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ABSTRACT

Following DNA damage, mRNA levels decrease,
reflecting a coordinated interaction of the DNA
repair, transcription and RNA processing machin-
eries. In this study, we provide evidence that
transcription and polyadenylation of mRNA precur-
sors are both affected in vivo by UV treatment.
We next show that the polyadenylation factor CstF,
plays a direct role in the DNA damage response.
Cells with reduced levels of CstF display decreased
viability following UV treatment, reduced ability
to ubiquitinate RNA polymerase II (RNAP II), and
defects in repair of DNA damage. Furthermore,
we show that CstF, RNAP II and BARD1 are all
found at sites of repaired DNA. Our results indicate
that CstF plays an active role in the response
to DNA damage, providing a link between
transcription-coupled RNA processing and DNA
repair.

INTRODUCTION

The cellular response to DNA damage involves changes in
the properties of a number of nuclear proteins, resulting in
coordinated control of gene expression and DNA repair.
One example is provided by the transient decrease in
mRNA levels following UV irradiation (1,2). Although
the mechanism underlying this response is still unresolved,
it has been suggested that the UV-induced inhibition of
transcription, reflecting turnover of the RNAP II largest
subunit (RNAP II LS), is responsible for the decrease (3).
This indeed is likely a significant part of the mechanism.
However, those studies have not considered the important
effect of RNA processing on mRNA levels. Indeed, it has
been shown that processing of mRNA precursors, and
specifically 30 end formation, is also affected by DNA
damage. Our previous data indicated that mRNA

polyadenylation in cell extracts is strongly but transiently
inhibited following treatment of cells with DNA damage-
inducing agents (4). These results suggested a functional
interaction between RNA processing and DNA repair.

The poly(A) tail found on almost all eukaryotic
mRNAs plays important roles in regulation of mRNA
stability, translation and RNA transport from the nucleus
(5–7). The polyadenylation reaction consists of an
endonucleolytic cleavage followed by synthesis of the
poly(A) tail (reviewed in 8–10). While a relatively simple
signal sequence in the mRNA precursor is required for
the reaction, a surprisingly large number of protein factors
are necessary for 30 processing. Cleavage stimulation
factor (CstF) is one of the essential 30 processing
factors. Genetically modified chicken B cells deficient in
CstF-64, a CstF subunit, undergo cell cycle arrest and
apoptotic death (11). Another subunit, CstF-50, has
been shown to interact with the C-terminal domain
of the RNAP II LS (CTD), likely facilitating the RNAP
II-mediated activation of 30 processing (12,13).
The stimulatory role of RNAP II in polyadenylation
highlights the link between RNA processing and
transcription. This link is supported by a variety of
chromatin immunoprecipiation experiments documenting
the association of polyadenylation factors with
transcribed genes (e.g. 14–16).

As part of our efforts to characterize links between
mRNA 30 processing and other nuclear events, we
uncovered and characterized an association between
CstF and the BRCA1/BARD1 tumor suppressor
complex. We showed that this association was mediated
by a direct interaction between CstF-50 and BARD1, and
inhibits 30 processing in vitro (17). The complex is
increased transiently in concentration following DNA
damage-inducing treatments, and results in inhibition
of 30 processing in extracts from the treated cells (4).
It has also been shown that DNA damage-induced
BARD1 phosphorylation is critical for inhibition of
polyadenylation and RNAP II LS degradation (18).
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After UV treatment, a fraction of RNAP II LS is
phosphorylated, ubiquitinated and degraded by the
proteasome (reviewed by 19,20). While UV-induced turn-
over of RNAP IIA, the form engaged at promoters,
occurs by phosphorylation and conversion to RNAP IIO,
turnover of RNAP IIO, which functions in elongation,
occurs by ubiquitination and degradation (21–26).
We have shown that degradation of RNAP IIO in fact
contributes to inhibition of 30 processing in response
to DNA damage (27), suggesting the existence of
another, possibly redundant, mechanism to explain the
inhibitory effect of UV irradiation. Significantly, both
BRCA1 and BARD1 are necessary for ubiquitination
of RNAP II LS and its turnover in response to UV
treatment (27,28).

UV-induced turnover of RNAP II is part of the
transcription-coupled repair (TCR) response (reviewed
by 19,20). TCR is a pathway that operates on certain
types of DNA damage found in the transcribed strand of
expressed genes. Accumulated evidence suggests that the
blockage of elongating RNAP II at sites of DNA damage
is an early event that initiates TCR. Levels of mRNA are
transiently decreased, and normal recovery depends on
TCR (1,2,29,30). One of the earliest indications of the
existence of TCR was the key observation that when
mammalian cells are exposed to UV light, RNA synthesis
resumes before any significant amount of UV-induced
damage is removed from the bulk of the genome by global
genome repair (31). One reason for this may be that TCR
serves to repair transcription-blocking lesions and, there-
fore, to facilitate a rapid recovery of transcription.
Transcription complexes can be extremely stable when
they are stalled at endogenous pause sites or at sites of
damage (32). It has been suggested that RNAP II stalled
at sites of DNA damage could respond in either of two
ways. If the lesion is repaired rapidly, RNAP II
re-engages and continues transcription, but if the lesion
persists, RNAP II is ubiquitinated and degraded
(26,33,34). Stalling and/or degradation of RNAP II
have another potential function: to prevent transcription
across sites of DNA repair and thereby prevent formation
of potentially deleterious proteins. However, this could
result in release of prematurely terminated transcripts,
and inhibition of the 30 processing machinery would then
function to prevent polyadenylation and stabilization of
such RNAs.

