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Bacterial–fungal interactions and oral diseases

The oral cavity contains up to 700 different species of microorganisms, including both bacteria

and fungi [1]. The interactions of these communities of different organisms has become of

increasing interest, particularly with respect to cross-kingdom interactions involving fungi

and bacteria, which have been associated with severity of dental caries (tooth decay) and

mucosal infections. Here, we provide a short review of the significance and mechanisms for

the interactions between C. albicans and streptococci, the most common fungal and bacterial

organisms in the oral cavity [2–5].

Candida albicans and oral streptococci coinfections are associated with enhanced virulence

of dental caries and more severe oropharyngeal diseases (Fig 1) [6,7]. Specifically, C. albicans
partners with Streptococcus gordonii, S. oralis, and S. sanguinis to enhance bacterial coloniza-

tion and biofilm formation. In addition, C. albicans becomes more invasive, exacerbating

mucosal tissue infection and destruction [8,9]. Mixed C. albicans–bacterial infections are also

associated with denture stomatitis, the inflammation of the oral mucosa under dentures. Fur-

thermore, C. albicans–bacterial communities have been clinically found in other oral niches,

including periodontal pockets and endodontic canals [6].

C. albicans–streptococcal biofilms are an important contributor to the development of early

childhood caries that affects toddler-age children [10–12]. Severe childhood caries is a particu-

larly virulent form of caries that causes extensive and painful tooth destruction, induced by

protracted consumption of sucrose containing foods and beverages [11]. Typically, C. albicans
is usually absent on teeth of healthy, caries-free children [10]. Furthermore, C. albicans does

not interact strongly with S. mutans (a caries-causing pathogen), nor is it an efficient colonizer

of mineralized tooth enamel by itself. However, the high level of sucrose in the oral cavity

increases the physical coadhesion between the C. albicans and S. mutans as well as tooth sur-

face colonization and drastically enhances the microbial burden, aciduricity, and production

of extracellular matrix. Ultimately, the extensive mixed-kingdom and acidogenic biofilm leads

to severe tooth decay in a process that can be recapitulated in a rodent model under sugar-rich

diets [12].
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Fungal and bacterial cell surface adhesins mediate C. albicans

interactions with mitis group streptococci on mucosal surfaces

C. albicans physically interacts with mitis group streptococci (MGS) species such as S. gordonii,
S. sanguinis, and S. oralis through well-characterized cell wall surface proteins/receptors on

both organisms [6,13]. Streptococcal cell surface adhesins SspA and SspB (from the antigen I/

II polypeptide family) interact with the C. albicans surface, while ALS and HWP1 adhesins on

the fungal cell wall appear to mediate binding to MGS (Fig 2). Specifically, SspB and Als3

directly bind C. albicans and S. gordonii together through the N-terminal domain of Als3 [14].

These interactions may also involve O-mannosyl residues in Als adhesins and other cell wall

proteins, such as Sap9 [15,16].

The consequences of C. albicans–streptococcal interactions have been demonstrated in

vivo. C. albicans and S. oralis coinfection results in increased tissue invasion and heightened

mucosal inflammatory responses compared with infection by either organism alone [9]. This

latter feature appears to be due to increased induction of multiple neutrophil-activating cyto-

kines and up-regulation of TLR2-dependent inflammatory genes as well as enhanced epithe-

lial μ-calpain activity [9,17] (Fig 2).

C. albicans interacts with S. mutans exoenzymes

(glucosyltransferases) to promote interspecies biofilm formation

on tooth surface

In contrast to MGS, C. albicans does not directly bind to the cariogenic pathogen S. mutans.
Instead, glucosyltransferases (Gtfs) secreted by S. mutans promote the generation of an exten-

sive extracellular matrix in the presence of C. albicans, leading to virulent mixed biofilms

under sugar-rich conditions of severe childhood caries [18,19]. S. mutans-derived GtfB binds

avidly to the C. albicans cell surface and converts sucrose to large amounts of extracellular

polysaccharides (EPS) α-glucans on the fungal surface (Fig 2). The EPS provides bacterial

binding sites for S. mutans and concurrently allows C. albicans to bind to and colonize teeth

