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The environment in which a population evolves can have a crucial impact on

selection. We study evolutionary dynamics in finite populations of fixed size in

a changing environment. The population dynamics are driven by birth and

death events. The rates of these events may vary in time depending on the

state of the environment, which follows an independent Markov process.

We develop a general theory for the fixation probability of a mutant in a popu-

lation of wild-types, and for mean unconditional and conditional fixation

times. We apply our theory to evolutionary games for which the payoff struc-

ture varies in time. The mutant can exploit the environmental noise; a dynamic

environment that switches between two states can lead to a probability of fix-

ation that is higher than in any of the individual environmental states. We

provide an intuitive interpretation of this surprising effect. We also investigate

stationary distributions when mutations are present in the dynamics. In this

regime, we find two approximations of the stationary measure. One works

well for rapid switching, the other for slowly fluctuating environments.

1. Introduction
Evolutionary dynamics describes the change of populations over time subject to

spontaneous mutation, selection and other random events [1,2]. Different phe-

notypes in the population can emerge spontaneously by mutation, i.e. through

errors during reproduction of wild-types. In many cases, wild-type and mutant

individuals are characterized by heritable differences in behavioural traits or

strategies [2]. Selection acts on different phenotypes and changes the population

composition. Changes in the state of the environment can alter these selective

pressures over time.

Time-varying environments are relevant in the evolution of bacterial

populations subject to environment modulations by a host [3,4], or varying anti-

biotic stress. An illustrative example is the evolution of normal (wild-type) cells

and resistant ‘persister’ cells (mutant). This was examined by Kussell et al. [5],

where periods of antibiosis were turned on and off. During times of antibiotic

stress, the growth rate of normal cells was reduced, but the resistant cells sustain

population levels. In addition, Acar et al. [6] provided further experimental

evidence supporting the deterministic model used in [5]. More complicated

studies of dynamics in switching environments rely on cells ‘sensing’ the environ-

ment [7] and on the history or information of the environment during a cell’s life

[8,9]. These examples illustrate that the assumption of an interaction structure

independent of time is not always realistic. At the same time, it is largely an

open question how complex interactions between phenotypes together with

spontaneous changes in the environment influence the evolutionary dynamics.

The interactions of phenotypes in a population can be formalized in an evol-

utionary game [10,11]. Such games can be used to describe conflict over food or

territory, cheating in resource allocation, as well as interactions between variants

of a gene [12–16]. In an evolutionary normal-form game, each individual can be

associated with one out of a finite set of strategies. A payoff matrix quantifies the

reward received by a given individual when it interacts with another individual [11].
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Figure 1. A population undergoes a one-step birth – death process, such that given the population is in state i, in one time-step it may transit to i 2 1 or i þ 1, or
remain at i. The states i ¼ 0 and i ¼ N are absorbing in both environments (no arrows out of these states). The transition probabilities (birth/death rates) are
dependent on the state of the environment, indicated by solid versus dashed arrows in environments s and s0, respectively. The environment switches from state
s to s0 with probability ms!s’ in any one time-step. The quantity fi,s represents the probability of fixation, as discussed in §3. (Online version in colour.)
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The dynamics of populations interacting in such a game

are often described by deterministic replicator equations or

similar differential equations [10,17,18]. While deterministic

dynamics are useful to understand the action of selection

per se, more interesting phenomena arise when stochastic

effects are taken into account. A stochastic approach is appro-

priate—often even strictly required—to understand the

impact of fluctuations in finite populations [19,20]. Determi-

nistic approaches fail to capture effects such as fixation and

extinction, or the convergence to a stationary distribution in

systems with mutation [21–25].

There is an increasing body of literature on stochastic

evolutionary games. For example, analytical results for the

probabilities of a single mutant to reach fixation have been

obtained [26–29]. However, most of this existing work

focuses on games played in a fixed environment; the under-

lying payoff matrix itself remains unchanged in time. This

assumption may not be appropriate in cases where external

factors influence the environment.

External fluctuations in evolutionary games have been pre-

viously introduced by adding extrinsic noise to continuous

model parameters [30], or by letting strategy space itself vary

in time [31]. Environmental variability has also been the subject

of investigation in predator–prey models [32,33].

In this article, we explore different theoretical approaches

that allow calculations of fixation probabilities and mean

fixation times of a rare mutation, under fluctuating environ-

mental conditions. We use a generic birth–death framework,

as described in §2, and our results thus apply to a wide class

of population dynamics. In §3, the theory is developed for an

environment that can transit between an arbitrary number of

discrete states, and we expand on the two-environment scen-

arios in §4. To illustrate our theoretical results, we study the

fixation properties in an evolutionary game that stochastically

switches between a coexistence game and a coordination game

in §5. We determine environmental conditions under which

the success of a rare invading mutant is maximal. This is

seen to occur at a non-trivial combination of switching rates.

For the case in which mutations occur during the dynamics,

as described in §6, we explore how the stationary distribution of

the population changes in fluctuating environments. We derive

approximations for the stationary distribution, valid for a large
range of switching rates. We summarize our findings in §7 and

put them into context.
2. Mathematical model
We seek to model evolutionary dynamics in finite populations

of two species that are subject to environmental changes. The

changes in the environment are such that at any given point

in time, the system can be in one of a finite set of environmental

states. The state that the environment is in determines the

details of the birth and death dynamics. We focus on two

cases: first, in the absence of mutations in the dynamics, we

derive laws to predict the probability and mean time of the fix-

ation of a mutant. Fixation describes the event in which

mutants take over the population as opposed to going extinct.

Fixation and extinction are the only two outcomes of dynamics

of a rare mutant in a finite population [34]. In figure 1 we show

a basic sketch of this scenario in which the two monomorphic

states of the population are absorbing. Second, we study the

case when mutations occur in the dynamics. There are then

no absorbing states. Instead, the dynamics converges to a

stationary distribution.

2.1. Birth – death dynamics
We consider populations consisting of a fixed number of N
individuals. Each individual can be of one of two types, A or

B, which we refer to as ‘mutant’ and ‘wild-type’, respectively.