In this article, we describe studies extending the links
between 30 processing and DNA repair. We first provide
evidence that UV treatment in fact affects both transcrip-
tion and polyadenylation of nascent mRNAs in vivo. We
then show that depletion of CstF in DT40 cells enhances
sensitivity to UV treatment, reduces UV-induced ubiqui-
tination of RNAP II and, significantly, causes a delay in
TCR or a related pathway. Extending these results, we
provide evidence that following UV treatment BRCA1/
BARD1, RNAP II and CstF associate at sites of repaired
DNA. Taken together, our results indicate that CstF plays
active roles not only in 30 processing but also in DNA
repair, providing a link between transcription-coupled
RNA processing and DNA repair.

MATERIALS AND METHODS

Tissue culture methods and DNA damaging agents

HeLa cells were cultured in Dulbecco’s modified Eagles
medium (DMEM)-10% fetal bovine serum (FBS),
10mg/ml Penicillin–Streptomycin. Ninety percent conflu-
ent cultures of transiently transfected cells were exposed to
UV and harvested after the times indicated. UV doses
(20 Jm�2) were delivered in two pulses using a Stratalinker
(Stratagene). Prior to pulsing, medium was removed and
replaced immediately after treatment. DT40-64 cells (11)
were cultured in RPMI 1640 media supplemented with
10% FBS, 1% chicken serum and Hygromycin B
100 mg/ml. DT40 cells were grown in the presence or
absence of 10 mg/ml of tet as indicated.

Plasmids expressing actin

The human b-actin cDNA was amplified from a cDNA
library using a sense primer which contains the coding
sequence of HA-flu epitope next to a BamH I site, while
the antisense primer contains another BamH I site (sense
primer: 50-ATGGATCCATGTACCCATACGATGTTC
CAGATTACGCTCTTATGGATGATGATATCGCC-30

and antisense primer: 50-GAGGATCCCTAGAAGCA
TTTGCGGTGGA-3). The HA-actin was introduced
into the BamH I site of either pcDNA 3.1(+) vector
(Invitrogen) or the pAPSV-Zeo vector (35). pcDNA
3.1(+) vector has the CMV promoter and the BGH
polyadenylation signal. pAPSV-Zeo contains the chicken
b-actin promoter, the SV40 late poly(A) signal and the
zeocin resistance gene. To synthesize the ssDNA probe
used in the Southern blot analysis, the first 200 bp
sequence from human actin gene was subcloned into the
pBluescript KS(�) vector (Stratagene). This sequence
was amplified from the actin cDNA using the forward
primer (BF, 50-ATGGATCCATGGATGATGATATCG
CCGC-30), which contains a BamH I recognition
sequence, and the reverse primer (BR, 50-GCGAATTC
CAGGGTGAGGATGCCTCTCT-30), which contains an
EcoR I site. The amplified sequence was introduced into
the multiple cloning site of pBluescript generating the
pBprobe vector. The plasmid constructions were cloned
into Escherichia coli DH5a for amplification and purified
using Qiagen kits.

HeLa cell transfection with pcDNA3.1 (+)/HA actin

HeLa cells were grown in a 10-cm plate in complete
DMEM at 50% confluence. The cells were then trans-
fected with pcDNA3.1 (+)/HA-actin DNA using 30 ml
TransIT-HeLa and 20 ml of Monster reagents (Mirus)
according to the manufacturer’s protocol. After culturing
for 24 h, the cells were exposed to UV (20 Jm�2) and
harvested 30min, 2, 5 or 10 h later. Alternatively, HeLa
cells were transfected with pcDNA3.1 (+)/HA-actin
plasmid exposed to 900 J/m2 UV-C radiation to induce
CPDs. Cells were harvested after 8 and 24 h after
transfection. Cells were used for either RNA purification
or western blot analysis.
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Analysis of RNA by RT–PCR and real-time quantitative
RT-PCR (RT-qPCR)