[12]. Consequently, the interaction between S. mutans and C. albicans is mediated by both

Fig 1. Candida–streptococcal interactions and oral diseases. A. Confocal fluorescence microscopy images of C. albicans–S. mutans mixed biofilms, illustrating

the spatial relationship between C. albicans (blue), S. mutans (green), and exopolysaccharides (red). B. Images of teeth from rats infected with S. mutans, C. albicans,
or coinfected. Black arrows indicate severe carious lesions of coinfections in which enamel is missing, which exposes underlying dentin. Such rampant caries was

absent in the animals infected by S. mutans or C. albicans alone. C. Fluorescence microscopy images of harvested mouse tongues infected with S. oralis (red, see

arrows), C. albicans (green), or both. Coinfection substantially increased bacterial–fungal biofilm accumulation, soft tissue invasion, and inflammatory response.

Original images provided by Dr. Anna Dongari-Bagtzoglou; adapted from Sobue T. and colleagues, Methods Mol Biol. 1356:137–52, 2016, with permission. EPS,

exopolysaccharides.

https://doi.org/10.1371/journal.ppat.1007342.g001
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secreted Gtfs and their glucan product. This mechanism is distinct from the more typical cell–

cell binding interactions observed between MGS, staphylococci, or bacillus and C. albicans,
although the role of Gtfs in MGS species has not been extensively studied [13].

To further understand the mechanistic basis of this “biochemical interaction,” we identified

the C. albicans surface molecules to which GtfB binds. C. albicans mutants lacking either N- or

O-linked mannans (located on the outer most layer of the fungal cell wall) showed severely

reduced GtfB binding. As a result, these mannoprotein-deficient mutants developed poor

mixed-species biofilms with S. mutans, showed reduced EPS α-glucans content, and reduced

Fig 2. Pathogenic mechanisms of C. albicans–oral streptococcal cross-kingdom interactions. Complex physical and chemical interactions (including cross-feeding

and metabolites exchange) as well as environmental and host factors govern the development of pathogenic bacterial–fungal biofilms, including spatial organization,

virulence, and drug protection/resistance. These interactions can be cooperative or competitive to mediate symbiotic, antagonistic, or synergistic relationships, often

modulated by host and environmental factors to promote the onset and amplify the severity of the disease. Host diet (dietary sugars, particularly sucrose) promote the

interactions between C. albicans and S. mutans by providing a substrate for EPS α-glucans production by streptococcal Gtfs that enhances coadhesion and bacterial–

fungal tooth colonization, stimulating cross-kingdom biofilms. This interaction enhances the carriage of the cariogenic pathogen and acid production, while the

presence of C. albicans increases EPS matrix production (via Gtf induction and fungal-derived EPS) and biofilm aciduricity, resulting in cariogenic conditions on tooth

surface. Likewise, the pathogenic impact of C. albicans interactions with MGS on mucosal surfaces is also influenced by host factors. The interactions of S. oralis with C.

albicans on mucosal surfaces cause exacerbated inflammatory responses and increased neutrophilic activity. C. albicans increase the biomass of S. oralis and this leads to

increased mucosal TLR2 expression, activating proinflammatory signaling. C. albicans and S. oralis also synergistically increase epithelial μ-calpain activity, a proteolytic

enzyme that targets E-cadherin from epithelial junctions. The bacteria influence fungal physiology by promoting hyphal formation via the Efg1 filamentation pathway

and expression of secreted aspartyl proteases, which further induces proteolytic degradation of E-cadherin, facilitating invasion and tissue destruction. Efg1; EPS,

exopolysaccharides; Gtf, glucosyltransferase; MGS, mitis group streptococci; TLR2.

