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Abstract: Stem cells have extensive proliferative potential and the ability to differentiate into one
or more mature cell types. The mechanisms by which stem cells accomplish self-renewal provide
fundamental insight into the origin and design of multicellular organisms. These pathways allow
the repair of damage and extend organismal life beyond that of component cells, and they probably
preceded the evolution of complex metazoans. Understanding the true nature of stem cells can
only come from discovering how they are regulated. The concept that stem cells are controlled by
particular microenvironments, also known as niches, has been widely accepted. Technical advances
now allow characterization of the zones that maintain and control stem cell activity in several organs,
including the brain, skin, and gut. Cholinergic neurons release acetylcholine (ACh) that mediates
chemical transmission via ACh receptors such as nicotinic and muscarinic receptors. Although the
cholinergic system is composed of organized nerve cells, the system is also involved in mammalian
non-neuronal cells, including stem cells, embryonic stem cells, epithelial cells, and endothelial cells.
Thus, cholinergic signaling plays a pivotal role in controlling their behaviors. Studies regarding this
signal are beginning to unify our understanding of stem cell regulation at the cellular and molecular
levels, and they are expected to advance efforts to control stem cells therapeutically. The present
article reviews recent findings about cholinergic signaling that is essential to control stem cell function
in a cholinergic niche.

Keywords: muscarinic acetylcholine receptor (mAChR); nicotinic acetylcholine receptor (nAChR);
neural stem cell (NSC); hair follicle stem cell (HFSC); melanocyte stem cell (MeSC); intestinal stem
cell (ISC); homeostasis; niche

1. Introduction

The appearance of the nervous system is considered to be an evolutionally epochal
event that fundamentally changed how control is achieved within a multicellular body.
Recent progress in genomics, molecular phylogenetics, developmental biology, and the
study of simple nervous systems in living animals such as Cnidaria has provided a wealth
of new empirical information about the earliest stages in neuronal evolution. Ancestral
Cnidarians diverged over 500 million years ago in animal evolution [1]. Cnidaria such as
Hydra, which is a descendant of ancestral Cnidarians, are composed of multiple cell types
that represent the fundamental architecture of multicellular organisms. Hydra also have
multipotent interstitial stem cells, which differentiate into nerve cells [2], nematocytes [2],
gland cells [3], and germ cells [4]. The nervous system of Hydra is simple and is composed
of a nerve net that extends throughout the animal. The cnidarian nervous system is
mainly peptidergic [5]. It has been suggested that classical molecules such as acetylcholine
(ACh) also contribute to the Hydra nervous system from the results of pharmacological
experiments [6]. The membrane-bound ACh receptor and acetylcholinesterase have been
demonstrated and confirmed by genome analysis [7,8]. Although ACh and other ACh
receptor agonists function in neuronal and/or neuromuscular communication to regulate
muscle contractions in Hydra, ACh itself has not been detected.
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ACh is the first substance proven to be a neurotransmitter [9]. ACh is the major
parasympathetic mediator and is synthesized by the catalytic conversion of acetyl-CoA and
choline to CoA and ACh by choline acetyltransferase (ChAT) (Figure 1) [10,11]. In choliner-
gic neurons, ACh is transported into synaptic vesicles via the vesicular ACh transporter
(VAChT) and stored there until released by exocytosis (Figure 1). VAChT was first cloned
and characterized in Caenorhabditis elegans [12]. After the release of ACh into the synaptic
cleft, the neurotransmitter evokes membrane action potentials by binding to ACh receptors
(Figure 1). Then, ACh is rapidly and specifically degraded by acetylcholinesterase (AChE)
and butyrylcholinesterase, which is a second, non-specific cholinesterase in mammals that
also produces choline and acetic acid (Figure 1) [13,14]. By-products of choline are taken up
into the presynaptic side of the synapse via the high-affinity choline transporter and reused
for ACh synthesis (Figure 1) [15]. The organic cation, choline, is a substrate for carriers of
organic cation transporters (OCTs). To date, three different OCTs (OCT1–3) that transport
choline from the extracellular space into nerve cells have been identified [16]. ACh is stored
at and released from VAChT in neurons [17]. Of interest, VAChT is expressed in a cell-type
specific manner in non-neuronal cells [18]. The cells that do not express VAChT have no
ability to store ACh but directly release ACh via OCTs [19,20]. Thus, OCTs are two-in-one
choline and ACh transporters. These ACh synthetic pathways described above constitute
the cholinergic system.