RNA was purified from cells transfected with the pcDNA
3.1(+)/HA-b-actin vector using the RNeasy (Qiagen).
The purified RNA was used as a template to synthesize
cDNA using oligo d(T) primers and MMLV reverse
transcriptase (Promega) according to the manufacturer’s
protocol. PCR was performed in a 50 ml volume using the
RT product and primers against GAPDH and HA-actin
with Pfu DNA polymerase (Stratagene) according to the
standard protocol provided by the manufacturer. PCR
fragments were amplified from RT products using the
forward primer HA (50-CCTACGATGTTCCAGATT
ACGC-30) and the following reverse primers: A (50-G
CCCATGTCGTCCCAGTTGGTG-30), B (50-GGGAA
GCTGTAGCCGCGCTCGG-30), C (50-CCGAGGATC
CCTAGAAGCATTTT-30) and a modified oligo(dT)
primer/adapter (36). Equal volumes of the PCR products
were run on a 1% agarose gel and visualized by ethidium
bromide staining. Real-time qPCR was performed for
endogenous transcripts using the RT product described
before and commercially available primers. Reactions
were performed with the Applied Biosystems TaqMan
Gene Expression Assays on 7500 RT-PCR detection
system. The reaction was performed in triplicate in 25 ml
reaction volume containing cDNA [2–20 ng of poly(A)+
RNA purified as described before], 300 nM primers,
12.5ml Taqman MGB Gene expression system (Applied
Biosystems) and water to complete. The RT products
obtained from UV untreated cells were used as endogen-
ous control.

NE preparation and immunoblotting

NEs were prepared from harvested cells essentially as
described (4). Cells were lysed by douncing in 4ml of
10mM Tris pH 7.9, 1.5mM MgCl2, 10mM KCl, 0.5mM
dithiothreitol (DTT) and 0.5mM phenylmethylsulfonyl
fluoride (PMSF). Lysates were centrifuged for 10min at
6000g, and pellets were resuspended in 20mM Tris pH 7.9,
1.5mM MgCl2, 25% glycerol, 0.2mM EDTA, 0.5mM
DTT, 0.5mM PMSF and 0.3M NaCl. Preparations were
rocked for 30min at 48C and centrifuged for 15min at
10 000g. Supernatants were quick frozen and stored at
�808C. Sixty microgram of each NE was analyzed by
immunoblotting with antibodies against RNAP II
(H5, Covance), CSA (Santa Cruz H-266), CSB (Santa
Cruz H-300), actin (Sigma A2066) and BARD1 (Santa
Cruz, H-300).

ssDNA probe synthesis

32P-labeled single-strand DNA probes were synthesized
according to the procedure described by Ruven et al. (37).
Pure pBprobe plasmid was used as template in an
asymmetric polymerase chain reaction (30 cycles at 948C
for 1min, 548C for 2min, 728C for 3min and a last cycle
at 728C for 7min). A total 48 ng of pBprobe vector
digested with either BamH I or EcoR I was used in the
reaction as templates with 20 pmol of either BR or BF
primer, respectively.

Host cell recovery assays

HeLa cells were transfected with UV-damaged or non-
damaged pcDNA3.1 (+)/HA-actin. To induce photole-
sions, plasmid DNA was treated with 900 J/m2 UV-C
radiation with a Stratalinker (Stratagene) at room
temperature. HeLa cells were grown in a 10-cm plate in
complete DMEM at 50% confluence. Transfections were
done with TransIT-HeLa Monster reagent (Mirus)
according to the manufacturer’s protocol. After transfec-
tion, cells were incubated at 378C for the times specified.
Cells were collected; RNA was purified and analyzed by
RT-PCR as described before. Alternatively, DT40–64 cells
grown in the presence or absence of tet were transfected
with 10 mg of UV-damaged or non-damaged pAP-actin
plasmids. Plasmids were damaged as described earlier.
Twenty-four hours before the transfection, 2.4 107–3.4 107

DT40–64 cells were transferred to 10ml fresh media with
or without 10 mg/ml tet. Transfections were done
with TransIT-LT1 reagent (Mirus) according to the
manufacturer’s protocol. After transfection, cells were
incubated in fresh media with or without 10 mg/ml tet at
378C for the times indicated. Cells were collected, lysed
and plasmid DNA was purified using a Qiaprep Spin
Miniprep kit (Qiagen). The presence of plasmid in those
preparations was confirmed by PCR with the primers
used to construct the pAP-actin plasmid. The rest of
the plasmid preparation was subjected to Kpn I lineariza-
tion. Half of the linearized plasmid preparation was
treated with T4 endo V (Epicentre) and the other half
was mock treated for 1 : 30 h. The material was electro-
phoresed on 1% agarose gel at 92V. Southern blot
transfer to a charged nylon membrane and hybridization
with 32P ssDNA probe were done as described (38).
The membranes were exposed to a Phosphor Imager
Screen (Kodak) and scanned in a Molecular Dynamics
Typhoon 9410 (General Electrics). Images were
analyzed with the software ImageJ 1.37a (Wayne
Rasband, NIH, USA).