The population is well mixed; every individual can interact

with any other individual. The state of the population is fully

characterized by the number, i, of individuals of type A. The

remaining N 2 i individuals are of type B. We furthermore

assume that at any one time the environment can be in one

of V discrete states, labelled s [ L, where L is the space of

states of the environment (jLj ¼ V). Hence the state of the

entire system at any time is given by the pair (i,s).

The discrete-time birth–death dynamics of the population

for a given environment, s, is then specified by the transition

probabilities vþi,s and v�i,s of a one-step process. Specifically, if

the system is in state (i,s) the population transitions to state

i þ 1 in the next time step with probability vþi,s. Similarly,

the state of the population in the next time step is i 2 1
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with a probability v�i,s. These transitions are shown as black

arrows in figure 1. With probability 1� (vþi,s þ v�i,s) the popu-

lation remains in state i. We always assume that v+
i,s � 0 and

vþi,s þ v�i,s � 1 for all (i,s).

With the exception of §6, we always assume that the states

i¼ 0 (all-B) and i¼ N (all-A) are absorbing (vþ0,s ¼ 0 and

v�N,s ¼ 0 for all s [ L). In the absence of further mutation

events, a type, once absent, can never be re-introduced. If

mutations are present in the dynamics, then the states i¼ 0

and i¼ N are no longer absorbing and the system converges to

a unique, non-trivial stationary state. We consider this case in §6.

2.2. Fluctuating environment
In our approach, the environment evolves from one state to

another independently of the state of the population. This sim-

plification still captures a wide array of natural scenarios. In

the discrete-time set-up, we take the dynamics of the environ-

ment as a simple Markov chain, described by the transition

matrix m ¼ (ms!s0 ) of size V � V. The entry ms!s0 represents

the probability that the environment changes to state s0 in

the next time-step, if it is currently in state s, as shown in

figure 1. The matrix m is a stochastic matrix,
P

s0 ms!s0 ¼ 1

for all s [ L.

A switch of the environment effectively modifies the

birth–death dynamics in the population. We do not specify

the exact type of interaction at this point, but keep the rates

v+
i,s general.
3. Fixation probability and time for a general
birth – death process in a fluctuating
environment

3.1. Fixation probability
Let us first consider a discrete-time evolutionary process. If

the system is in state (i,s) at a given time, it may transition

to 3V possible states in any one time-step. These are given

by (i,s0), (i þ 1,s0) and (i 2 1,s0), where s0 [ L can be any

of the V states of the environment. If we write R(i,s)!( j,s’)

for the probability of a transition from (i,s) to ( j,s0), we have

R(i,s)!(iþ1,s0) ¼ ms!s0v
þ
i,s , (3:1a)

R(i,s)!(i�1,s0) ¼ ms!s0v
�
i,s (3:1b)

and R(i,s)!(i,s0) ¼ ms!s0 (1� vþi,s � v�i,s): (3:1c)

No transitions from (i,s) to ( j,s0) can occur when ji 2 jj. 1.

In this set-up, the birth–death probabilities are determined

by the state of the environment at the beginning of the

discrete-time-step.

The fixation probability, fi,s, is the probability that the

system ends up in the absorbing state with N individuals of

type A, conditioned on initial state (i,s). The probability of

fixation of a single mutant, f1,s, is of particular interest

[21]. It is briefly illustrated in figure 1. In our scenario with

switching between V environmental states, following the

lines of the earlier studies [2,28,35], the following balance

equation for the fixation probabilities can be found:

fi,s ¼
X

s0 [ L

ms!s0
�
vþi,sfiþ1,s0 þ v�i,sfi�1,s0

þ (1� vþi,s � v�i,s)fi,s0
�
: (3:2)
This is to be solved along with the boundary conditions

f0,s ¼ 0 and fN,s ¼ 1 for all s [ L.

To obtain a formal solution, we introduce ci,s ¼P
s0ms!s0fi,s0 , or in matrix form c

i
¼ m � f

i
. The vectors ci

and fi each have V components. The boundary conditions

f0,s ¼ 0 and fN,s ¼ 1 translate into c0,s ¼ 0 and cN,s ¼ 1

for all s [ L. With this notation, we have

fi,s ¼ vþi,s(ciþ1,s � ci,s)� v�i,s(ci,s � ci�1,s)þ ci,s: (3:3)

Using f
i
¼ m�1 �c

i
, we obtain

ciþ1,s � ci,s ¼ gi,s(ci,s � ci�1,s)þ 1

vþi,s
(m�1 �c

i
)s � ci,s

h i
,

(3:4)

where gi,s ¼ v�i,s=v
þ
i,s. We stress that the calculation of fix-

ation probabilities and mean fixation times using this

formalism requires the matrix m to be invertible. We comment

on this further in the context of a specific example in §4.

To keep the notation compact, we define the variable y i,s ¼

ci,s 2 ci 2 1,s. Using c0,s ¼ 0, we have ci,s ¼
Pi

j¼1 y j,s. With

this notation, we can write equation (3.4) in the following form:

yiþ1,s ¼ gi,syi,s þ
1

vþi,s
(m�1�I) �

Xi

j¼1

yj

2
4

3
5
s

, (3:5)

where I is the V � V identity matrix. This relation expresses the

vector y i þ 1 in terms of the vectors y1, y2, . . . ,y i. We can there-

fore express all vectors y i (i ¼ 2, . . . ,N ) in terms of y1. The

constraint
PN

i¼1 yi ¼ c
N
¼ (1, . . . , 1)T then determines y1 self-

consistently. We note that the resulting set of equations is

linear in the set fy1,sg. Hence a solution can be obtained in a

closed form, in principle. In practice, one inverts the linear

system using one of the standard algebraic manipulation

packages. Once y1 has been found, the other components y i,

with i ¼ 2, . . . ,N, can be computed via equation (3.5). One

then uses f
i
¼ m�1 �

Pi
j¼1 yj to find the fixation probabilities

starting with i individuals of type A in environment s, ffi,sg.
We note here that algebraically inverting the linear system

(3.5) when N is large is difficult due to the very large number

of terms in the corresponding expressions. Thus, at present,

this theory is limited computationally to relatively small N.