Figure 1. ACh release and receptor activation impacts neuronal activity. ACh is directly released into the synaptic cleft,
followed by binding to nAChRs and mAChRs on the postsynaptic cell. Upon release, ACh is quickly degraded by
extracellular AChE. ACh: acetylcholine, ChAT: choline acetyltransferase, VAChT: vesicular ACh transporter, mAChRs:
muscarinic ACh receptors, nAChRs: nicotinic ACh receptors, AChE: acetylcholinesterase, BuChE: butyrylcholinesterase,
ChT: choline transporter.

Schofield [21] originally hypothesized the existence of a microenvironment that is
required for the maintenance of stem cells using hematopoietic stem cells and called such
a region a “niche”. A niche is considered to be a subset of tissue cells and extracellular
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substrates that can indefinitely maintain stem cells and control their self-renewal and
progenitor cell production in vivo (Figure 2). Specialized internal mechanisms and external
signals confer the capacity of growth and differentiation to stem cells such as early embry-
onic cells in niches. Experimental evidence has revealed that ACh is widely distributed in
biological systems beyond the nervous system. The widespread distribution suggests that
ACh may be involved in regulation of stem cell functions such as proliferation, differenti-
ation, and the establishment of cell–cell interactions [22]. Thus, the study of cholinergic
mechanisms focusing on the regulation of proliferation, differentiation, and maintenance
of stem cells is of great interest. Our previous pharmacological studies revealed that
ACh is synthesized in intestinal epithelial cells and plays a role in cell division and the
differentiation of Leucine-rich repeat-containing G-protein-coupled receptor 5-positive
(Lgr5+) intestinal stem cells (ISCs) in the small intestine by binding to muscarinic ACh
receptors (mAChRs) in crypt-villus organoids [23]. Furthermore, mAChRs and nicotinic
ACh receptors (nAChRs) are involved in the proliferation of mouse embryonic and in-
duced pluripotent stem cells [24–26]. This evidence leads us to propose the presence of
a cholinergic niche that affects stem cell behavior. This review focuses on the multiple
roles of cholinergic signaling in stem cells that contribute to extensive regeneration and
remodeling in adults, including those present in the brain, skin, and gut.

Figure 2. Niche structure. Niche cells under the basement membrane signal to stem cells to block
differentiation and regulate division. Upon commitment, the stem cells differentiate into mature cells.

2. Neural Stem Cells (NSCs) in the Adult Mammalian Brain

Adult mammalian neural stem cells (NSCs) contribute to brain plasticity via the
generation of new neurons throughout life [27]. Adult NSCs also have fundamental
properties of self-renewal, relative quiescence, differentiation capacity, and residence within
a specific environmental niche similar to other adult somatic stem cells (Figure 3) [28].
New neurons are derived from NSCs that reside in two major neurogenic niches, the
subventricular zone (SVZ) in the lateral ventricles and subgranular zone (SGZ) in the
dentate gyrus of the hippocampus [28,29]. In the adult SVZ niche, NSCs give rise to
neurons and oligodendrocytes [28]. On the other hand, neurons and astrocytes, but
not oligodendrocytes, are generated from NSCs in the adult SGZ [30]. In this section,
I review cholinergic signaling involved in postnatal/adult neurogenesis and how patterns
of neuronal activity differentially and/or synergistically modulate downstream signaling
in NSCs.
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Figure 3. Behavior of neural stem cells (NSCs) within the adult mammalian brain. A schematic diagram illustrating the
potential behavior of an NSC over its life cycle.

2.1. Cholinergic Activation of NSCs in the SVZ

Neurogenesis in the SVZ of the olfactory bulb (OB) continues throughout adult-
hood [31,32]. NSCs in the SVZ generate neuroblasts, which migrate tangentially through
the rostral migratory stream toward the OB, and the neuroblasts finally differentiate into
interneurons [33]. Within the dentate gyrus and OB, the interneurons abundantly ex-
press mAChRs and nAChRs [34], suggesting that the cholinergic system plays a role in
regulating neurogenesis.