Chromatin immunoprecipitation-type assays

We performed ChIP assays using a modification of
previously published methods (39). Ninety percent con-
fluent cultures of HeLa cells were exposed to UV (two
pulses of 50 J/m2) using a Stratalinker (Stratagene),
incubated with BrdU (10mM) and FrdU (fluorodeoxy-
uridine, 1 mM) to label the repaired DNA, and then the
cells were cross-linked with formaldehyde at the stated
times. After formaldehyde treatment, NEs were prepared
from HeLa cells as described (4) and samples were
sonicated to produce soluble chromatin in the presence
of proteinase inhibitors (Sigma, P2714). To obtain DNA
fragmentation of average length of 2000 base pairs,
sonications were done two times for 20 s each. Samples
were then pre-cleared by treatment with protein-G
Sepharose 4B beads (Sigma). DNA-protein complexes
were immunoprecipitated by incubation with BrdU
monoclonal antibody (Covance) coupled to blocked
protein-G Sepharose 4B beads. Immunoprecipitations
were carried out for 3 h at 48C in 150 ml of sonication
buffer (10mM Tris pH 8.0, 1mM EDTA pH 8.0, 0.5mM
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EGTA pH 8.0, 0.5mM PMSF, 1 X protease inhibitor
cocktail). Washing was with sonication buffer. Crosslinks
were reversed by boiling the samples for 30min. The
protein complex bound to repair DNA was analyzed by
western blot.

RESULTS

UV treatment affects transcription/3’ processing in vivo

The DNA damage response requires coordination
between the gene expression and DNA repair machineries.
We showed previously that following DNA damage, 30

end formation is strongly but transiently inhibited in
extracts from the damaged cells as a result of BRCA1/
BARD1/CstF complex formation (4) and of proteasome-
mediated degradation of RNAP II (27). We provided
evidence that this complex (which we dub ‘the CBB
checkpoint’) was active between 2 and 8 h post-UV, and
proposed that this reflects a mechanism to prevent
polyadenylation of prematurely terminated RNAs that
could arise at sites of DNA damage (4).

An important question is whether DNA damage in fact
induces formation of such transcripts, and if so whether it
inhibits polyadenylation to prevent their accumulation
in vivo. As such RNAs might be heterogeneous, unstable
and therefore difficult to observe directly, we developed an
assay to determine the effect of UV-induced DNA lesions
on transcription and 30 processing of RNAs produced
from a reporter gene (Figure 1A). Briefly, the assay
involves transient transfection of HeLa cells with a
reporter plasmid, followed by analysis of expression and
polyadenylation of transcripts by oligo(dT) selection and
RT-PCR. Importantly, a collection of primers was
designed with the potential to detect RNAs with 30 ends
located throughout the length of the reporter gene.
Twenty-four hours after transfection, cells were exposed
to UV light and poly(A)+ RNA was purified at different
times after UV treatment (0min, 30min, 2, 5 and 10 h).
Expression of the HA-b-actin reporter gene was analyzed
by RT-PCR of the oligo(dT)-selected RNA using an
oligo(dT) primer for the RT reaction and PCR was done
with a common forward primer that anneals to the HA
region of the tagged gene and reverse primers derived
from different parts of the b-actin gene (Figure 1A).
As a common forward primer was used, we expected
to obtain differently sized PCR products in each
sample. Elevated intensities of the shorter species would
indicate the presence of prematurely polyadenylated forms
of HA-b-actin RNA. For comparison, we also analyzed
by RT-PCR transcripts from an endogenous gene
(GAPDH).

Our results suggest that UV treatment can indeed lead
to transient formation of truncated, polyadenylated
RNAs. A significant decrease in accumulation of full-
length HA-b-actin mRNA (HA-C) was detected as early
as 30min after UV treatment (Figure 1B, top panel).
Accumulation of this species reached its lowest levels at
2 h, and high levels were fully restored by 10 h. Similar
changes in expression of the endogenous GAPDH gene

were also observed by both RT-PCR (Figure 1C, top) and
RT-qPCR assays (Figure 1C, bottom). A 2-fold decrease
in GAPDH poly(A)+ mRNA was detected by RT-qPCR
30min after UV treatment, reaching the lowest level
(8-fold decrease) at 2 h. We also observed a transient
decrease in the shorter RT-PCR products (HA-A and
HA-B). Importantly however, the relative decrease at
30min. was significantly less for these shorter products
(�80% of the untreated control; quantitation at right in
Figure 1B) than that of the full-length mRNA (�40% of
the control), suggesting that some of these products arose
from prematurely terminated, polyadenylated transcripts.
At 2 h the longer products were almost undetectable,
consistent with the idea that their production was blocked
by activation of the CBB checkpoint. At the 5 and
10 h-time points, accumulation of the shorter products
paralleled that of the full-length mRNA, suggesting that
these RT-PCR products were derived predominantly from
full-length HA-b-actin mRNA.
Our results indicated that levels of the endogenous

GAPDH mRNA decrease somewhat after UV treatment.
It is noteworthy that several studies have addressed the
accuracy of traditional reference or housekeeping genes,
such as GAPDH, as control for error between samples
(40,41). Those studies have shown that GAPDH can show
significant variation in RNA expression in different
biological systems and in different conditions. Indeed,
Kartasova et al. (42) described a change in the expression
of GAPDH mRNA after UV irradiation.
If indeed the shorter RNAs described before resulted