In the case of a single environment, V ¼ 1, the matrix m is

simply the 1 � 1 identity matrix, and equation (3.5) simplifies

to the well-known result for discrete-time birth–death

processes [2,28,35].

3.2. Unconditional fixation time
We write ti,s for the expected number of time-steps taken to

reach any one of the two absorbing states, given that the

system is started in state (i,s). These fulfil the boundary con-

ditions t0,s ¼ tN,s ¼ 0. With these definitions we find the

following relation:

ti,s ¼
X

s0 [ L

ms!s0
�
vþi,stiþ1,s0 þ v�i,sti�1,s0

þ (1� vþi,s � v�i,s)ti,s0
�
þ 1: (3:6)

Introducing the variable ji,s ¼
P

s0 ms!s0 ti,s0 , we have

ti,s ¼ vþi,s(jiþ1,s � ji,s)� v�i,s(ji,s � ji�1,s)þ ji,s þ 1, (3:7)

and with the notation ni,s ¼ ji,s 2 ji 2 1,s, we arrive at

niþ1,s ¼ gi,sni,s þ
1

vþi,s
(m�1�I) �

Xi

j¼1

nj

2
4

3
5
s

� 1

vþi,s
: (3:8)
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This relation allows one to express all vectors ni (i ¼ 2, . . . ,N )

in terms of n1. The constraint
PN

i¼1 ni ¼ (0, . . . , 0)T then deter-

mines n1, and the mean unconditional fixation times are

computed using ti ¼ m�1 �
Pi

j¼1 nj.

3.3. Conditional fixation time
We write tA

i,s for the mean fixation time conditioned on absorp-

tion in the all-A state, given that the system is initially in state

(i,s). To find this conditional fixation time, we proceed along

similar lines as before. Introducing the variable ui,s ¼ fi,stA
i,s ,

which has boundary conditions u0,s ¼ uN,s ¼ 0, the following

balance equation can be found:

ui,s ¼
X

s0 [ L

ms!s0
�
vþi,suiþ1,s0 þ v�i,sui�1,s0

þ (1� vþi,s � v�i,s)ui,s0 � þ fi,s: (3:9)

We note that equations (3.6) and (3.9) appear to be very similar,

but the difference is more than just a global pre-factor fi,s; each

term in the expression has different indices i and s.

Introducing the variable zi,s ¼
P

s0ms!s0ui,s0 , we have

ui,s ¼ vþi,s(ziþ1,s � zi,s)� v�i,s(zi,s � zi�1,s)þ zi,s þ fi,s ,

(3:10)

and introducing hi,s ¼ zi,s 2 zi 2 1,s, we arrive at

hiþ1,s ¼ gi,shi,s þ
1

vþi,s
(m�1�I) �

Xi

j¼1

h
j

2
4

3
5
s

� 1

vþi,s
fi,s: (3:11)

The set fui,sg can then be found using an approach similar

to the one described above. Results for the mean conditional

fixation time can then be obtained using tA
i,s ¼ ui,s=fi,s.

3.4. Continuous-time model
In any of the elementary time steps of the above discrete-time

model, both the state of the population (i) and the state of the

environment (s) can change. We next consider a continuous-

time set-up. There are two types of discrete events that may

occur at any time: (i) the state of the environment may change

or (ii) a birth–death event may occur. The rate (per unit time)

with which a transition from state s to state s0 occurs is denoted

by ms!s0. The occurrence of these events is independent of the

state of the population. The rate with which a birth–death event

of the type i! i þ 1 occurs is Wþ
i,s , if the environment is in

state s. The rate with which i! i 2 1 occurs is W�
i,s. We write

Pi,s(t) for the probability to find the system in state (i,s) at

time t, and find the master equation

@tPi,s(t)¼Wþ
i�1,sPi�1,s(t)�Wþ

i,sPi,s(t)þW�
iþ1,sPiþ1,s(t)�W�

i,sPi,sðtÞ

þ
X
s0

[ms0!sPi,s0 (t)�ms!s0Pi,s(t)]: (3:12)

3.4.1. Fixation probability
We write Qj,s 0;i,s(t) for the probability to find the system in

state ( j,s0) a period of time t after it has been started

in state (i,s). The corresponding backward master equation

[36,37] reads

@tQ j,s0 ;i,s(t) ¼Wþ
i,s[Q j,s0 ;iþ1,s(t)�Q j,s0 ;i,s(t)]

þW�
i,s[Q j,s0 ;i�1,s(t)�Q j,s0 ;i,s(t)]

þ
X
s00

ms!s00 [Q j,s0 ;i,s00 (t)�Q j,s0 ;i,s(t)]: (3:13)
We define wi,s(t) ¼
P

s0QN,s0 ;i,s(t) as the probability that the

system has reached fixation in the all-A state a period of

time t after the dynamics has been started in state (i,s).

This includes fixation before time t. By setting j ¼ N and

summing over s0 in equation (3.13), we obtain

@twi,s(t) ¼ Wþ
i,s[wiþ1,s(t)� wi,s(t)]þW�

i,s[wi�1,s(t)� wi,s(t)]

þ
X
s00

ms!s00 [wi,s00 (t)� wi,s(t)]: (3:14)

The fixation probabilities are found as fi,s ¼ limt!1wi,s(t), and

they can be obtained by setting the time derivative in equation

(3.14) to zero. Introducing yi,s ¼ fi,s 2 fi 2 1,s, one finds

yiþ1,s ¼ gi,syi,s þ
1

Wþ
i,s

X
s0

ms!s0
Xi

j¼1

(y j,s � y j,s0 )

2
4

3
5, (3:15)

with gi,s ¼ W�
i,s=Wþ

i,s and where we have used f0,s ¼ 0 to

write fi,s ¼
Pi

j¼1 y j,s. For the case of a single environment,

the second term on the right-hand side vanishes and one

recovers again the well-known results in single environments

[2,28,38]. Equation (3.15) has the same general structure as

equation (3.5). Keeping in mind that fN,s ¼ 1, the fixation

probabilities can hence be found by applying the approach

outlined in §3.1.

