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Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic
criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high
fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for
thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity
of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be
susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship
between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important
pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the
aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced
platelet hyperactivation.

1. Introduction

Definition of Metabolic Syndrome (MetS) has been a matter
of intense scientific output over the last decades, reaching a
consensus by The National Cholesterol Education Program–
Adult Treatment Panel (NCEP ATP III) to include five major
features: visceral obesity, hypertension, dyslipidemia, insulin
resistance, and high fasting glucose levels. Diagnostic criteria
for MetS must include at least three out of these five features
[1]. MetS has become a worldwide epidemic, alongside with
a high socioeconomic cost whose prevalence widely ranges
from 8% to 43% in men and 7% to 56% in women [2–
4]. Importantly, the presence of MetS is associated with
a substantial 5-fold increased risk of developing diabetes
mellitus (DM) and a 2-fold increase in the development of
cardiovascular disease, concurring for higher likelihood to
suffer ischemic events [2–5]. In fact, MetS is an independent
risk factor for cardiovascular disease (CVD), leading patients

to exhibit a prothrombotic and proinflammatory status [6, 7].
As a long-term outcome, MetS individuals tend to develop
atherosclerotic plaque as a chronic inflammatory process
characterized by increased levels of inflammatory mark-
ers, such as tumor necrosis factor 𝛼, interleukin-6, leptin,
angiotensin II, and plasminogen activator factor 1, all of them
capital prothrombotic factors [6, 7].

Besides increased inflammatory markers, the prothrom-
botic state in MetS is mainly caused by endothelial dysfunc-
tion and platelet hyperactivity. Both lipotoxicity and insulin
resistance contribute to increased oxidative stress (OxS) in
the endothelium, leading to enhanced production of reactive
oxygen species (ROS) by various isoforms of NADPH oxi-
dase (Nox) and reduced nitric oxide (NO) production and
bioavailability, consequent to lower expression and/or uncou-
pling of endothelial nitric oxide synthase (eNOS) as well
as increased reactivity with superoxide (O2

∙−) [8]. Platelets
are key players involved in pathologic thrombosis through
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increased adhesion to the compromised endothelium, being
also affected by the increased OxS present in MetS [9, 10].
It has been shown that MetS subjects have increased mean
platelet volume, an independent predictor of vascular events
[11]. Moreover, there is an increase of proaggregatory and
prothrombotic mediators such as thromboxane A2(TxA2)
and adhesion molecules such as P-selectin, while inhibitory
components, like NO, are decreased [12]. Overall, there is
an increase in prothrombotic factors with a concomitant
decrease in inhibitory components in both endothelium and
platelets that concur for increased CVD in MetS.

The Protein Disulfide Isomerase (PDI) is a family of thiol
isomerases originally found in the endoplasmic reticulum
(ER) that were later discovered in the cytosol and surface of
endothelial cells and platelets, among others [13, 14].Themost
abundant and physiologically relevant member is PDIA1,
the product of the P4HB gene, with a molecular weight of
57,000Da and five subunits: four thioredoxin-like domains
(a-b-b󸀠-a󸀠), one C-terminal extension domain, besides one x-
linker sequence between b󸀠 and a󸀠 [15, 16]. PDIA1 is also an
important regulator of thrombus formation, rapidly binding
to 𝛽3 integrins on the endothelium upon injury [17]. In
platelets,membrane PDImembers, such as PDIA1, ERP5, and
ERP57, are known for their paramount importance in platelet
aggregation through the isomerization of a disulfide bond
in the 𝛼2b𝛽3 integrin, which is the final convergent pathway
in virtually all mechanisms of platelet aggregation [18]. In
addition, platelet surface PDI participates in platelet adhesion
through a close interaction with collagen receptor 𝛼2𝛽1 [19],
GP1b𝛼 [20], vitronectin [21], and thrombospondin 1 [22].
Despite the already established importance of PDI proteins,
precise mechanisms through which surface thiol isomerases
interact with integrins and other plateletmembrane receptors
are still unclear. Since MetS involves many risk factors
associated to changes in the coagulation pathway, the aim of
this review is to analyze the potential role of platelet surface
PDIA1, henceforth referred as PDI, as a central player in
platelet hyperactivation under MetS.