from DNA damage-induced premature termination and
erroneous polyadenylation that occurs prior to activation
of the CBB checkpoint, then accumulation of these RNAs
would be expected to be greater if activation of the
checkpoint could be avoided. To test this, we utilized a
variation of the host cell reactivation (HCR) assay, which
is a transfection-based approach in which cells repair
damage localized to exogenous DNA (43,44). In our
experimental approach, the HCR assay allowed us to study
the effect of UV-induced DNA lesions on transcription and
30 processing of RNAs produced from a reporter gene.
Briefly, the assay involves transfection of HeLa cells with
a UV-treated reporter plasmid followed by analysis of
expression and polyadenylation of transcripts by oligo(dT)
selection and RT-PCR exactly as before.
Photoproducts were first introduced into the reporter

plasmid expressing HA-b-actin (Figure 1D) by exposing
the plasmid to UV light (254 nm) for various doses. We
determined the number of lesions per molecule by treating
the plasmids with a damage-specific endonuclease, T4
endonuclease V (T4 endo V), that specifically cleaves
DNA at sites of cyclobutane pyrimidine dimers
(CPDs, 45). The extent of damage was determined by
comparison of the intensity of bands corresponding to
relaxed, linear and supercoiled forms of the plasmid (45).
As T4 endo V introduces nicks where CPDs remain, we
used the appearance of full–length linear forms as
indicative of treatments inducing �1 lesion per plasmid.
Based on the results shown in Figure 1B, we used UV
doses of 900 Jm–2 per microgram of DNA to induce �3
lesions per plasmid.
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HeLa cells were transiently transfected with the
UV-treated or untreated plasmids. Preliminary results
(data not shown) suggested that expression of HA-actin
from either damaged or non-damaged plasmids was
readily detectable and similar 24 h after transfection.
Therefore, poly(A)+ RNA was purified at a very early
time (8 h) and at 24 h after transfection and expression of
the HA-b-actin gene analyzed by oligo(dT) selection and

RT-PCR as before. For comparison, we also analyzed by
RT-PCR transcripts from the endogenous GAPDH gene
for each sample. As the cells were not exposed to UV, no
changes in expression of GAPDH mRNA were observed
(Figure 1E). The results of our RT-PCR analysis support
the idea that DNA damage can indeed lead to aberrant 30

processing. Expression of full-length mRNA (HA-C) was
readily detected 8 h after transfection with the control
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Figure 1. Effect of DNA damage on reporter gene expression is transfected in HeLa cells. (A) Diagram of the RT-PCR analysis. The reporter gene
and the PCR primers are described in the diagram. (B) Analysis of the RT-PCR products generated from RNA samples obtained at different times
after UV treatment from HeLa cells transfected with the pcDNA3.1 (+)/HA actin vector. RNA samples were purified from equal numbers of cells.
Equivalent amounts of RNA, quantified by optical density at 260 nm, from each sample were used in the RT-PCR reactions, which were run for 20
cycles. Equal volumes of the PCR reactions were analyzed in agarose gels. The relative density of each PCR band was determined by the Image J
program. (C) Poly(A)+ RNA was isolated from cells after UV exposure, and RT-PCR (top panel) and real-time RT-PCR (bottom panel) were
carried out to measure expression of GAPDH. The RT products from cells not treated with UV were used as endogenous control. Data shown are
the mean� SEM from three independent experiments. (D) Preparation of damaged pcDNA3.1 (+)/HA actin vector. Plasmids were irradiated with
the UV doses indicated (lanes 4–15), treated or not treated with T4 endo V and electrophoresed on a 1% neutral agarose gel. A plasmid digested
with EcoRI was used as an indicator of the linear form (6.6 kb, lane 2). Molecular size markers are also included. Positions of the relaxed (R), linear
(L) and supercoiled (S) forms are indicated. (E) Analysis of the RT-PCR products obtained from RNA samples of transfected HeLa cells with
plasmids treated or not treated with UV. RNA samples were purified from equivalent numbers of cells. RT-PCR reactions were performed and
analyzed as in (C). (F) Analysis of truncated/polyadenylated transcripts obtained from RNA samples of transfected HeLa cells with plasmids treated
(D) or not treated (ND) with UV. The poly(A) transcripts were purified as in (E) and cDNA was synthesized using an oligo(dT) primer followed by
a PCR amplification with the common forward/HA primer together with the oligo(dT) primer/adapter. PCR products were analyzed by agarose gel
electrophoresis.
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plasmid (Figure 1E). Significantly, however, cells trans-
fected with the damaged plasmid did not produce
full-length HA-b-actin mRNA after 8 h, but shorter
polyadenylated forms (HA-A and HA-B) were
readily detected. These products likely reflect prematurely
terminated and incorrectly polyadenylated transcripts
arising specifically from the damaged plasmid. At 24 h,
the ratios of full-length (HA-C) to shorter products
(HA-A and HA-B) were similar in both cases, suggesting
that most if not all of the shorter products at this time
were amplified from the full-length cDNA, consistent with
the idea that the damaged plasmid had been fully repaired
and essentially all transcripts were now full length. It is
important to point out that as the cells were not exposed
to UV light, UV-induced inhibition of 30 processing would
not be expected to occur.