3.4.2. Fixation times
Calculating the mean fixation time using a diffusion approxi-

mation [34,36,37,39] is not appropriate for our model.

The environmental switching process has no continuum

limit. Instead we work with the backward master equa-

tion (3.13) and adapt the calculation outlined by Antal &

Scheuring [21].

We introduce qi,s(t)¼
P

s0[Q0,s’;i,s(t) þ QN,s’;i,s(t)], the

probability that the system has reached fixation in either of

the two absorbing states a period of time t after being started

in (i,s). Again this includes fixation before t. We then have

ri,s(t)¼ @tqi,s(t) for the probability density to reach fixation

exactly at time t. From the backward master equation (3.13),

we find

@tri,s(t) ¼ Wþ
i,s[riþ1,s(t)� ri,s(t)]þW�

i,s[ri�1,s(t)� ri,s(t)]

þ
X
s0

ms!s0 [ri,s0 (t)� ri,s(t)]: (3:16)

The mean unconditional fixation time is then found via

ti,s ¼
Ð1

0 dt tri,s(t), from which we find

�1 ¼Wþ
i,s[tiþ1,s � ti,s]þW�

i,s[ti�1,s � ti,s]

þ
X
s0

ms!s0 [ti,s0 � ti,s]:
(3:17)

A similar iterative equation can be found for the mean fixation

time conditioned on absorption in the all-A state. The only differ-

ence is the integral of rA
i,s(t) ¼ @t[

P
s0 QN,s0 ;i,s(t)] is given by the

fixation probability fi,s, and that tA
i,s ¼ f�1

i,s

Ð1

0 dt trA
i,s(t). The

mean conditional fixation times, tA
i,s , therefore fulfil the relation

�fi,s ¼Wþ
i,s[fiþ1,stA

iþ1,s � fi,stA
i,s]þW�

i,s[fi�1,stA
i�1,s � fi,stA

i,s]

þ
X
s0

ms!s0 [fi,s0 t
A
i,s0 � fi,stA

i,s]: (3:18)

Structurally, equations (3.17) and (3.18) are of the same form as

the corresponding equations for the discrete-time model, and

so they can be solved using an analogous procedure. In con-

tinuous time, however, the solution procedure no longer
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relies on the invertibility of the matrix m of switching rates

between the states of the environment. This is because we

have split up the birth–death dynamics and the changes of

the environment into separate events that occur successively.
 lsocietypublishing.org
J.R.Soc.Interface

11:20140663
4. Switching between two environments
We now focus on the case of environments which can be

in one of two possible states, i.e. V ¼ 2. We label the

two states as s ¼+1 (L ¼ fþ1,21g). We focus on the

discrete-time scenario. The matrix m can then be written as

m ¼ 1� pþ pþ
p� 1� p�

� �
, (4:1)

where the quantity ps (s [ {þ1,�1}) is the probability that

the state of the environment switches to 2s in a given

time-step if it is in state s at the beginning of this step. We

recall that our theoretical results require the inversion of m.

Excluding the case when D ¼ det m ¼ 1� pþ � p� vanishes,

this inversion can be carried out straightforwardly

m ¼ 1

D

1� p� � pþ
� p� 1� pþ

� �
: (4:2)

For the case D ¼ 0, we have verified that there is no anoma-

lous behaviour of simulation results.

4.1. Fixation probability and times
The general result of equation (3.5) now reduces to the recursion

yiþ1,s ¼ gi,syi,s þ
1

vþi,s

ps
D

Xi

j¼1

(y j,s � y j,�s): (4:3)

The fixation probability is obtained from the set fni,sg via

fi,s ¼
Xi

j¼1

1� p�s
D

y j,s �
ps
D

y j,�s

� �
: (4:4)

Similarly, equations (3.8) and (3.11) reduce to

niþ1,s ¼ gi,sni,s þ
1

vþi,s

ps
D

Xi

j¼1

(n j,s � n j,�s)� 1

vþi,s
(4:5)

and

hiþ1,s ¼ gi,shi,s þ
1

vþi,s

ps
D

Xi

j¼1

(h j,s � h j,�s)� 1

vþi,s
fi,s , (4:6)

respectively. The mean unconditional and conditional fixation

times are then found, respectively, as

ti,s ¼
Xi

j¼1

1� p�s
D

n j,s �
ps

D
n j,�s

� �
(4:7)

and

tA
i,s ¼

1

fi,s

Xi

j¼1

1� p�s
D

h j,s �
ps

D
h j,�s

� �
: (4:8)

4.2. Effective description for fast switching
The environmental change is fast if the environmental states

are short-lived, i.e. much shorter than the mean fixation time

in either environment. Then we expect the population

dynamics to be controlled by a set of effective transition prob-

abilities, i.e. weighted averages of the original transition
probabilities in the different environmental states. The

weights are given by the fraction of time spent in each

environmental state. As the dynamics of s follows a simple

telegraph process [36], the asymptotic fraction of time spent

in the state s is p2s/( psþp2s) for s [ {�1,þ1}. Using this,

the effective transition probabilities are given by

v+
i,eff ¼

p�
pþ þ p�

v+
i,þ þ

pþ
pþ þ p�

v+
i,�: (4:9)

We note that ps is the probability that in a given time-step

the environment switches from state s to 2s. Hence the

time spent in state s decreases with increasing ps if p2s is

held fixed.

We anticipate that expression (4.9) can formally be

derived by introducing a relative scaling parameter between

the switching probabilities and the birth–death probabilities,

and then by taking a suitable limit in which the timescales of

both processes are widely separated. We do not explore this

route further here.