2. Metabolic Syndrome and Vascular
Oxidative Stress

ROS, specially O2
∙− and hydrogen peroxide (H2O2), are

ubiquitous oxidants of moderate reactivity and brief half-
life found in virtually all biological systems as byproducts
of oxygen metabolism [23]. At low levels, ROS are key
players in many biochemical processes, such as signaling
cascades, gene transcription, cellular growth and migration,
and apoptosis [24]. In particular at the vascular system, ROS
participate in controlling vasodilation and platelet adher-
ence/aggregation [23]. However, when ROS generation is
excessive and not compartmentalized, exceeding endogenous
antioxidant capacity, cells and tissues progress to OxS, which
is considered an early event in the pathophysiology of most
chronic noncommunicable diseases associated to MetS [25,
26].

The vascular OxS observed in MetS leads to a change
in plasma redox state, inciting a prooxidant environment

due to the imbalance of two central thiol/disulfide cou-
ples, glutathione/glutathione disulfide (GSH/GSSG), and cys-
teine/cystine (Cys/CySS) [25, 27].The reduced partners (GSH
or Cys) help in maintaining the thiol/disulfide redox state in
proteins, as well as the redox state of ascorbate and vitamin
E in their reduced healthy forms by their participation in
peroxides removal. Under prooxidant conditions, GSH levels
decline in both intracellular and extracellular environment
of vascular cells in parallel with an increase in GSSG. Thus,
measurement of reduced and oxidized products, as well as
their ratios, can provide a useful indicator of OxS in human
plasma [25]. Several thiol-containing proteins at the surface
of vascular cells, such as thioredoxin and its relatives from
PDI family, in response to variable concentrations of ROS,
alter the redox state of critical thiols that leads to ROS-
driven cellular activation [28]. Noteworthy, recent reports
have corroborated the impact of MetS on plasma redox state,
with particular emphasis on the assessment of redox status
as a tool to predict different outcomes in prediabetic patients
[29, 30].

The phagocytic and nonphagocytic isoforms of Noxes
are the primary source of ROS and have been consistently
implicated in different vascular pathologies [31, 32]. Nox
complexes are composed of multiple subunits comprising
catalytic (Nox 1–5) and regulatory (p22phox, p40phox, p47phox,
p67phox, Noxo 1, Noxa 1, and the small GTPases Rac 1 and
Rac 2) components, whose expression may vary according
to the cell type [33]. Nox4 is associated to cell differentiation
of vascular smooth muscle cells [34], whereas Nox1 supports
cellular proliferation and migration [35]. Endothelial cells
express four Nox isoforms (Nox1, Nox2, Nox4, and Nox5),
from which Nox4 is the most highly expressed, and promote
H2O2-derived endothelium preservative actions [36, 37]. On
the other hand, expression levels of the other isoforms have
been directly implicated in endothelial dysfunction [38].

In platelets, Nox2 was identified by the localization of
membrane p22phox, cytosolic p47phox subunits, and more
recently the catalytic gp91phox subunit [39, 40]. Similarly,
Nox1 is also expressed in human platelets, although in a
lesser extent when compared to Nox2 [41]. The same study
failed to localize Nox4 and Nox5 in platelets, even though
further studies are needed to address this matter. Since
platelets express Nox1 andNox2, Delaney and colleagues [42]
compared the differential roles of these enzymes in platelet
activation and thrombosis. They showed that Nox2, but not
Nox1, is required for thrombus formation, whereas none of
the enzymes altered tail bleeding time in mice, suggesting
further studies should focus onwhetherNox-dependent ROS
generation may become a potential antithrombotic target
without significant bleeding complications [42].

In addition to Nox enzymes, there are different nonen-
zymatic and enzymatic pathways involved in the forma-
tion of ROS in vascular milieu, among them, spontaneous
dysmutation of oxygen, leakage of the mitochondrial elec-
tron transport chain, myeloperoxidase, xanthine oxidase,
cyclooxygenases, and uncoupledNOS [43]. Virtually all these
mechanisms may concur for MetS-associated cellular dam-
age, which leads to increased formation of advanced glycation
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end products (AGE) and its receptors, hexosamine pathway
overactivity, increased polyol pathway flux, activation of
protein kinase C isoforms [44, 45], lipotoxicity [46], and
increased inflammatory profile [47]. Therefore, endothelial
cells and platelets fromMetS patients suffer from this marked
increase in ROS generation, playing a pivotal role in the
macro- and microvascular complications of this syndrome.

