
SPG (adjacent tubule) + +++ + n/d

ISS2 68 − Overt SS − +++ +++ 39.6 ± 7.4
ISS − +++ +++ 19.1 ± 2.9
SPG (adjacent tubule) + + + n/d

ISS3 31 − Overt SS − +++ +++ 22.9 ± 4.4
ISS − +++ +++ (focal) 15.3, 18.5
SPG (adjacent tubule) + + + n/d

ISS4 36 − Overt SS − +++ (focal) − 13.1 ± 7.1
ISS − ++ +++ (focal) 15.3, 5.0
SPG (adjacent tubule) + + + n/d

SPG = spermatogonia. n/d = not done
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Figure 3. Expression of OCT2, SSX2-4, and SAGE1 in spermatocytic seminoma (SS). (A) Examples of immunohistochemical detection of
OCT2 (left), SSX2-4 (middle), and SAGE1 (right) in SS. A heterogeneous nuclear staining pattern with different intensities is seen in the
tumour cells. Scale bar = 100 µm. (B) Venn diagram showing the relationship between OCT2, SSX2-4, and SAGE1 expression in SS.

candidate proteins OCT2, SSX2-4, and SAGE1 in
36 SS cases as summarized in Table 1. The results
(examples shown in Figure 3A) revealed that these
proteins were all expressed, with variable intensities,
in subpopulations of tumour cells in a proportion
of SSs. Most tumours (32; 89%) were positive for
SSX2-4 and amongst these, 14 (39%) were positive
for SAGE1. OCT2 was expressed in a much smaller
proportion of tumours (5; 14%), all of which were
either positive for SSX2-4 and SAGE1 or negative
for both markers (Figure 3B); there was a negative
trend between OCT2 and SSX2-4 expression, although
this did not achieve formal statistical significance
(p = 0.08, Fisher’s exact test). The two OCT2+/SSX2-
4−/SAGE1− samples were negative for FGFR3 and
exhibited a relative paucity of large cells (which in
OCT2-negative samples ranged from 0.6% to 2.7% of
the total cell population). The proliferation index based
on Ki67 staining was very variable in all SS samples
and did not correlate with the expression of any of the
three markers (Table 1).

To gain further insight into the cell populations
expressing OCT2, SSX2-4, and SAGE1, we examined
their expression profiles in ISS. Our analysis is based
on only four cases (Table 2), owing to the apparent
rarity with which this histological pattern is recognized.
This revealed that most of the ISS cells clustering
within the seminiferous tubules were either positive for
SSX2-4 only or co-expressed SSX and SAGE1 proteins
(Table 2). A heterogeneous staining pattern suggesting
tumour evolution was identified within two of the four
ISS cases studied (Table 2 and Figure 4A). There were
some regions where ISS cells only expressed SSX2-4

but not SAGE1, while co-expression of both proteins
was found in other regions. In the region closer to
the overt SS, the expression of SAGE1 appeared to be
gradually reduced and was totally undetectable in the
cells located in close vicinity of the bulk of the tumour.
However, SSX2-4 remained present even in cells close
to the tumour and was found focally in the overt SS.
OCT2 was found occasionally in the spermatogonia
within the normal seminiferous tubule but was absent
from the precursor stage of SS and the overt tumour in
these four cases (Figure 4B and Table 2).

Mutational analysis of samples with intratubular
spermatocytic seminoma (ISS)
The mutation status in 24 SS cases (Table 1) was pre-
viously investigated for 15 different candidate genes
[8]. All the tumours identified with FGFR3 or HRAS
mutations expressed SSX2-4 (7/7), whereas all OCT2-
positive tumours were mutation-negative (4/4); how-
ever, these differences were not statistically significant.
One sample that included a region of ISS (ISS1) was
positive for the FGFR3 mutation 1948A>G encoding
K650E. We screened the bulk of tumour present in
three additional ISS cases for activating mutations in
FGFR3 and HRAS, but no sequence variations were
identified in these samples (Table 2).

