

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

OFF	Mean dMax to OAR (Gy)			Mean dMean to OAR (Gy)		
	3DCRT	VMAT	p-value	3DCRT	VMAT	p-value
Floor of mouth	64.89	62.22	0.00034	45.74	44.89	0.25014
Genioglossus muscles	61.17	58.71	0.00062	40.44	41.78	0.88076
Hyoglossus/styloglossus muscles complex (right)	64.15	63.62	0.13362	56.67	54.45	0.00374
Hyoglossus/styloglossus muscles complex (left)	64.42	63.28	0.06432	56.39	54.37	0.01390
Intrinsic tongue muscles	58.97	58.50	0.23014	25.02	30.84	0.07030
Longitudinal pharyngeal muscles	61.86	63.05	0.38430	49.63	46.05	0.00438
Constrictor muscles	65.03	65.89	0.39532	56.23	53.76	0.00120
Thyrohyoid muscles (right)	67.12	64.16	0.00072	64.36	60.42	0.00034
Thyrohyoid muscles (left)	67.06	64.28	0.00054	64.42	60.61	0.00024
Arytenoids (right)	62.55	59.98	0.00830	61.37	58.29	0.00374
Arytenoids (left)	62.51	60.37	0.01980	61.53	58.84	0.00960
Pharyngeal axis	65.83	65.61	0.40654	31.61	35.60	0.02510
Base of tongue	63.74	63.17	0.58920	56.18	52.36	0.00138
Oral cavity	62.00	62.13	0.81034	29.09	33.25	0.09296
Esophagus	58.78	61.47	0.12114	33.60	33.18	0.15560
Submandibular gland (right)	64.97	62.48	0.03400	62.33	56.79	0.00064
Submandibular gland (left)	65.58	64.16	0.00132	62.66	56.83	0.00054
Remnant larynx	67.88	65.88	0.00560	62.39	59.19	0.00128

Table 1 Comparison between 3D conformal Radiotherapy (3DCRT) and Volumetric Modulated Arc Therapy (VMAT) techniques of the mean value of maximum doses (dMax) (2^{n4} and 3^{rd} columns) and the mean value of mean doses (dMean) (5^{th} and 6^{th} columns) absorbed to organs at risk. P-values from Wilcoxon-signed rank tests are also displayed (4^{th} and 6^{th} column), in bold if significant (p<0.05). Abbreviations: 3DCRT (3D Conformal Radiotherapy); dMax (Maximum dose); dMean (Mean dose); OAR (Organ At Risk); VMAT (Volumetric Modulated Arc Therapy).

Conclusion

Severe long-term toxicity rate of CS followed by IMRT resulted to be low and seems to compare favourably with historical data of pts treated with the 3DCRT approach. The dosimetric analysis confirmed that IMRT allows a significant reduction of absorbed doses for the majority of analyzed structures compared to the 3DCRT approach.

PO-1115 First year survival data on COVID-19 outbreak during radiotherapy course in head and neck cancer

<u>A. Bandurska-Luque</u>¹, R. Poźniak-Balicka², T. Winiecki³, T. Bajon⁴, A. Adamska⁵, M. Żmijewska-Tomczak⁶, P. Milecki⁷, J. Kaźmierska⁸

¹Greater Poland Cancer Centre, Radiotherapy Department II, Poznań, Poland; ²Collegium Medicum of University of Zielona Góra, Department of Radiotherapy - University Hospital Zielona Góra, Zielona Góra, Poland; ³Greater Poland Cancer Centre, Radiotherapy Department II, Poznań, Poland; ⁴Greater Poland Cancer Centre, Radiotherapy Department II, Poznań, Poland; ⁵Greater Poland Cancer Centre, Radiotherapy Department I, Poznań, Poland; ⁶Greater Poland Cancer Centre, Radiotherapy Department I, Poznań, Poland; ⁷Poznan University of Medical Sciences, Department of Electroradiology, Radiotherapy Department I, Greater Poland Cancer Centre, Poznań, Poland; ⁸Poznan University of Medical Sciences, Department of Electroradiology, Radiotherapy Department II, Greater Poland Cancer Centre, Poznań, Poland

Purpose or Objective

To evaluate the first year survival data of patients with head and neck cancer (HNC), whose radiation (RT) or chemoradiation (CRT) course was affected by second wave of COVID-19 pandemic.

Materials and Methods

We have performed a retrospective review and identified patients with confirmed SARS-CoV-2 infection or quarantine during RT/CRT of HNC who were treated in 3 radiotherapy departments form September 2020 till January 2021. The quarantine was imposed due to a close contact with COVID-19 positive person e.g. after hospitalisation in the same patient's room. None of the patients was vaccinated prior to the treatment because the population-based vaccination program started in Poland in January 2021.

Log rank and univariate Cox test were used for two endpoints: overall survival (OS) and time to progression (TTP).

Results

36 patients (pts) with tumours in head and neck region were identified. Patients with sarcoma, paraganglioma, thyroid cancer and palliative RT were excluded (n=6). In total a cohort of 30 patients including squamous cell carcinoma (n=27), adenocarcinoma (n=2) and undifferentiated nasopharyngeal carcinoma (n=1) was farther evaluated. 50% (n=15) patients were treated with primary RT and 50% with adjuvant RT. Additionally, nine patients were treated with induction and/or concomitant chemotherapy. The median overall survival was 10.7 month (Range: 1-13.5). Three patients progressed (n=2 loco-regional, n=1 distant metastases), 11 patients died. 50 f them were categorised as COVID-19 related death, n=6 died in median 7.6 month after beginning of the treatment. 23 patients (77%) had SARS-CoV-2 infection confirmed and in the case of 7 patients RT was interrupted due to imposed quarantine. The median overall treatment time yield 56 days (9-106). 12 pts discontinue RT due to death (5 pts), deterioration of performance status (2 pts) and patients decision (7 pts, they received in median 85 % of prescribed radiation dose).

We did not observe a significant difference neither in log-rank test results for OS and TTP between COVID-19 and quarantine group (p=0.605 and p=0.135 respectively) nor on Cox univariate analysis (p=0,589). In subgroup of COVID-19 positive group there was a significant correlation between OS and duration of treatment interruption (p=0.047). The age, hypertension, cardiac diseases, chemotherapy or radiation dose received before treatment interruption did not correlate with OS.

Conclusion

In our cohort of patients COVID-19 infection did not worsen the survival probability in comparison to patients with quarantine, however the death ratio at median follow-up of 10.7 month yield 37%, which is high for curative treatment setting in head and neck cancer patients. More than half of death cases were COVID-19 related. Farther observation and evaluation of larger cohorts of patients, especially in vaccinated population is planned.

PO-1116 Towards Privacy-Preserving Federated Deep Learning infrastructure : proof-of-concept

C. Zhang¹, A. Choudhury¹, I. Bermejo¹, A. Dekker¹

¹Clinical Data Science, Maastro Clinic, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands

Purpose or Objective

Deep learning (DL) has immense potential to revolutionise healthcare. Several Federated DL solutions have been proposed to access massive repositories of private data, without transferring subject data from the host devices. There remain concerns about potential privacy violation via "reconstructing" individually-identifiable subject data by exploiting model weights from host institutions. We propose a methodology for federated DL that addresses this risk through cloud-server architecture design.

Experiments 1 epoch x 200 iterations 2 epoch x 100 iterations 5 epoch x 40 iterations Training 0.76 (95% CI: 0.55-0.77) 0.70 (95% CI: 0.52- 0.75) 0.74 (95% CI: 0.57-0.82)