3. Metabolic Syndrome and
Platelet Hyperactivity

The damage caused by OxS has been shown to increase
platelet aggregation in MetS subjects and decrease aspirin
response in DM [6, 10, 48]. These can be explained by
several mechanisms: increased platelet secretion of TxA2 and
prostaglandins (PG), decreased expression of NOS in both
endothelium and platelets in addition to a decreased pro-
duction of prostacyclin (PGI2) at the endothelium; decreased
platelet response to NO and platelet insulin resistance.
Among these, the development of insulin resistance and
the impairment of NO homeostasis are arguably the most
substantial pathways involved in platelet hyperactivation in
MetS.

3.1. Thromboxane and F2-Isoprostanes Overproduction in
Platelets. TxA2 is one of the byproducts of arachidonic acid
(AA) oxidation by prostaglandin endoperoxide H2synthase-
1 (PGHS-1), also known as cyclooxygenase-1 (COX-1), in
platelets [49]. TxA2 is synthesized by platelets and acts as an
agonist in platelet aggregation and activation, through the
ligation of its own G protein-coupled receptor, leading to
increased 𝛼2b𝛽3 expression, the latter being blocked by the
COX-inhibitor aspirin [50]. Besides TxA2, F2-isoprostanes
are also derived from AA oxidation, stimulating platelet
aggregation and complementingTxA2 actions. Specifically, 8-
iso-PGF2𝛼 is secreted by platelets upon stimulus, enhancing
platelet activation and adhesive reactions to other agonists at
low concentrations, through interaction with thromboxane
receptor [51, 52]. Noteworthy, urinary secretion of 8-iso-
PGF2𝛼 is also considered a clinical marker of platelet activity
[52], which has been found to be increased in obese women
[53].

Increased platelet ROS formation in MetS overactivates
plateletNox2 partly through oxidized low-density lipoprotein
(oxLDL) ligation of platelet CD36 [54], causing an increase in
cytosolic peroxide tone, that is, increased peroxynitrite gen-
eration, that subsequently stimulates COX-1 activity [49, 55].
This setting enhances TxA2 and 8-iso-PGF2𝛼 levels through
lipid peroxidation and redox-catalyzed conversion of AA into
F2-isoprostanes [52]. Interestingly, it seems platelet Nox2
is an important regulator of 8-iso-PGF2𝛼, since chemical
or hereditary inhibition of Nox2 strongly decreases 8-iso-
PGF2𝛼 generation in platelets [39]. Since COX-1 activity
is based in the continuous generation of a lipid-derived
radical, besides the reductant environment of the platelet,
TxA2 pathway is continuously interrupted and requires a
permanent reactivation by peroxides [49]. Therefore, OxS
can exacerbate platelet aggregation in MetS by changing the

intracellular peroxide andperoxynitrite levels, culminating in
TxA2 and F2-isoprostanes overproduction, a mechanism at
least partially regulated by Nox2.

3.2. Dysfunctional NO Effects in Platelets. NO is a potent
vasodilator and antiplatelet mediator whose bioavailability is
inversely correlated with cardiovascular risk [56–59]. Under
normal conditions, NO derived from endothelial and platelet
NOS diffuses toward circulating platelets in order to activate
guanylate cyclase (GC), thus augmenting cyclic guanosine
monophosphate (cGMP) levels. Increased levels of cGMP as
well as cyclic adenosine monophosphate (cAMP) induce the
phosphorylation of vasodilator-stimulated phosphoprotein
(VASP) that will inactivate integrin 𝛼2b𝛽3 [60–62]. NO also
decreases intracellular Ca2+ levels [63], inhibits thromboxane
receptors in platelets [64], and diminishes platelet recruit-
ment in thrombus formation [65]. Furthermore, in vascular
smooth muscle cells, NO is a potent vasodilator that reduces
intracellular Ca2+ levels by the abovementioned mechanisms
[66].