Accordingly, an in vivo nicotinic exposure experiment was carried out in the SVZ in
adult rats, but no effect on proliferation was seen [35,36], suggesting that nAChRs may
not be involved in adult OB neurogenesis. However, Mechawar and coworkers [37] used
knockout mice to answer the question of whether nAChRs are involved in events down-
stream of NSC proliferation in the SVZ. They undertook a study of OB neurogenesis using
β2−/− mice that were subjected or not subjected to chronic nicotine exposure and found
that β2-containing nAChRs are specifically involved in the survival of newborn granule
cells in the OB local circuits. Unexpectedly, the behavior of β2−/− mice indicated a less
robust short-term olfactory memory than their wild-type (WT) littermates. Furthermore,
a pharmacological study using donepezil, a potent AChE inhibitor, revealed that cholin-
ergic stimulation promotes the survival of newborn neurons in the adult OB [38]. Two
interesting studies suggested that adult NSCs in the SVZ are regionally specified at an
early embryonic stage and then remain largely quiescent until reactivation in the postnatal
period [39,40]. The key molecule for postnatal reactivation of SVZ NSCs may be ACh via
activation of nAChRs.

2.2. Cholinergic Activation of NSCs in the SGZ

Adult hippocampal neurogenesis is tightly controlled by NSCs located in the SGZ of
the mammalian dentate gyrus that proliferate, differentiate, are maintained, and integrate
into the local circuitry throughout life [41–45]. The cholinergic system is involved in the
regulation of adult hippocampal neurogenesis. The dentate gyrus receives input from the
basal forebrain through GABAergic and cholinergic projection neurons [46,47]. Injection of
fibroblasts secreting ACh into the hippocampus reverses cognitive decline by increasing
the proliferation of NSCs [48–50]. Furthermore, the administration of an AChE inhibitor
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increases NSC proliferation and promotes the survival of immature neurons through the
α7 nAChR subtype [49,51–53].

In the SGZ, pharmacological activation of α7-subunit-containing nAChRs increases
cellular proliferation [54]. Homomeric α7 nAChRs contribute to cognition, attention, learn-
ing, and memory through fast signal transduction [55,56]. α7 nAChRs have been implicated
in diseases including epilepsy, autism, schizophrenia, and Alzheimer’s disease [57,58].
As these disorders have altered adult neurogenesis in the SGZ of the dentate gyrus, α7
nAChRs may control the normal maturation and integration of immature neurons and
promote their survival [59–62]. Furthermore, Otto and Yakel found that blocking or re-
moving α7 nAChRs increases neurogenesis overall but decreases NSC pools and special
discrimination in adult males only, demonstrating the sexually dimorphic regulation of
adult neurogenesis [63]. It is difficult to discern the impact of α7 nAChR activation on adult
neurogenesis. The different and contradictory actions of this receptor may be due to the
timing and location of its activation as well as a sexually dimorphic fashion [63,64]. Other
α7 subunit-containing nAChRs, including the α7β2 subtype, are expressed in a diverse
array of cells in the hippocampus, and their loss contributes to multiple neuropsychiatric
and neurodegenerative disorders [65–69]. Thus, the regulation of adult neurogenesis via α7
subunit-containing nAChRs may provide a potential therapeutic strategy for treating neu-
rodegenerative and neurological diseases. In the SGZ, immunohistochemical staining and
functional analyses have revealed that type 1 and 4 mAChRs (M1 and M4) are expressed in
immature hippocampal neurons [38,70]. Additionally, bromodeoxyuridine (BrdU) labeling
analysis has shown that proliferating SGZ cells expressing M1 and M4 are also labeled
with BrdU, suggesting the modification of NSC/progenitor cell populations [49].

mAChRs, which are metabotropic, seven-transmembrane proteins coupled to G pro-
teins, activate various intracellular signaling pathways to control cellular function, in-
cluding that of adult stem cells [23,70,71]. On the other hand, nAChRs are pentameric,
ionotropic channels that mediate fast cholinergic transmission in the peripheral and central
nervous systems [72]. Furthermore, the nAChR subtype, α2β4, is also involved in adult
ISC function [73,74]. mAChR and nAChR signaling probably cooperates to fine-tune effects
on cells including adult stem cells.

3. Epidermal Stem Cells in the Adult Skin

Mammalian skin provides an interface between organisms and their environments.
The mammalian epidermis is composed of three self-renewing compartments: the hair
follicle, sebaceous glands, and interfollicular epidermis [75]. Under normal conditions,
the epidermises are maintained by their different stem cells [76,77]. When tissue home-
ostasis is disrupted by injury, each stem cell population is capable of producing each
structure [78,79]. The importance of stem cell heterogeneity and compartmentalization via
cholinergic signaling is discussed below.