In this approximation, the dynamics of the population are

mapped to a simple birth–death process on the set

i [ {0, 1, . . . , N} with absorbing states i ¼ 0 and i ¼ N. For

such processes, explicit expressions for the fixation probabil-

ities and mean fixation times are known [2,28,35]. In the fast-

switching limit, we propose the following approximation for

the fixation probability:

fi,eff ¼
1þ

Pi�1
k¼1

Qk
j¼1 g j,eff

1þ
PN�1

k¼1

Qk
j¼1 g j,eff

: (4:10)

We write here gi,eff ¼ v�i,eff=v
þ
i,eff . The corresponding approxi-

mations for the mean unconditional and conditional fixation

times of a single mutant, respectively, are

t1,eff ¼ feff
1

XN�1

k¼1

Xk

l¼1

1

vþl,eff

Yk

m¼lþ1

gm,eff (4:11)

and

tA
1,eff ¼

XN�1

k¼1

Xk

l¼1

fl,eff

vþl,eff

Yk

m¼lþ1

gm,eff: (4:12)

These expressions exactly describe the fixation properties

of a birth–death system with the effective transition probabil-

ities; the nature of our approximation is to assume that the

birth–death process in quickly changing environments can

be described by the effective transition probabilities in

equation (4.9).

Finally, we note that this theory is independent of the

invertibility of the switching matrix m.
5. Fixation in fluctuating two-player
two-strategy games

5.1. Evolutionary games
As a direct application of the general theory we have devel-

oped, we now consider evolutionary game dynamics in

well-mixed, finite populations. Any of the N individuals

can be of one of two types, A or B. We limit the discussion

to two-player games, but the extension to multi-player

games (e.g. [25,40,41]) is straightforward.

At any point in time the environment is in one of two dis-

crete states (s [ {þ1,�1}). This state fluctuates in time as
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specified above. The interaction between individuals is

characterized by the payoff matrix

A B
A as bs
B cs ds:

(5:1)

The subscript s indicates the dependence on the environ-

ment. The matrix focuses on the column player: a type-A
individual encountering another of its kind receives as, and

it receives bs when interacting with a type-B individual. In

turn, an individual of type B interacting with an individual

of type A obtains cs, and ds is the payoff for each individual

if they are both of type B.

If the environment is in state s, and if there are i
individuals of type A in the population and N 2 i indivi-

duals of type B, the expected payoffs for each type of

player are

ps
A(i) ¼ i� 1

N � 1
as þ

N � i
N � 1

bs (5:2a)

and ps
B(i) ¼ i

N � 1
cs þ

N � i� 1

N � 1
ds: (5:2b)

The reproductive fitness of any individual is a function of the

individual’s payoff in the evolutionary game. We use an

exponential mapping [42,43]

fsA(i) ¼ ebp
s
A(i) ð5:3aÞ

and fsB (i) ¼ ebp
s
B(i): ð5:3bÞ

This is a common natural choice in which fitness is never

negative and monotonically increasing with payoff.

Any other functional form of the payoff-to-fitness mapping

with these two properties would be equally appropriate.

The constant parameter b . 0 is the so-called intensity of

selection. Based on this definition of fitness, we model the

evolutionary dynamics by the update rules of the Moran pro-

cess [34,44], which has been widely used in evolutionary

game theory [2,28,45]. The Moran process represents a

simple birth–death process in which the population size

remains constant, and by construction it has absorbing

states at i ¼ 0 and i ¼ N. In a discrete-time setting, the

frequency-dependent Moran process is specified by the

transition probabilities [46]

vþi,s ¼
i(N � i)

N2

fsA(i)

f
s
(i)

and v�i,s ¼
i(N � i)

N2

fsB (i)

f
s
(i)

, (5:4)

where f
s
(i) ¼ [ifsA(i)þ (N � i)fsB (i)]=N is the average fitness in

the population. We note that the framework of the previous

section can be applied to microscopic evolutionary dynamics

other than the Moran process. This includes, for example,

pairwise comparison processes [47,48] or cases with constant

selection in any one environment.
5.2. Switching between coexistence and coordination
games

Rare mutations can introduce a previously absent strategy

into the population. Typically, there is only one individual

of this novel type initially. We say that B is the resident

type, and that A is the invading mutant type. All results in

this section are based on the initial condition i ¼ 1. We

chose as ¼ ds ¼ 1 for the payoff matrix. The type of game is

then determined by the off-diagonal terms. We chose bs ¼
1 þ sb and cs ¼ 1 þ sc, where b and c are real-valued par-

ameters. Thus, we have the payoff matrix

A B
A 1 1þ sb
B 1þ sc 1:

(5:5)

Our parametrization does not span the entire space of all

2 � 2 games, but it covers some of the most common

types (see below).

There exist three general types of two-player two-strategy

evolutionary games. First, for the coexistence game bs . 1

and cs . 1, selection drives the population away from the

absorbing boundaries. Second, for bs , 1 and cs , 1, the

population dynamics exhibits bi-stability. This is also

known as a coordination game; selection drives the popu-

lation towards the monomorphic states. In both cases, there

exists an internal point in frequency space for which the

direction of selection changes its sign, i.e. at which the gradi-

ent of selection is zero. This point can be calculated by

solving vþi,s ¼ v�i,s (or equivalently fsA(i) ¼ fsB (i)) for i, and

broadly speaking it is determined by the relative magnitudes

of b and c. Third, for bs . 1, cs . 1 (or bs , 1, cs , 1) type A
(or type B) always has the higher fitness irrespective of the

composition of the population. This type is then always

favoured by selection, which never changes direction.

For the remainder of this article, we focus on switching

between coexistence and coordination games. More precisely,

we choose b . 0 and c . 0 in (5.5). The coexistence game

corresponds to s ¼ þ1 and the coordination game to s ¼21.

5.3. Results
5.3.1. Sample trajectory of the dynamics
In figure 2a, we show a sample trajectory of a simulation in

which a single mutant reaches fixation. The gradient of selec-

tion, vþi,s � v�i,s , for the two games is shown in figure 2b and c.

During periods when the environment is in the coexistence

state (light background) the population fluctuates about the

selection-balance point (dashed line), and during periods

when the environment is in the coordination state (shaded

background) the population is driven away from the selection-

balance point. In the final period in the coordination state the

mutant is driven to fixation.