https://doi.org/10.1371/journal.ppat.1007342.g002
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microbial carriage on teeth in vivo [18]. Likewise, S. mutans defective in GtfB does not yield

mixed-species biofilms with C. albicans.
In a rodent model, the sucrose-dependent partnership between C. albicans and S. mutans

synergistically enhanced bacterial–fungal carriage within plaque biofilm, leading to aggressive

onset of tooth decay with rampant carious lesions similar to those found in severe childhood

caries [12]. The potential mechanisms for severe caries have been an active subject of research,

which entails at least, in part, enhanced microbial carriage, cross-feeding metabolic interac-

tions, and the accumulation of adherent acidic biofilms on teeth facilitated by an EPS matrix

surrounding acidogenic–aciduric organisms, as reviewed recently [5,10] (Fig 2).

The role of the C. albicans master regulator Efg1 is required for

MGS mixed biofilms but not for S. mutans mixed biofilms

C. albicans Efg1 regulates key hyphae-associated biofilm effector molecules, and homozygous

efg1 deletion mutants form only rudimentary biofilms [20]. The nature of the biofilm formed

between S. mutans and C. albicans differs from single species C. albicans biofilms because dele-

tion of two transcription factors that are essential for C. albicans biofilms, Efg1 and Bcr1, does

not affect the amount of fungal cells in the mixed biofilm. This is likely due to the fact that

GtfB binds these mutants with similar afinity compared to wild types and generates robust

extracellular α-glucans matrix that allows C. albicans to coadhere and form biofilm with S.

mutans [18].

In contrast, efg1ΔΔ mutants are unable to form mixed biofilms with S. oralis [21]. Interest-

ingly, overexpression of the Efg1-regulated adhesin ALS1 partially restores C. albicans–S. oralis
biofilm formation to efg1ΔΔ, suggesting that Als1 is a key mediator of this mixed biofilm [21].

Consistent with this notion, C. albicans strains lacking either ALS1 or ALS3 also are deficient

for S. oralis mixed biofilm formation [21]. Als3 is also crucial for C. albicans–S. gordonii mixed

biofilms through a mechanism involving an interaction between Als3 and SspB [22]. However,

C. albicans strains lacking ALS3 are able to form mixed biofilms with S. mutans under sucrose-

rich conditions, showing similar levels of fungal cells as those formed with wild-type strains

[18]. Thus, the interactions of C. albicans with oral streptococci vary significantly with the spe-

cific species of bacteria. Additional studies will be needed to understand how these differences

affect the colonization and disease severity at distinct oral niches.

C. albicans–bacterial biofilm relationship is critically dependent on

EPS matrix and chemical interactions

The EPS matrix critically influences the relationship between C. albicans and oral streptococci

within the biofilm [23]. The matrix provides a scaffold for both surface adhesion and cell-to-

cell cohesion while at the same time establishing chemical and nutrient gradients by modulat-

ing diffusion [5]. Like most microbes, the matrix of Candida species is comprised of the pro-

tein, carbohydrate, nucleic acid, and lipids. In particular, a complex containing mannan and

β-glucan constituents sequesters antifungal drugs to protect Candida cells from their effects

[23]. Nearly a dozen C. albicans proteins involved in polysaccharide synthesis and modifica-

tion (e.g., Phr1, Bgl2, Alg11, and Mnn11) are indispensable for production of the matrix [23].

In mixed biofilms, the fungal derived biofilm matrix also protects some prokaryotic pathogens

(e.g., Staphylococcus aureus and Escherichia coli) against antibacterial drugs [24]. Similarly, S.

mutans-derived α-glucans surrounding fungal cells form an additional “drug-trapping matrix”

that prevents uptake of the antifungal fluconazole, reducing killing efficacy [25].