3.1. Cholinergic Activation of Keratinization in the Skin

The skin is composed of two major layers, the epidermis and dermis. The epidermis
is composed of a multilayered stratified epithelium that undergoes a specialized form
of differentiation named keratinization [80]. The constantly renewing epithelial tissue is
maintained by the proliferation of various epidermal stem cell populations that are located
in the basal layer and their progressive differentiation after desquamation and injury [81].
Keratinocytes are not only tightly anchored to their neighboring cells via junctional com-
plexes but also directly exchange information with one another in a manner that controls
their differentiation state [81]. The cells have the ability to synthesize high amounts of
ACh [82]. Both classes of ACh receptors are expressed in epidermal keratinocytes [83].
They also express members of the necessary transporters (choline transporter and VAChT)
for an efficient autocrine and/or paracrine cholinergic loop, as well as the ACh degradation
enzyme, AChE [82]. Thus, keratinocytes express the molecular components of the non-
neuronal cholinergic system. The non-neuronal cholinergic system is postulated to regulate
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tight connections to other epidermal cells and/or stem cells, proliferation, differentiation,
apoptosis, adhesion, and migration in the skin [81,83]. The regulated expression of cholin-
ergic signaling in healthy skin may play a role in determining cell fate and positioning
during epidermal wound healing, but this remains to be rigorously investigated.

3.2. Cholinergic Activation of Hair Follicle Stem Cells in the Skin

The hair follicle is a skin appendage that is contiguous with the epidermis. The cycle
is divided into three stages: anagen (regeneration), catagen (degeneration), and telogen
(rest) (Figure 4) [84]. This regeneration process relies on hair follicle stem cells (HFSCs) and
melanocyte stem cells (MeSCs) in the bulge and hair germ region [85–87]. When HFSCs are
activated, a new hair follicle is produced. Lgr5 is a marker of HFSCs as well as a marker of
stem cells in the intestine [88,89]. The gene is expressed in the bulge region and hair germ
during long periods of time to contribute to all hair lineages [89]. A closely related gene,
Lgr6, also contributes as a marker for all distinct populations of stem cells that give rise
to all lineages of the skin [90]. The LGR family proteins can be divided into three groups:
type A, B, and C [91]. LGR5 and 6 belong to type B [91]. In 2011 and 2012, R-spondins
(RSpo1-4) were identified as endogenous ligands of these receptors [92–97]. Unlike Lgr5,
Lgr6 is not controlled by Wnt signaling [90]. The Wnt-independent Lgr6+ stem cell pool can
renew sebaceous cells and seed the epidermis throughout life, whereas a Wnt-dependent
Lgr5+ stem cell pool emerges from the Lgr6+ stem cell pool early in life and then becomes
relatively independent from the Lgr6+ stem cell pool [90].

Figure 4. Hair cycle. The follicle cycles through three phases: anagen (regeneration), catagen (degen-
eration), and telogen (rest). The hair follicle is depleted of melanocyte stem cells (MeSCs) that would
have differentiated to replace these melanocytes. Without any pigment cells to color the hair in the next
anagen phase, the hair begins to look gray or white.

When MeSCs are activated, melanocytes differentiate, and mature cells migrate down-
wards. However, MeSCs remain close to the bulge. At the hair bulb, mature melanocytes
synthesize melanin to color the newly regenerating hair from the root [98,99]. At the cata-
gen stage, mature melanocytes vanish. Then, MeSCs initiate new rounds of melanogenesis
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in future cycles [98,99]. During aging, the pool of MeSCs is gradually depleted, and then
pigmented hair becomes gray in color, and finally, white in color because of a complete
loss of pigment in all hair follicles [99]. Psychological stress has been associated with
changes from normal black hair to gray hair. However, little scientific validation of this
link is available. Recently, Zhang and coworkers [100] revealed that signaling from the
sympathetic nervous system in mice subjected to stress leads to depletion of the MeSC
population in their hair follicles, and eventually hair graying. In addition to anti-graying
therapeutics, their work will provide better understanding of how stress influences other
stem cell pools and their niches such as ISCs and their niche.