However, in the context of increased OxS induced by
MetS or aging, intraplatelet ROS overproduction decreases
NO bioavailability by forming reactive nitrogen species
(RNS), such as peroxynitrite, leading to platelet hyperac-
tivation [61, 67]. Of note, peroxynitrite induces platelet
aggregation with increased intracellular Ca2+ concentration
[68], while it also oxidizes several proteins that blunt NOS
and reduce platelet antioxidant capacity [58, 69]. Platelet
NOS was found to be downregulated in MetS patients, which
could partially explain the decreased NO production in
these subjects when compared to healthy ones [70]. Besides
compromised NO bioavailability, platelets from patients with
unstable coronary syndrome showed impaired antiplatelet
response to the NO donor sodium nitroprusside, suggesting
a platelet NO resistance that could be associated to increased
OxS [71].Thus, OxS causes not only a decrease in platelet NO
bioavailability, but also a dysfunctional response to its action.

3.3. Dysfunctional Insulin Effects in Platelets. Since the dis-
covery of insulin receptors in human platelets, insulin sig-
naling has been considered an important regulator of its
function. Hajek and colleagues were the first to demonstrate
that platelets possess insulin receptors, with a density of
roughly 500 receptors/cell, comparable to other insulin-
sensitive cell types [72]. Physiologically, insulin binds to its
membrane receptor, provoking the autophosphorylation of
its 𝛽-chain and activating the classical insulin’s signaling
pathway [73]. In fact, it has been shown that insulin inhibits
platelet aggregation in healthy nonobese subjects [74, 75],
by a mechanism involving inhibition of tissue factor (TF)
and modulation of plasminogen activator inhibitor-1 (PAI-
1) concentrations [69]. Moreover, other groups reported that
insulin decreases intraplatelet Ca2+ content [76] and reduces
platelets’ response to agonists possibly due to the activation
of eNOS [77] and sensitization of platelets to the inhibitory
effects of NO [12, 78].

Similar to NO dysfunctional effects in MetS, it has been
shown that obese DM subjects blunted insulin’s antiplatelet
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Figure 1: Reactions catalyzed by PDI and possible unbalance in oxidative stress. In (a), PDI catalyzes reduction of a disulfide bond to a dithiol
through an attack from its thiolate anion located in Cys53 or Cys397, whereas in (b) shows PDI oxidizing a dithiol into a disulfide bond. In (c),
PDI isomerizes a disulfide bond in the same molecule. These reactions are expected to be increased in OxS, since the reduction of disulfide
bonds has been shown to promote platelet aggregation and isomerization is an essential step towards 𝛼2b𝛽3 activation [18]. In (d), PDI reacts
with NO to promote transnitrosation, shifting NO from one molecule to another or within the same molecule. It should be noted that PDI
might also catalyze denitrosation, releasing NO from S-nitrosothiols. This reaction is expected to be decreased in oxidative stress mainly due
to the decreased NO bioavailability.

effects, confirming that human platelets can undergo insulin
resistance. Insulin resistance is defined by the lack of insulin’s
actions in platelets, which downregulates IRS-1/Akt pathway,
culminating in elevated intracellular Ca2+ content and proag-
gregatory mediators. In fact, platelets from diabetic patients
exhibit faster and higher aggregation when compared to
healthy ones [69, 79]. Moreover, insulin resistance augments
intraplatelet synthesis of PAI-1 and secretion of thromboxane
metabolites, thus creating a proaggregatory environment
[69]. Finally, there is increased thrombin and fibrin genera-
tion, with a prothrombotic fibrin clot phenotype in diabetic
patients [80]. Thus, platelet insulin resistance is one of the
main contributors to OxS-derived platelet hyperactivation in
MetS, even though there is no pathophysiological model to
explain how platelets become insulin resistant.

4. Protein Disulfide Isomerase and Platelet
Hyperactivation in MetS

PDI is an ubiquitous chaperone, structurally divided in five
subunits: four thioredoxin-like domains (a-b-b󸀠-a󸀠) and one
C-terminal extension domain, besides one x-linker sequence
between b󸀠 and a󸀠 [15, 16]. Among these, its catalytic redox
motif CGHC is present in both a and a󸀠 domains in a
constant balance between disulfide and dithiol forms. These
CGHC motives confer PDI its ability to catalyze oxidation,
reduction, and isomerization reactions (Figure 1), through
redox exchanges apparently guided by a trial and error
process [16]. Even though containing a C-terminal KDEL
ER-retention sequence, PDI is also found in cytosol and
surface membrane of numerous cell types, including platelets
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[14]. Interestingly, besides surface membrane, platelet PDI
was localized in the sarco-/endoplasmic reticulum, being
mobilized to the surface during platelet activation through a
mechanism requiring actin polymerization [81]. Important to
this review, we refer specifically to platelet surface PDI.