Discussion

Based on the analysis of three spermatogonial markers
OCT2, SSX2-4, and SAGE1, we report for the first
time the phenotypic heterogeneity of SS. Moreover,
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Figure 4. The distribution of spermatogonial markers during progression in two cases of intratubular spermatocytic seminoma (ISS).
(A) ISS4. Sections labelled 1 and 2 provide a low-power (scale bar = 2.5 mm) overview of adjacent sections stained with SSX2-4 and
SAGE1, respectively. A subpopulation of ISS tumour cells co-expressing both SSX2-4 and SAGE1 (1A, 2A) is mainly found in a region located
away from the bulk of the tumour (starting from the edge of the sections). However, SAGE1 is absent and only SSX2-4 is observed in the ISS
cells in close vicinity of the tumour (1B, 2B). In the overt SS region, focal SSX2-4 expression is found (1C) and no SAGE1-immunopositive
cells are detected (2C). Scale bar = 100 µm. (B) ISS2 showing the presence of normal tubules (NT), ISS, and SS within a single section. Note
the positive staining for SSX2-4, but negative staining for OCT2, within both SS and ISS. However, occasional cells (Adark spermatogonia
shown in the inset) are OCT2-positive in adjacent normal tubules (arrowheads). Scale bar = 100 µm.
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we identified the expression of OCT2 and SSX2-4 in
distinct subpopulations of spermatogonia in the normal
adult testis as well as during testicular development,
thus adding to the understanding of the phenotypic
changes of the germ cell during maturation.

OCT2 is a transcription factor from the POU (Pit-
1, Oct1/2, UNC-86) family that shares a conserved
150–160 amino acid domain [27]. Expression of OCT2
has been described in B lymphocytes, neuronal cells,
activated T cells, and macrophages [15,28–30]. This
antigen was also highly expressed in two B-cell lym-
phomas used in this study. It is interesting to note
that one of these samples was previously misdiag-
nosed as SS and was reclassified by one of the authors
(GKJ), partly based on the antigen profile. The pres-
ence of OCT2 in the normal adult testis was ini-
tially identified by a systematic analysis of proteins’
expression performed on a series of normal tissues in
the Human Protein Atlas (http://www.proteinatlas.org)
[20]. Another member of this family, OCT3/4, has been
studied extensively in the human testis and its expres-
sion has been documented during embryonic germ cell
maturation [22,26,31] and in various testicular tumours
[4]. OCT6, a third family member, has been impli-
cated as an intrinsic regulator for GDNF (glial cell
line-derived neurotrophic factor)-induced survival and
self-renewal in mouse spermatogonial stem cells [32]
but has not been studied in human testis. OCT2, on the
other hand, has not been investigated in the testis of
any other species. Notably, OCT2 was absent in gono-
cytes positive for OCT3/4 or PLAP, indicating that it is
specific for more mature germ cells. The identification
of OCT2 as a potential marker of Adark spermatogo-
nia, the reserve population of germ cells, is one of
the most interesting findings in this study. It may have
some clinical value for a more objective assessment of
the recovery of spermatogenesis and fertility potential,
for example in cancer survivors or young individuals
with a history of cryptorchidism.

Since different subsets of human spermatogonia were
first described [33], many studies have been performed
to identify markers that are potentially specific for these
subtypes of spermatogonia; as reviewed in ref 34. In
this study, we were able to distinguish the presence
of different subpopulations of spermatogonia in the
normal adult testis using the combination of OCT2,
SSX2-4, and SAGE1 markers. Following this observa-
tion, further investigations were performed to under-
stand their expression patterns during early testicular
development. Strong expression of OCT2 and SSX2-
4 in germ cells was seen at different stages of germ
cell maturation. Intriguingly, OCT2 and SSX2-4 were
present in two mutually exclusive subsets of germ cells,
suggesting that these proteins play distinctive roles at
different stages during normal testicular development.
Most of the cells expressing OCT2 and SSX2-4 were
located adjacent to the basement membrane, although
some cells with strong SSX2-4 immunopositivity were
observed in the centre of the seminiferous cord.

SSX proteins and SAGE1 (as well as our control
antigen, MAGEA4) are cancer testis antigens encoded
by genes that are normally only expressed in human
germ cells, trophoblast, and certain tumours [35]. It
has been suggested that SSX genes act as repressors
in transcriptional regulation [36]. Transcripts encoding
several cancer testis antigens including the SSX family
and SAGE1 were ranked among the top 50 discrimi-
nators specifically expressed in SS [13]. However, the
function of these proteins in either spermatogenesis or
tumourigenesis remains elusive. SAGE1 was absent in
the fetal and infantile testes, and based on its expression
in normal adult testis, we hypothesize that this protein
is up-regulated in spermatogonia only after puberty.