Although our results suggest that UV treatment leads to
transient formation of truncated, polyadenylated RNAs,
we could not rule out the possibility that the results could
have been generated by blocking of the RT reaction by
UV-induced lesions in the mRNA, having a stronger effect
on longer mRNAs that are more likely to acquire those
lesions. It is also possible that UV treatment induced
destabilization and decay of cellular mRNAs, and that the
TCR complexes stabilize the intermediates. This could
generate the RT-PCR patterns observed for both the
exogenous (HA-A>HA-B>HA-C) and the endogenous
genes (GAPDH).

To determine whether UV treatment indeed generates
truncated polyadenylated forms, we mapped the poly(A)
sites in HA-actin transcripts present in HeLa cells
transiently transfected with reporter plasmids under
different conditions (samples from Figure 1B and E).
For this analysis, we used an oligo(dT) primer for the
synthesis of cDNA followed by PCR amplification with
the common forward/HA primer together with the
oligo(dT) primer adapter. The results with the samples
from HeLa cells transiently transfected with the
UV-treated or untreated plasmids are shown in
Figure 1F. Similar results were obtained with samples
from HeLa cells transiently transfected with the reporter
plasmid and then exposed to UV treatment (samples
from Figure 1B). The electrophoretic analysis of the
undigested RT-PCR products showed broad bands larger
than the HA-C full-length product for both the damaged
and non-damaged samples (over 1163 nt, lanes 3–5).
These bands, which encompassed fragments from 1163 nt
to approximately 1263 nt, could have resulted from the
different size of fully extended polyadenylated forms. The
electrophoretic analysis also showed bands larger than
the HA-B product only for the UV-damaged samples
(over 628 nt, lanes 2–3). The appearance of this novel
band only in the UV-damaged samples indicates that
truncated polyadenylated forms could arise in vivo. The
identity of the RT-PCR products shown in Figure 1F
was confirmed by mapping these fragments using
restriction digestion (data not shown). The pattern of
bands in the UV-damaged samples provide evidence that
prematurely terminated, aberrantly polyadenylated
RNAs can arise from transcription of damaged DNA
templates in the absence of the CBB checkpoint.

CstF functions in recovery fromUV-treatment, in
UV-induced ubiquitination of RNAP II and in TCR

The data presented above and previously has provided
evidence that DNA damage can influence 30 end forma-
tion, via interactions involving CstF. We next wished to
investigate whether the converse might be true; i.e.
whether CstF might function in DNA repair. To this
end, we used genetically modified chicken DT40 cells in
which the only source of CstF-64 is from a tet-repressible
transgene (DT40–64, 11). These cells allow tet-dependent
depletion of CstF-64, which destabilizes the entire CstF
complex. CstF-64 became undetectable in DT40–64 cells
treated with 10 mg/ml of tet for 48 h as measured by
western blot (Figure 2B–C). While the cells were still
viable at this time, they stopped growing after 3–4 days in
tet-containing medium and started to die shortly there-
after (data not shown; 11). We used these cells first to
determine whether the presence or absence of CstF affects
the ability of the cells to recover following UV treatment.
DT40–64 cells were treated with 10 mg/ml of tet for 48 h,
exposed to UV light (20 Jm�2), and cell viability deter-
mined after 5 h, first measured simply by the appearance
of cell death, which appeared significantly enhanced in the
tet-treated cells compared to untreated controls
(Figure 2A). Cell viability was quantitated by trypan
blue staining, which showed that the cells with reduced
levels of CstF indeed displayed enhanced sensitivity to UV
treatment.
We next wished to ask whether the heightened UV

sensitivity was specific to CstF depletion, or might be a
characteristic of DT40 cells poised to undergo cell death.
To address this, DT40-ASF cells, which express the
essential splicing factor ASF/SF2 under tet control (46),
were analyzed as before (Figure 2B). Significantly,
DT40-ASF cells did not show enhanced sensitivity to
UV, supporting the idea that CstF has a specific role in
recovery from exposure to UV. As CstF is a general
polyadenylation factor that functions in the 30 processing
of many if not most mRNA precursors, it is conceivable
in principle that the effect of CstF on DNA repair might
be indirect. However, Takagaki and Manley (11) showed
that depletion of CstF in DT40–64 cells did not
detectably affect the steady-state levels of actin mRNA
and several other less abundant transcripts, at least over
time courses such as employed in our experiments. To
determine whether this might also apply to mRNAs
encoding proteins involved in DNA repair, we examined
levels of CSA and CSB proteins, which are involved in
TCR (47,48), following depletion of CstF and UV
treatment. Tet-dependent depletion of CstF for 24 h
and UV treatment did not significantly affect the
expression levels of CSA and CSB (Figure 2B), support-
ing the idea that any effect of the depletion of CstF on
DNA repair (see subsequently) is in fact due to a direct
role of this RNA processing factor in this response. As
the samples analyzed were obtained 2 h after UV
treatment, our western blot analysis did not show
the CSA-dependent degradation of CSB by the
ubiquitin-proteasome pathway that occurs 3–4 h after
UV irradiation (48).
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UV-induced degradation of RNAP IIO LS, initiated
by BRCA1/BARD1 ubiquitination, contributes to
inhibition of 30 processing (27). We next wished to
determine whether CstF functions in DNA damage-
induced ubiquitination of RNAP II, and again used
DT40–64 cells. Ubiquitination and degradation of
RNAP IIO LS was examined by western blot using
antibodies directed against the Ser 2-phosphorylated
CTD epitope of RNAP II (H5), which reflects elongating
RNAP IIO. The proteasome inhibitor MG132 was added
to the cells immediately after UV exposure to prevent
degradation of RNAP II, and cell extracts were prepared
at different times after UV/MG132 treatment. With
degradation blocked, we were able to observe apparent
ubiquitinated forms of RNAP IIO in cells expressing
normal levels of CstF (Figure 2C, lanes 2 and 3).
Importantly, cells with reduced expression levels of CstF
showed lower accumulation of ubiquitinated RNAP IIO.
This was apparent after 24 h tet treatment and essentially
complete after 48 h. In the absence of MG132,
UV-induced degradation of RNAP IIO was observed in
the presence of CstF, but strikingly, turnover was
reduced (24 h) or completely blocked (48 h) when CstF