Five mAChR subtypes (M1–M5) are expressed both in epidermal keratinocytes and
melanocytes [101,102]. In particular, M4 is expressed at the highest level [101]. A role for M4
in keratinocyte migration was first revealed by comparing wound healing in M4 knockout
(M4-KO) and WT mice. M4-KO mice show a significantly decreased epithelization rate that
is concomitant with a reduced migration distance of keratinocytes [103,104]. In epidermal
melanocytes, the regulation of intracellular free Ca2+ plays a fundamental role in the control
of melanocyte dendricity [105]. The hypothesis is that M4 inhibits melanogenesis via the
inhibition of adenylate cyclase and cyclic AMP synthesis because of selective coupling
to Gi protein. This represents negative feedback regulation of the catecholamine/β2-
adrenergic receptor response in melanocytes [106,107]. A recent study revealed that MeSCs
express β2-adrenergic receptors, which respond to noradrenaline involved in the “fight
or flight” response to stress [100]. Furthermore, deletion of this receptor specifically in
MeSCs completely blocks stress-induced graying [100]. ACh is expected to be involved in
MeSC homeostasis via M4 in the hair follicle cycle. A pilot study has been conducted for
the M4-coupled pathway involved in murine hair follicle cycling and pigmentation [106].
When WT mice enter the first hair growth cycle, the M4-KO mice still show a slightly
retarded catagen phase [106]. Subsequently, hair follicles of the M4-KO mice remain in
a highly significantly prolonged telogen phase compared with that of WT mice [106].
Of interest, the M4-KO mice do not show follicular melanogenesis and fail to produce
pigmented hair shafts [106]. Collectively, in a complex neuroectodermal–mesodermal
interaction system, neuronal and/or non-neuronal ACh signaling leads to the depletion
of stem cell populations in murine hair follicles via the M4 subtype. This discovery will
increase understanding of human hair follicle biology.

4. ISCs in the Adult Gut

The ability of ISCs to divide and differentiate is necessary for tissue repair and home-
ostasis. The maintenance of a functional intestine requires appropriate spatial and temporal
processes involving multiple key signals from the surrounding niche [108,109]. The ISC
niche in the small intestine is composed of stem cells and Paneth cells, and it is surrounded
by mesenchymal cells at the crypt bottom [110,111]. This provides a unique microenviron-
ment that constitutes a constantly renewing dynamic system along the crypt–villus axis
throughout postnatal life [112,113]. Lgr5-expressing ISCs temporarily produce undifferen-
tiated cells that divide rapidly while moving toward the intestinal lumen [114]. During
migration, these cells differentiate into mature cells such as goblet cells, tuft cells, enteroen-
docrine cells, and absorptive cells (enterocytes) [115–117]. Paneth cells move to the crypt
bottom. Therefore, the densities of crypts and villi are dependent on ISC division [118].
In addition, B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) labels
quiescent ISCs, which are located at position +4 from the base of the crypt and have the
ability to revert to Lgr5+ ISCs after damage to regenerate the villi [119,120]. Potten and
coworkers [121] have provided experimental support for the +4 stem cell model for the
first time. They have reported the existence of label-retaining cells residing specifically
at this position [121]. These special mechanisms are important for life-long steady-state
maintenance of the epithelium [111,122–124]. The influence of cholinergic signaling on ISC
activity and differentiation is currently being elucidated.
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4.1. Cholinergic Activation of ISCs via mAChRs

Muscarinic receptors (M1–M5) are G-protein-coupled receptors that mediate mucosal
ion transport [125], epithelial proliferation [126], barrier function [127], and immune host
defense mechanisms [128], as well as cholinergic neurotransmission at effector cells. M3,
a receptor subtype that is expressed widely throughout the gastrointestinal tract, couples
to Gαq/11 to increase intracellular calcium via the activation of phospholipase C signaling
and inositol phosphate formation [129]. Thus, M3 signaling alters cell function, including
proliferation and differentiation [23,130]. Our previous pharmacological studies with
crypt–villus organoids revealed that ACh is synthesized in intestinal epithelial cells and
plays a role in cell division and the differentiation of Lgr5+ ISCs in the small intestine
by binding to muscarinic receptors including M3 in vitro [23]. How ISC proliferation,
differentiation, and maintenance are controlled and which inductive signals are required
for tissue maintenance are well established [108]. However, little is known regarding the
regulation of these pathways in vivo.