5.3.2. Fixation probability and conditional fixation time
In figure 3, we show the effect of switching the environment on

the fixation dynamics. We choose c . b . 0. By equating the

reaction probabilities (i.e. setting vþi,s ¼ v�i,s), or equivalently

equating the expected payoffs in equation (5.2), and looking

at leading order terms in N, the gradient of selection is seen

to change sign at i*/N � b/(b þ c) , 1/2. This point is closer

to the extinction state of the mutant (i ¼ 0) than to the fixation

state (i ¼ N ). We next describe the key observations we make

from these results, before we turn to their interpretation.

Fixation probability (figure 3a). The fixation probability in

this example depends non-trivially on the rates with which

the environment switches states; we find an optimal combi-

nation of switching rates, pþ ≃ p2, for which fixation of a

single mutant is most probable (figure 3a). The fixation prob-

ability is dependent on the initial state of the environment for

ps & 0:1.

Fixation time (figure 3b). Mean conditional fixation times

show very little dependence on the initial state of the
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to s(0) ¼ þ1 and circles to s(0) ¼21) for fixed p2 ¼ 0.01, along with the exact theoretical results (solid lines) from equation (4.4), and the effective theor-
etical result (dashed line) of equation (4.10). Inset panels show fixation probabilities from equation (4.4) over all combinations of pþ and p2. Left inset panel: initial
condition s(0) ¼ þ1. Right inset panel: s(0) ¼21. The horizontal lines correspond to the data shown in the main panel. (b) Mean conditional fixation time (in
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environment. The fixation time is small for pþ . p2 when the

environment is found mostly in the coordination game, and

large when the environment is mostly in the coexistence state.

Validity of the theoretical approach. As shown in both panels

of figure 3, the theoretical predictions of equations (4.4) and

(4.8), indicated by solid lines, are in convincing agreement

with simulation data. Theoretical results from the model

with effective transition rates (§4.2) reproduce the simulation

data qualitatively. Quantitative agreement is obtained in the

limit of large switching rates, but unsurprisingly, there are

systematic deviations when switching is slow.

5.3.3. Interpretation
We now proceed and give an intuitive explanation for the

observed effects.

Mean conditional fixation time is reduced as more time is spent in
coordination environment. The behaviour of the fixation time can
intuitively be understood from the deterministic gradient of

selection of the two games (figure 2b,c). If fixation happens, it

will generally be quicker in the coordination game than in

the coexistence game [21,49]. This is due to the adverse selec-

tion bias in the coordination game at low mutant numbers

(figure 2c). The more time the system spends in this region of

adverse selection the less probable it is for the mutant to

reach fixation. Thus, if fixation happens in a coordination

game then it happens fast. In the coexistence game, on the

other hand, the direction of selection is towards the balance

point, as shown in figure 2b. The system can ‘afford’ to spend

significant time in the region of small mutant numbers and

still reach fixation eventually even after repeated excursions

throughout frequency space. There is thus no need for fixation

to occur quickly, and conditional fixation times can be long.

These observations make it plausible that the mean con-

ditional fixation time will generally decrease when less time
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is spent in the coexistence game, which is exactly what we find

in figure 3b. We have tested other choices of the parameters b
and c for which the two games are a coexistence game and a

coordination game, and we find that the behaviour of the

mean conditional fixation times is robust under these changes.

Mean conditional fixation time is largely independent of the
initial state of the environment. Systems started in the coordi-

nation environment will tend to reach extinction relatively

quickly due to initial adverse selection, unless the environment

switches to the coexistence state early on. Thus, the sample of

runs that reach fixation started from the coordination-game

environment will be dominated by runs in which the environ-

ment switches soon after the start of the run. Then we expect

that the value of the mean conditional fixation time is close

to the one obtained when starting in the coexistence game.

Dependence of fixation probability on the initial state of the
environment. The data in figure 3a show that initiating

the dynamics in the coexistence game favours fixation of the

mutants for pþ & 0:1 (when p2 ¼ 0.01 is fixed), however,

above this threshold the initial state of the environment has

relatively little effect. The reason for this is as follows. When

starting in the coordination game, selection pushes the

mutant towards extinction. Hence, fixation is more probable

if the initial state is the coexistence fitness landscape. Above

pþ ≃ 0.1, the switching process of the environment is too fast

for the initial condition to have any significant effect on the

population dynamics. It is this regime in which we expect

the effective description (§4.2) to approximate the system

well. This is indeed confirmed in figure 3, the theoretical pre-

diction of the effective theory, equation (4.10), agrees well

with our simulation results in this fast-switching region.

Behaviour of fixation probability depends on location of the
selection-balance point. If the environment is fixed to the

coexistence-game state, fixation is more probable the closer

the point of selection balance is to the fixated state (figure 4a).

The location of this balance point is approximated by i*/N ¼
1/(1þ c/b), and so the fixation probability increases as c/b is

decreased. In a fixed coordination-game environment, the

reverse is the case. The range of adverse selection is to the left

of the balance point, and so fixation is less probable the closer

the point of selection balance is to the fixated state.

For b	 c, i.e. a selection bias point close to i ¼ 0, we

therefore expect that the fixation probability will increase

the more time that is spent in the coordination-game environ-

ment, i.e. f1,s is an increasing function of the probability pþ
with which the system leaves the s ¼ þ1 state (coexistence

game). This is indeed what we find in simulations (data not

shown). For b
 c, i.e. i* close to i ¼ N, the reverse is the
case. Fixation is more probable in the coexistence game

(s ¼ þ1), and the fixation probability is hence a decreasing

function of pþ at fixed p2. Although we do not show the

data here, this is again confirmed in simulations.

For b � c the situation is less clear. The fixation probability

will be comparable in both games if the environment is frozen.

Two effects here conspire to produce a non-trivial outcome:

(i) Consider the case in which the system is mostly in the

coordination-game state, i.e. pþ 
 p�. It is plausible

that an occasional switch to a coexistence game will

make fixation more probable than in a constant coordi-

nation game. This is because the coexistence-game

environment pushes the system away from extinction

at low mutant numbers. In the regime of pþ 
 p�,

we thus expect the fixation probability to increase as

pþ is lowered. In other words, f1,s( pþ) is a decreasing

function at large pþ.