Complex signaling, cross-feeding, and metabolic interactions within the biofilm shape its

microenvironment and lead to pathogenic synergies that modulate the onset and severity of
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oral diseases (Fig 2). A range of signaling/quorum sensing (QS) molecules and other factors

appear to facilitate these synergies, including AI-2, peptidoglycan fragments, exoenzymes, and

hydrogen peroxide (H2O2) [2–4,13,26]. For example, nutrient byproducts as well as AI-2 sig-

naling and H2O2 from S. gordonii stimulate C. albicans hyphal development within the biofilm

[26], while S. oralis presence also activates expression of fungal aspartyl proteases [13]. Con-

versely, C. albicans can promote streptococcal proliferation by providing growth-stimulating

factors and reducing oxygen tension [13,26]. The impact of C. albicans and MGS synergism on

the host–pathogen interaction has been demonstrated in vivo whereby mixed biofilm (with S.

oralis) growth enhances neutrophil infiltration, leading to increased severity of soft tissue

lesions [9,17] (Fig 2). This is distinct from single-species C. albicans biofilms, which are nota-

ble for inhibition of neutrophil influx and subsequent function.

A further example of the consequences of the EPS matrix and chemical interactions has been

observed between C. albicans and S. mutans. S. mutans converts sucrose to glucose that can be

more readily metabolized by C. albicans [27,28, 29]. Importantly, C. albicans activates S. mutans
competence [28], virulence genes, and GtfB production via QS molecules such as farnesol [27].

Furthermore, C. albicans secretes its own matrix products such as β-glucan and creates an EPS-

producing loop within the S. mutans mixed biofilm [12]. As a result, the organisms enhance the

carriage of cariogenic pathogens, biofilm accumulation, and acid production, promoting a

localized and persistent acidogenic–aciduric microenvironment that potentiates demineraliza-

tion of tooth enamel and may explain the synergistic enhancement of caries severity.

Although the cross-kingdom synergies are involved in the pathogenesis of both mucosal

and dental diseases, the interactions can also repress functions of the member species to modu-

late population growth, biofilm structure, community changes, and spatial organization [5]

(Fig 2). For example, S. mutans-derived metabolites such as mutanobactin A and fatty acid sig-

naling trans-2-decenoic acid inhibit C. albicans hyphal formation [30,31]. These effects, in

addition to the generation of a hyphae-inhibiting, acidic environment, can explain why yeast

forms are associated with S. mutans clusters in the deeper layers of mixed biofilms [12]. Fur-

thermore, competence-stimulating peptides released by S. mutans [32] and S. gordonii [33]

also disrupt hyphal formation in C. albicans cells. These hyphae-inhibiting effects are consis-

tent with the fact that the Efg1 filamentation pathway is not required for mixed C. albicans–S.

mutans biofilm growth and cariogenicity as noted above, suggesting that in contrast to muco-

sal candidiasis, filamentation may not be a virulence-promoting phenotype in mineralized tis-

sue infections such as dental caries. Paradoxically, farnesol produced by C. albicans, which

stimulates S. mutans growth and gtfB expression at low concentrations (25–50 μM), disrupts

bacterial growth at high concentrations (>100 μM) [27]. Therefore, a tightly regulated cooper-

ative and antagonistic balance through stimulus-inhibition mechanisms appears to mediate

bacterial–fungal coexistence and survival within biofilms, which can become synergistic when

conditions are conducive for disease (Fig 2).

In summary, the polymicrobial nature of biofilm-associated oral diseases has been increas-

ingly recognized. Clinical data, together with in vivo studies, provide compelling evidence of

the importance of cross-kingdom interactions in the severity of mucosal diseases and dental

caries. Complex cell–cell and cell–EPS matrix interactions, spatial organization, and chemical/

metabolic factors modulate biofilm development and virulence. These fungal–bacterial inter-

actions are facilitated by host factors (immunity, diet, and salivary function) to modify the

local microenvironment and promote oral diseases. Elucidating how bacterial–fungal interac-

tions occur spatiotemporally (cooperative, competitive, or both simultaneously) to mediate

symbiotic, antagonistic, or synergistic states may shed new light into the pathogenic mecha-

nisms and identify more effective therapeutic targets. Since cross-kingdom biofilms exist

throughout the gastrointestinal tract, principles and molecules that emerge from these studies
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may lead to novel approaches to prevent and eradicate other intractable polymicrobial biofilms

at various clinical niches.
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