In the intestinal epithelium, tuft cells express ChAT for the production of ACh [131].
Intestinal tuft cells comprise a heterogeneous cell lineage and have been divided into
two types, immune and neuronal phenotypes [117,132,133]. Tuft cells are chemosensory
cells in the epithelial lining of the intestine. The brush-like microvilli projects from the cells.
Similar tuft cells are found in the respiratory epithelium where they are known as brush
cells [134]. Intestinal tuft cells have been proposed to be an important epithelial component
of the ISC niche. After injury, the loss of tuft cells causes an impairment of intestinal regen-
eration [135]. Of interest, progenitors of tuft cells are located just above the crypt base at
positions from +4 to +5, which is close to the position of Bmi1+ ISCs [136]. Enteroendocrine
tuft cells may sustain quiescent Bmi1+ ISCs. Recently, Middelhoff and coworkers [109]
revealed a novel interaction between M3 signaling and Lgr5+ ISC maintenance. They
showed that the deletion of M3 reduces the number of Lgr5+ ISCs. Simultaneously, en-
teroendocrine tuft cells sense the M3 signaling interruption and upregulate epidermal
growth factor signaling to sustain epithelial homeostasis [109]. ACh has been suggested to
transactivate epidermal growth factor regulatory pathways through binding to M1, M2,
and M3 [137–140]. Thus, the result is consistent with the signaling mechanisms underlying
the proliferation and differentiation of Lgr5+ ISCs. The control of Lgr5+ ISCs is in part
orchestrated by an increase in mucosal ACh release and is suggestive of a compensatory
response circuit to maintain epithelial cholinergic input [109].

The identification of signaling pathways that have divergent effects in tissue
stem/progenitor and cancer cells may offer insights into cancer development as well
as offer novel therapeutic targets. M3 is interesting in this context, because genetic inhibi-
tion of M3 activity and treatment with the muscarinic receptor antagonist, scopolamine
butylbromide, attenuate small intestinal adenoma formation in Apcmin/+ mice [141]. Thus,
the data so far obtained suggest an important role for M3 and ACh signaling in organizing
ISC homeostasis in the gastrointestinal tract by governing proliferation in crypts and differ-
entiation in villi. Loss of M3, which disrupts ISC homeostasis, appears to render the gut
less vulnerable to tumorigenic progression.

4.2. Cholinergic Activation of ISCs via nAChRs

Nicotinic AChRs use ACh as an endogenous ligand and the agonist, nicotine, for
signaling activation. nAChR signaling is a central regulator of physiological homeostasis in
the central and peripheral nervous systems. These receptors also play a pivotal role in reg-
ulation of epithelial cell growth, migration, differentiation, and inflammation processes in
various mammalian non-neuronal cells [73,82,142]. We have shown that nicotine increases
organoid growth and differentiation [73]. In contrast, mecamylamine has an antagonistic
effect compared with nicotine [73]. Our data obtained with immunohistochemical analysis
represent the first description of the α2β4 subtype in Paneth cells in the crypt region and
imply potentially novel functions such as the regulation of stem cell proliferation and
differentiation [73]. RNA-Seq analysis has revealed that Wnt5a expression is dramatically
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upregulated after nicotine treatment, and recombinant Wnt5a rescues organoid growth and
differentiation in response to mecamylamine [73]. Our results have indicated that coordi-
nated activities of nAChR and Wnt signaling maintain Lgr5+ stem cell activity and balanced
differentiation. Our RNA-Seq experiments also showed that differential expression levels
of Yes-associated protein (YAP1), transcriptional co-activator with PDZ-binding motif (TAZ),
Notch receptor 1 (Notch1), and delta-like ligand 1 (Dll1) are key aspects that are downstream
of nAChR signaling [143]. These molecules are main components in Hippo and Notch
signaling. The results suggest that the Hippo pathway and Notch signaling crosstalk with
each other.

We also found that deficiency in the β4 subunit causes a decrease in crypt size and
ISC proliferation and differentiation [143]. Our data suggest in part that the regulation of
ISCs in normal adult mouse crypts is linked to the upregulation of nAChR-driven Hippo
and Notch signaling pathways. Collectively, endogenous ACh binds to the α2β4 nAChR
subtype in Paneth cells, which are critical components of the ISC niche both in vivo and
in vitro [88,110]. Next, Hippo and Notch signaling pathways induce the expression of target
genes such as Wnts (Wnt5a and/or Wnt9b) [73]. Wnts bind to various Frizzled receptors to
activate Wnt signaling in ISCs, and eventually the proliferation and differentiation of ISCs
are enhanced. Notch signaling, which involves the interaction between Notch1 and Dll1,
in Paneth cells and ISCs modulates small intestinal homeostasis via the control of ISCs and
induction of absorptive cells [110]. The non-neuronal cholinergic system probably, both
functionally and independently, regulates or controls cell functions outside of the enteric
nervous system in the mouse intestine.