In platelets, PDI is known for its paramount impor-
tance in platelet aggregation through the isomerization of
a disulfide bond in the 𝛼2b𝛽3 integrin [18]. Such integrin
is considered the most important component and final
convergent pathway in virtually all mechanisms of platelet
aggregation [18]. In fact, anti-PDI antibody inhibits platelet
aggregation [82], whereas the addition of reduced PDI prior
to agonists enhances maximum aggregation [83]. Of note, it
has been recently showed that the C-terminal CGHC motif
of PDI is essential for its function in thrombus formation and
platelet aggregation [83]. Moreover, PDI is also implicated
in the function of other integrins, such as the collagen
receptor 𝛼2𝛽1[19] and the von Willebrand factor receptor
glycoprotein 1b𝛼 [20], even though the precise mechanism of
such interactions is unclear. Overall, PDI is considered a pro-
thrombotic enzyme, directly implicated in platelet activation,
aggregation, and adhesion.

Strikingly, PDI seems to be related to platelet insulin
resistance and consequent hyperactivity in OxS induced by
MetS. Contrasting with insulin’s TF inhibition, PDI has been
described as an essential component of TF activation. A
proposed working model states that reduced PDI, secreted
by activated platelets, reacts with low procoagulant activity
TF to yield a TF with high procoagulant activity through
the formation of a disulfide bond between Cys186 and Cys209
residues on TF molecule. Additionally, PDI may promote
fibrin generation [84].Overall, this suggests thatwhile insulin
inhibits TF activation, PDI works on the opposite side by
augmenting TF procoagulant activity and increasing fibrin
generation upon injury. Nonetheless, insulin resistance and
PDI seem to exert similar effects on platelet activation. Even
though no study has ever demonstrated whether PDI can
desensitize platelet’s insulin receptors, the likewise effects of
insulin resistance and PDI on platelet function could lead to
a possible connection between these two factors.

A plausible hypothesis is that PDI’s procoagulant reac-
tions could be increased in insulin resistance and OxS in
detriment of decreased insulin activity or even that insulin
resistance could be, at least in part, accounted for increased
PDI activity. This is supported by the well-characterized
in vitro reaction between PDI and insulin, where the first
reduces a disulfide bond in the latter, causing the precipitation
of insulin’s 𝛽-chain [85]. In vivo, it has been reported that DM
patients release more platelet-derived microparticles (pMPs)
[86]. Importantly, pMPs contain catalytically active PDI,
and DM subjects have increased levels of PDI-containing
pMPs [87]. In fact, plasma samples from DM patients
present roughly 50% more pMPs than healthy subjects, also
exhibiting 60% more PDI and 70% more PDI activity [87].
Noteworthy, thesemicroparticles were able to catalyze insulin
disulfide reduction, abrogating insulin’s activity, as shown by
loss of Akt phosphorylation in 3T3-L1 cells [87]. Therefore, it
is reasonable to suggest that the increased PDI secretion from
DM platelets reduces insulin’s bioavailability, contributing to

the lack of insulin’s action found in MetS platelets (Figure 2).
Nonetheless, it should be stressed that further studies are
needed to address whether PDI is an important cue in MetS-
induced platelet hyperactivity, specifically if secreted platelet
PDI is able to desensitize insulin receptor in various cell types.

PDI is also involved in platelet NO homeostasis [88],
providing evidence for a paradoxical effect of PDI in platelet
activation. Previous studies have shown that PDI acts as an
NO carrier through vascular cells by transnitrosation reac-
tions, exchanging the nitrosonium ions between cysteines
(Figure 1(d)) [89, 90]. Likewise, it was also shown that platelet
PDI denitrosates S-nitrosothiols (RSNOs), thus releasing NO
and increasing its bioavailability [91].Moreover, RSNOs seem
to be denitrosated by the same CGHC active site that gives
PDI its proaggregatory properties [83, 91]. These findings
were further supported by Bell et al. [92] that showed PDI
is implicated in a wide range of NO-related signals and
not only with RSNOs, as previously thought. However, NO
can also attack PDI in an S-nitrosylation reaction, which
transfers NO to critical cysteines in CGHC active sites. Such
reaction inhibits PDI isomerization and chaperone activities
by roughly 50%, which could in turn compromise the
aforementioned mechanisms of platelet aggregation through
𝛼2b𝛽3 [93]. Despite acting as a NO donor, PDI paradoxically
inhibits NO effects in vascular smooth cells by a thiol-
disulfide exchange between PDI’s CGHC active site and the 𝛼
or 𝛽 domains of soluble GC [94, 95]. Therefore, platelet PDI
improves NO bioavailability, acts as an NO carrier, while it
can also be inhibited byNO itself, whereas in vascular smooth
cells PDI abrogates NO effects.