(ii) Similarly, if the system is mostly in the coexistence-game

environment ( pþ 	 p�), short periods of time in the

coordination game can make fixation more probable.

This is because selection at large mutant numbers is

directed towards fixation in the coordination game. At

pþ	 p�, we expectf1,s to be an increasing function of pþ.

These two effects taken together generate a maximum of the

fixation probability at intermediate values of pþ � p2, which

is exactly what we find in figure 3a. We would like to stress

that the effect (i) is only present provided the selection-

balance point is not too close to the extinct state. The

phenomenon discussed under (ii) is present only if the

selection-balance point is not too close to the fixated state.

If the balance point is located too close to either boundary,

the corresponding effect will be suppressed and the remain-

ing effect dominates. One then finds monotonically

increasing or decreasing dependences f1,s( pþ).

To confirm our picture, we varied the payoff parameters b
and c, and find the value of pþ that maximizes fixation

probability for a given p2¼ 0.01, as a function of b and c in

figure 4b. The point of selection balance is approximately

1/(1þ c/b) (up to system-size corrections). The presence of diag-

onal structures in figure 4b shows that the behaviour of the

fixation probability is dependent on the location of the

selection-balance point. If this point is close to the fixation state

i¼ N (b
 c, bottom-right in figure 4b), then the fixation prob-

ability is maximal for vanishing pþ. If this point is close to the

extinction state (b	 c, top-left in figure 4b), then the fixation

probability is maximal for large pþ. For intermediate locations
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of the selection-balance point (b � c) fixation is maximized at a

non-trivial combination of environment states.

The features observed in figure 3, i.e. the peak in the fix-

ation probability and shape of the mean conditional fixation

time as a function of pþ, are found to be robust when the

system size is increased. Fixation probabilities generally

decrease with system size but the observed peak becomes shar-

per. The mean conditional fixation times in a frozen coexistence

environment scale exponentially with N, whereas they scale as

the logarithm of N in the coordination environment [50]. We

observe these scalings in our system, with the mean conditional

fixation time increasing exponentially with N for small pþ, and

increasing sub-linearly with N for large pþ.
c.Interface
11:20140663
6. Mutation-selection equilibria under
fluctuating environments

6.1. Mutations and stationary distributions
We now consider systems with mutations occurring during

the dynamics. This removes the possibility of fixation and

extinction. The combination of mutation, selection and

noise can lead to non-trivial stationary states. We intro-

duce mutation by modifying the discrete-time transition

probabilities of equation (5.4) and now use

v̂þi,s ¼ (1� u)
i(N � i)

N2

fsA(i)

f
s

(i)
þ u

(N � i)2

N2
ð6:1aÞ

and v̂�i,s ¼ (1� u)
i(N � i)

N2

fsB (i)

f
s

(i)
þ u

i2

N2
, ð6:1bÞ

where u	 1 is the mutation rate. The transition probabilities

v̂þ0,s ¼ v̂�N,s ¼ u are now non-zero, and so the states i ¼ 0 and

i ¼ N are no longer absorbing.

The stationary probability ri,s of finding the system in

state (i,s) (i ¼ 0,1, . . . ,N, s [ L) is obtained as the solution

of the balance equation

ri,s ¼
X

s0 [ L

ms0!s

�
v̂þi�1,s0 ri�1,s0 þ v̂�iþ1,s0 riþ1,s0

þ(1� v̂þi,s0 � v̂þi,s0 )ri,s0 �: (6:2)

This equation is of the form ri,s ¼
P

s0
P

j R̂(j,s0)!(i,s) r j,s0 , and it

is solved by finding the eigenvector corresponding to the

eigenvalue l ¼ 1 of the linear operator R̂. In principle, this

can be done analytically, but we use standard numerical

packages to find the eigenvector. The stationary distribution

for the state of the population is found by summing over all

states of the environment, ri ¼
P

sri,s. This solution is exact.

If the environment states are long-lived, the population

will relax to the stationary state of the current environment

before the next switching event. With this, one might

expect that the overall stationary distribution is the weighted

average of the stationary distributions one would obtain in

the respective stationary environments. The stationary distri-

bution in a single fixed environment, s, can be found

explicitly as

r
(1)
i,s ¼ Gi,sr

(1)
0,s , Gi,s ¼

Yi

j¼1

v̂þj�1,s

v̂�j,s
,

r
(1)
0,s ¼ 1þ

XN

i¼1

Gi,s

 !�1

:

(6:3)
This can be derived for example from equation (6.2) assuming

that the transition matrix of the environment is diago-

nal, ms!s’ ¼ dss’, where dss’ is the Kronecker delta. The

average stationary distribution over many slow-switching

environments can then be written as

�ri ¼
X

s0 [ L

rs0r
(1)
i,s0 , (6:4)

where rs is the probability that the environment is in state s.

Alternatively, if the switching probabilities per time-step

are large one might expect the stationary distribution to be

approximated by the distribution found in a system controlled

by the effective transition rates, v̂+
i,eff. These are obtained as

described in §4.2, with suitable modifications to account for

mutation. The resulting stationary distribution is found as

ri,eff ¼ Gi,effr0,eff, Gi,eff ¼
Yi

j¼1

v̂þj�1,eff

v̂�j,eff

,

r0,eff ¼ 1þ
XN

i¼1

Gi,eff

 !�1

:

(6:5)

The distributions �ri and ri,eff are both approximations. To

evaluate the validity of the assumptions leading to these

approximations, we compute the distance

d(t) ¼ 1

2

XN

i¼0

jri � Psim
i (t)j, (6:6)

and similarly for ri,eff, where Psim
i (t) is distribution of the

population at time t obtained from simulations. To confirm

our analytical approach, we also compute the distance of

simulation data from the exact solution for ri. We allow the

system to run for a fixed time T, and we then use the time-

averaged distance, �d ¼ (2=T)
Ð T

T=2 d(t) dt to evaluate the accu-

racy of the approximations. We ignore the first half of the

time series to remove remnants of the initial condition. We

note that the time T, measured in generations, is equivalent

to NT simulation time-steps and is chosen to be long

enough such that the system relaxes to the stationary state

before measurements start at time T/2.