Intestinal bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a
chronic idiopathic inflammatory disorder that affects the gastrointestinal tract. Appropriate
intestinal epithelial regeneration is required to improve the outcomes of treatment for
IBD [74]. YAP1 regulation is a responsive mechanism for mucosal regeneration in an
IBD mouse model induced using dextran sulfate sodium [108,144]. We suggest that the
three-part mechanism of nAChR, Hippo, and Notch signaling permits adjustments in the
rate of ISCs and their daughter cells to maintain the stem and daughter cell density in
the adult mouse over the long term. Thus, upregulated nAChR signaling contributes to
ISC function through the activation of Hippo signaling, which may be developed as a
therapeutic target for IBD treatment.

In summary, the simultaneous stimulation of both ACh receptor classes may be re-
quired to synchronize and balance ionic and metabolic events in a single cell and/or tissue.
Crosstalk between these receptors may fine-tune the signals emanating from epithelial
cells and contribute to repair following tissue injury caused by inflammation. Signaling
through the M3 muscarinic receptor and α2β4 nicotinic receptor appears to work together
to maintain the homeostasis of intestinal epithelial cell growth and differentiation follow-
ing modifications of the cholinergic intestinal niche (Figure 5). A systematic analysis of
all components of the non-neuronal cholinergic system will increase our understanding
of the cholinergic properties of non-neuronal cells and in turn lead to optimization of
drug therapy.
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Figure 5. Model summarizing the importance of the cholinergic intestinal niche for maintenance of epithelial homeostasis. ACh:
acetylcholine, M3: type 3 muscarinic ACh receptor, α2β4: nicotinic ACh receptor subtype composed of α2 and β4 subunits.

5. Future Directions

Stem cells can divide extensively and have the ability to produce committed cells
during early mammalian development. Early in development, stem cells need to be able to
divide and differentiate into various lineages in response to external signals. Adult stem
cells in tissues also have tremendous potential. They are maintained in a steady state in
which each division typically produces one replacement stem cell and one tissue cell with
no apparent limit [91]. The appropriate control of adult stem cells via cholinergic signaling
may have potential anti-aging effects.

New neurons are generated from hippocampal NSCs that are located in the SGZ of the
dentate gyrus. However, their generation is substantially diminished in aged animals due
to a decrease in the NSC population. Voluntary exercise may increase neurogenesis in the
hippocampus [145,146]. Additionally, Itou and coworkers [147] showed that cholinergic
stimulation such as with donepezil can promote the proliferation of aged NSCs, which may
lead to an increase in the number of new neurons in aged animals. The results support the
conclusion that adult hippocampal neurogenesis may ameliorate the decline in cognitive
functions that accompanies normal aging.

As people grow older, the pool of MeSCs is gradually depleted, pigmented hair
becomes salt-and-pepper colored, and then turns to gray and finally to white after a
complete loss of pigment in all hair follicles [99]. As M4 muscarinic receptor-mediated
signaling is critical for normal hair follicle cycling and pigmentation in mice, clarifying why
the defect in hair follicle pigmentation occurs and why a deficiency in the migration and/or
differentiation of neural crest-derived precursor cells into the hair follicle occurs in M4-KO
mice is important [106]. Answering these questions may in part lead to development of
anti-graying therapies.

Nutrients are absorbed by the intestinal villi, and the absorption activity is affected
by the size and density of villi [148]. Nutrient malabsorption is common among the
elderly and often causes illness [149]. He and coworkers [150] showed that aging-induced
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intestinal villus structural and functional decline is regulated by mammalian target of
rapamycin complex 1 (mTORC1), which is a sensor of nutrients and growth factors that
is highly activated in ISC and progenitor cells in geriatric mice. Their findings revealed
that mTORC1 drives aging by augmenting a prominent stress response pathway in ISCs
and identified p38 mitogen-activated protein kinase as an anti-aging target downstream of
mTORC1 [150]. Although the interaction between ACh receptors and mTORC1 remains
unclear, therapy to alter ISC behavior for anti-aging as well as homeostasis and disease
may involve the cholinergic intestinal niche.
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