was depleted (Figure 2D). Taken together these
results indicate that CstF is required for UV-induced
proteasomal degradation of RNAP II.

We next wished to determine the effect of reduced
levels of CstF on DNA repair, and specifically on
TCR. Although there is little direct information regard-
ing the removal of lesions from reporter genes, and
most of the published studies consider the relative level
of expression of the reporter gene to be an indicator
of the repair capacity of the host cell (43,44,47,48), we
decided to use the HCR assay and DT40–64 cells to
examine the possibility that CstF plays a direct role in
the removal of such lesions. First, we prepared a plasmid
expressing HA-b-actin using the chicken expression
vector pAPSV-Zeo (pAP-actin). UV doses up to 900
Jm–2 were used to induce photoproducts. Damaged
plasmids were linearized, treated or not treated with T4
endo V and analyzed by Southern blot with single
strand-specific DNA probes produced by asymmetric
PCR of a fragment of the b-actin gene. The autoradio-
gram (Figure 3A) shows that UV doses of 900 Jm�2

generated enough damage to be readily detected by
this assay.
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Figure 2. Cells with reduced levels of CstF show enhanced sensitivity to UV and reduced ability to ubiquitinate RNAP II. (A) DT40–64 cells were
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DT40–64 cells were next grown in the presence or
absence of tet for 24 h. Cells were then transfected with
damaged or untreated plasmid DNA and grown with tet
for another 1, 2, 4 and 8 h to allow repair to take place
before isolation of plasmid DNA (Materials and
Methods). To measure strand-specific repair, we linearized
the purified plasmids with a restriction enzyme, then
treated half the sample with T4 endo V to digest fragments
that contain unrepaired lesions. For loading/purification
control purposes, equal amounts of untreated and T4
endo V-treated plasmid DNA purified at each time point
were analyzed by Southern blot with single strand-specific
DNA probes as before (Figure 3B). The proportion of
lesions that were repaired at different time-points was

calculated by comparing T4 endo V-treated DNA with
untreated DNA of each time point and quantifying the
signal of full-length fragment by densitometry
(Figure 3C). Cells containing CstF repaired the
transcribed strand significantly more efficiently than the
non-transcribed strand at the 2 and 4 h-time points
(Figure 3B, lanes 6–7 and 8–9), indicative of activation
of a TCR pathway. This preference was considerably
reduced by 8 h, when both strands were repaired
completely. Strikingly, the preference for the transcribed
strand was not detected in the cells lacking CstF
(Figure 3B, lanes 17–18 and 19–20); the rate of repair
of the transcribed and non-transcribed strands was
essentially the same. The presence or absence of CstF
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Figure 3. CstF plays a role in DNA repair. (A) Southern blot analysis of the pAP-actin plasmids. Autoradiogram illustrating CPD damage of the
plasmid. The plasmids were treated or not treated with UV, digested with Kpn I, treated or mock-treated with T4 endo V, electrophoresed on 1%
agarose gel and transferred to nitrocellulose membrane. The transcribed and non transcribed strands of the cloned fragment of the HA-actin gene
were detected by sequential hybridization with the indicated single strand-specific DNA probes. (B) Strand-specific DNA repair of CPDs from
damaged pAP-actin plasmid purified 1, 2, 4 or 8 h after transfection from DT40-64 cells containing or lacking CstF. Purified plasmids from
transfected cells were treated as in A. Plasmids not treated with UV were used as control. The frequency of induction of CPD and their rate of
removal were determined by the appearance of the full-length restriction fragments in the T4 endo V-treated and mock-treated samples upon
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did not affect the rate of repair of the non-transcribed
strand at any time point.
To determine whether the depletion of CstF followed

by transfection with plasmid DNA affects the expression
of proteins involved in DNA repair in DT40–64 cells,
we examined levels of CSA and CSB proteins under these
conditions (47,48). As shown in Figure 2B, neither
tet-dependent depletion of CstF for 48 h nor transfection
with damaged/untreated plasmid DNA affected the
levels of CSA and CSB (Figure 3D), supporting the idea
that any effect of CstF depletion on DNA repair in fact
reflects a direct role of CstF in this response. As the cells
were not exposed to UV treatment, our western
blot analysis did not show the CSA-dependent degrada-
tion of CSB (48).
Supporting our results, Link and colleagues