6.2. Results
We present results for the two-world scenario, where the

environment switches between a coexistence game and a

coordination game as described above. The stationary dis-

tribution of the environmental state is given by rs ¼þ1 ¼

p2/( pþþp2) and rs ¼21 ¼ pþ/( pþþp2).

The stationary distributions of the population for the

fixed environments (calculated using equation (6.3)) are

shown in figure 5a. In a constant coexistence game (s ¼þ1),

the stationary distribution is peaked about the point at

which the gradient of selection changes sign, and in a fixed

coordination-game environment (s ¼21) we find a distri-

bution that is strongly peaked near the i ¼ N state. The

asymmetry is due to the imbalanced payoff matrix used,

such that the basin of attraction for the i ≃ N state is much

larger than for the i ≃ 0 state. For the parameters chosen in

figure 5, the selection-balance point is at i* � 18.

For equal switching rates, pþ ¼ p2, the averaged

stationary distribution �ri lies exactly in between the two

single-environment distributions. The effective distribution

is approximately uniform in the centre of the domain, with
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a lower probability of being found close to the domain

boundaries. This reflects the fact that for equal switching

probabilities the effective game is close to neutral, but

frequent mutations push the population to the interior.

The exact solution (equation (6.2)) matches the features of

the single-environment distributions, with a peak at i ≃ N
and at the coexistence point i*. Interestingly, this solution

also predicts a peak at the i ≃ 0 state, a feature that is

not seen in the single-environment distributions, or in the

effective distribution.

As seen in the main panel of figure 5b, the exact solution

is confirmed by simulations across many orders of magnitude

of switching probabilities. Any deviations can be attributed

to incomplete equilibration of the measure used in equation

(6.6). For large switching probabilities, the effective stationary

distribution, ri,eff, matches the simulations. As expected the

effective theory becomes inaccurate for slow switching,

roughly below ps ≃ 1022, in our example. The weighted aver-

age stationary distribution, �ri, shows the opposite behaviour.

It is in reasonable agreement with simulations for slow

switching, but shows systematic deviations when the switch-

ing process is too fast for the population to react adiabatically.

This picture is further corroborated by the data shown in

the inset panels of figure 5b. The weighted average and the

effective distributions accurately predict the stationary distri-

bution obtained from simulations when the two switching

rates are very disparate, i.e. pþ 	 p� or vice versa (top-left

and bottom-right corners of the two insets). In these regions,

the environment spends most of its time in one state, so that

the model effectively reduces to the single-environment case.

Simulation data, the exact solution, and both approximations

then all collapse to the same result, the stationary distribution

obtained in a single fixed environment.

The approach based on effective transition rates (right

inset of figure 5b) is found to be accurate over a large range

of switching probabilities away from the slow-switching

scenario. Conversely, the weighted average distribution (left

inset of figure 5b) becomes increasingly accurate if the

dynamics of the environment is slow ( ps! 0).
7. Summary and conclusion
The dynamics of a population evolving under changing

environmental conditions is an important concept in the

study of bacterial populations. Previous work has focused

on deterministic analyses [5], or on an environment following

a continuous stochastic process [30]. Here, we have taken a

different route and assumed that the environment switches

between discrete states. We have developed the mathematical

formalism to describe fixation properties in a general birth–

death process in an environment fluctuating between an

arbitrary number of states. The main results of this investi-

gation are self-consistent expressions for the fixation

probability of a mutant in a fixed-size population, as well

as for the mean unconditional and conditional fixation

times. For short-lived environments, we put forward an

approximation based on effective transition probabilities.

As a specific application we discuss the fixation proper-

ties in the context of an evolutionary game in a two-world

scenario. The two states of the environment then correspond

to two different payoff matrices of the underlying games.

Simulations confirm our exact solution over a wide range of

switching probabilities. The approximation based on effective

transition probabilities is seen to reproduce simulation data

in the limit of fast switching.

Focusing on the case of switching between a coexistence

game and a coordination game we find unexpected non-

trivial behaviour of the fixation probability of a single

mutant. We observe in our analytical results and in simu-

lations that fixation can be more probable in a scenario in

which the fitness landscape switches between the two

games than in either of the two constant environments. We

provide an intuitive explanation for this effect, and we have

investigated in detail the circumstances under which this

phenomenon can occur.

Adding mutations to the dynamics removes the possibi-

lity of fixation, but introduces non-trivial stationary states.

We develop a method for the calculation of this distribu-

tion, along with approximations for long- and short-lived
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environmental states, respectively. These approximations are

shown to agree well with simulations in their respective limits.

The general theory developed here now allows further

investigation of evolutionary dynamics in time-varying

environments. It provides a first mathematical characteriz-

ation of the effects one may expect in such systems. The

closed form self-consistent solutions will help to speed up

future studies, and they may remove the need for extensive

computer simulations.

While our work is mainly mathematical, we think that

our theory can be used to interpret existing experimental

studies such as those studied by Acar et al. [6]. For some bio-

logical systems, it may be more appropriate to use constant

selection in each environment, as opposed to frequency-

dependent selection. Our example of switching between

coexistence and coordination games was chosen to illustrate

the theory. We have also seen such cases lead to unexpected

effects. We note that both types of game have been observed

in systems of experimental evolution [14,51,52]. We hope the

formalism we have developed will be useful to analyse
models closer to other biological applications, and potentially

to guide future experiments on evolutionary systems in time-

dependent environments.

On a more general level constructing a mathematical

theory of evolutionary dynamics is very much work in pro-

gress. An integral part of the evolution of microbes and

higher organisms alike is frequency-dependent selection. At

the same time, external factors determining the detailed

mechanics of selection may vary in time. In this work, we

have combined frequency-dependent selection, fluctuating

environments and stochastic dynamics in finite populations

into one model, and we have provided the analytical tools

for its analysis. This, we hope, is a contribution towards a

more complete understanding of evolutionary processes.
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