Nevertheless, it is important to notice that the above-
mentioned studies took place under physiological condi-
tions and the interaction between PDI and NO was not
tested under increased OxS, nor was it tested in MetS
subjects. One could hypothesize that increased ROS produc-
tion, causing cellular damage and increased OxS, coupled
with alterations in plasma GSH/GSSG and Cys/CySS could
interfere with PDI’s denitrosation activity or even revert
its effect. Additionally, decreased NO bioavailability due
to peroxynitrite formation leads to lower extents of PDI
reacting with available NO and/or less NO inhibiting PDI
isomerase activity, which would shift the enzyme’s activity
to proaggregatory pathways (Figure 2). These hypotheses
are based on the well-established decrease of NO bioavail-
ability in MetS (detailed in Section 3.2) and should be
addressed in future studies, since dysfunctional NO effect
on platelets is an important cue to better understand platelet
hyperactivity. Nonetheless, studies are needed to investi-
gate whether there is a link between PDI and decreased
NO bioavailability or diminished platelet NO response,
given that this protein is of capital importance to platelet
function.

Last but not least, it has been suggested that PDI act
as a modulator of distinct members of Nox enzymes in the
vascular system [96].There is a close association between PDI
and Nox1 [96–98], phagocytic Nox2 [99, 100], and Nox4 [97,
101], which has been demonstrated through biochemical and
molecular approaches of gene silencing and overexpression.
Specifically to Nox2, PDI regulates its function possibly
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Figure 2: PDI participates inmechanisms of platelet hyperactivation induced bymetabolic syndrome. In (a), PDI promotes the procoagulant
activity of tissue factor (TF) through the formation of a disulfide bond between TF Cys186 and Cys209. In (b), PDI inhibits insulin’s action
by reducing a disulfide bond that precipitates insulin’s 𝛽-chain, preventing insulin’s inhibitory activity upon TF and insulin’s intracellular
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peroxynitrite that will inhibit nitric oxide synthase (NOS) or induce thromboxane (e.g., A2) generation through phospholipase A2 (PLA2) and
subsequent COX-derived arachidonic acid (AA) plateletmetabolism. (c) PDI promotes the isomerization of a disulfide bond in𝛼2b𝛽3 integrin.
Finally, in (d), PDI has a paradoxical effect in platelet aggregation, acting as a nitric oxide (NO) carrier and releaser through transnitrosation
and denitrosation reactions of S-nitrosothiols (RSNOs). Arrows in red indicate overactivated mechanisms.

through mechanisms involving thiol groups on its various
subunits and therefore contribute to ROS generation [96].
Early studies have found increased protein expression and
activity of Nox2 subunits p22phox and gp91phox in pMPs from
septic patients [102], which were later demonstrated also to
present higher levels of PDI, as well [103]. Even though there
is no study addressing such interaction in platelets fromMetS
patients, it is plausible to infer that PDI might also regulate
Nox2 activity in these cells, further contributing for OxS-
driven NOS uncoupling, thromboxane generation as well as
insulin resistance.

5. Conclusions

MetS increases cardiovascular risk and mortality, being con-
sidered a worldwide epidemic. Among the cardiovascular
outcomes implicated in MetS, platelet hyperactivation plays

a pivotal role in morbidity and mortality. At the same time,
PDI is an important regulator of platelet function. However,
to the best of our knowledge, no study has investigated
the likely contribution of PDI in MetS-induced platelet
hyperactivity, nor has it ever been proposed. Therefore, we
propose that PDI could be a potential culprit of MetS-
induced platelet hyperactivity, possibly through a deficient
PDI denitrosation activity, decreased PDI S-nitrosylation
and/or less PDI needed for transnitrosation reactions, an
increase in TF activation, and insulin resistance caused by
increased quantity and/or activity of secreted platelet PDI.
Novel original studies are needed to corroborate or reject this
hypothesis.
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