In the present study, the expression profile of OCT2,
SSX2-4, and SAGE1 proteins provides further evi-
dence to support the spermatogonial origin of SS.
Although a previous study suggested primary sperma-
tocytes as the origin of this tumour [13], our analysis
confirmed that SS is most likely derived from differ-
ent subtypes of spermatogonia, which can be identi-
fied by OCT2 and SSX2-4 markers. This finding is
consistent with the antigenic profile of these mark-
ers in the normal adult testis (as mentioned above).
Notably, the hitherto unknown OCT2-positive SS rep-
resents a relatively rare subtype of this tumour (14%;
5/36); therefore, previous comprehensive profiling of
SS may have failed to identify this marker [13]. Alter-
natively, the expression of OCT2 may be a sign that
some spermatogonia reverted to a less mature Adark,
but this is less likely, because Adark spermatogonia
divide rarely and are considered a reserve popula-
tion. In addition, SAGE1 was identified in a subset
of SSX2-4-expressing SSs, indicating an origin from
the same cell type but potentially at a different stage
of tumour progression. This was further investigated in
SS samples that included ISS, where at least in some
tubules the morphology of the cells suggested a tran-
sition between normal germ cells and SS tumour cells,
indicating that these ISS forms were indeed an early,
pre-invasive stage in SS progression. In two of these
rare cases, we identified spatial differences of SSX2-
4 and SAGE1 expression in different subpopulations
of ISS cells, with the invasive tumour expressing only
SSX antigen (Figure 4A). The gradual loss of SAGE1-
and gain of SSX2-4-positive cells (the first expressed
in spermatogonia; the latter in spermatogonia and early
spermatocytes) in one ISS specimen with morpholog-
ical signs of transformation may suggest that a subset
of the transformed cells mature further towards pre-
leptotene spermatocytes, which still express at least one
of the SSX proteins. This is consistent with the known
plasticity of neoplastic germ cells, which may be at dif-
ferent stages of differentiation, and would explain the
expression in SS of some genes that are also expressed
in early spermatocytes [13]. Of note, SSX antibody
recognizes three different SSX antigens [18] and there
may be subtle differences in their expression patterns
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within germ cell maturation stages; all genes were rep-
resented in overt SS at the mRNA level [13] but it is
not known whether all are translated.

Taken together, the distinct temporal pattern of
expression of OCT2, SSX2-4, and SAGE1 proteins,
with mutual exclusivity of OCT2 and SSX2-4, demon-
strates the existence of different populations of sper-
matogonia not only in the adult testis, but also before
puberty. These findings also explain the observations
that SS may have its origins in different spermatogo-
nial cell populations characterized by either SSX2-4 or
(in a minority) OCT2 expression. We suggest that SS
is derived predominantly from the more mature sper-
matogonia (Apale or B spermatogonia), as proposed in
previous studies [14,37], and a relatively small subset
of this tumour type may derive from Adark spermatogo-
nia. However, the observed phenotypic heterogeneity
of SS may reflect changes of gene expression occur-
ring during tumour progression. Most of the subtypes
of SS, except those with an OCT2+/SSX2-4−/SAGE1−
expression pattern, which seem to be locked in this
phenotype, seem to retain plasticity and the ability to
mature partially towards early spermatocytes, at least
in a subset of tumour cells.

In conclusion, our data provide a new understand-
ing of the histogenesis and progression of SS, which
appears to be a more heterogeneous tumour type than
previously thought. This is also the first documented
evidence of the expression profile of OCT2 and SAGE1
in human testis from embryonic development to adult-
hood. In addition, this study has highlighted the pres-
ence of two mutually exclusive subpopulations of germ
cells defined by OCT2 or SSX protein expression.
Future studies will be necessary to confirm whether
OCT2 is indeed a specific marker for human reserve
spermatogonial stem cells, which could have poten-
tial clinical use, and to uncover its role in germ cell
development and spermatogenesis.
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