(49) showed that at earlier times the frequencies for
photoproducts removal from the DHFR gene in CHO
hamster cells are similar on the transcribed and non-
transcribed strand. They also found that 62% of the
lesions were repaired in the transcribed strand by 8 h
compared with 43% in the non-transcribed strand, a 1.44
ratio that favors the repair of the transcribed strand.
Although our study in DT40 cells containing CstF showed
a similar difference between both strands (68% repair for
transcribed versus 43% repair for non-transcribed),
this difference was reached at an earlier time (by 4 h
after UV treatment) than in the previous study. This
differences could reflect the biological systems used in the
two studies and/or technical reasons. In fact, several
studies have indicated that it is difficult to make
unambiguous conclusions from HCR studies, because
the results are dependent upon many factors (43,50),
such as the vector, the reporter gene, the promoter, the
host cell and transfection methods. For example, the
differences between our study and that of Link and
colleagues (49) could reflect different transcriptional levels
between reporter plasmids and endogenous genes, and/or
differences in the repair mechanism between different cell
types and organisms. In spite of these complications, it is
apparent from our results that CstF plays a role in the
TCR pathway, or in a related pathway, in DT40 cells.

RNAP II, CstF and BARD1 associate at sites of DNA repair

The data presented before provides evidence that CstF
participates in ubiquitination of RNAP II in response to
DNA damage, and in the TCR response itself. Based on
this and on our previous data establishing an interaction
between CstF and BRCA1/BARD1, we next wished to
determine whether RNAP II, CstF and BRCA1/BARD1
all associate at sites of DNA damage. To this end, a
variation of the chromatin immunoprecipitation (ChIP)
assay (39,51) was employed. This method has been used
largely to study chromatin associated factors, but has also
been valuable in analysis of proteins apparently associated
with elongating RNAP II (e.g. 52–54). In our experiments,
BrdU was added to HeLa cells immediately after exposure
to UV light to label repaired DNA. Cells were crosslinked
with formaldehyde at different times after UV exposure.
As ubiquitination of RNAP II occurs within 15min of

exposing cells to UV and persists for about 8–12 h (55), we
performed our analysis in a period between 0–5 h after UV
treatment. Extracts of these cells were prepared and
following sonication DNA–protein complexes were IPed
by incubation with an anti-BrdU monoclonal antibody.
Following reversal of crosslinks, rather than analyzing
DNA by PCR, we determined whether specific proteins
were associated with the BrdU-containing DNA by
western blot. Samples from cells not treated with UV
were used as a control.

The data shows that RNAP II, CstF and BARD1 all
associated with repaired/BrdU-containing DNA
(Figure 4). These findings corroborate earlier observations
that part of RNAP IIO does not dissociate from the
damaged DNA during the assembly of the TCR complex
(54). The presence of RNAP II supports the hypothesis
proposed in yeast that RNAP II is not always degraded at
sites of DNA damage and might re-engage and continue
transcription (26,33,54). RNAP II associated with the
repaired DNA was detected at the earliest time after UV
irradiation (0.4 h), suggesting that the arrest of the RNAP
II is an early event in TCR. Consistent with previous
results, the western blot analysis also revealed that UV
treatment decreased accumulation of RNAP II at later
times (Figure 4, 2 h after UV treatment; 27,54), likely
reflecting the turnover of stalled RNAP II shown in
Figure 2C–D. Significantly, we also detected CstF-64 and
BARD1 associated with the BrdU-containing DNA, with
a time course very similar to that displayed by RNAP II.
Together, this data supports the idea that RNAP II, CstF
and BARD1 associate at sites of DNA damage and play a
direct role in the DNA repair response.

DISCUSSION

Our previous work showed that polyadenylation is
inhibited after DNA damage as a result of both
BRCA1/BARD1/CstF complex formation (4) and protea-
some-mediated degradation of RNAP II (27). As CstF-50
can interact with BARD1 to inhibit polyadenylation (17)
and with the CTD of RNAP II to activate polyadenyla-
tion (13), we proposed that CstF plays an important role
in the response to DNA damage. In this study, we
provided evidence that prematurely terminated polyade-
nylated transcripts can be detected in vivo following DNA
damage, especially under conditions when the CBB
checkpoint is not activated. We also determined that
cells with reduced levels of CstF displayed enhanced
sensitivity to UV treatment. The depletion of CstF was
found to correlate with decreases in both ubiquitination
and turnover of RNAP IIO and repair of the transcribed
DNA strand, which are events in the TCR response
(22,23,25,54,55). Consistent with our model for CstF
function, we also found that RNAP IIO, BARD1 and
CstF were all transiently associated with sites of repaired
DNA. This finding also suggests that a fraction of RNAP
II elongation complexes arrested at sites of DNA damage
are stable and remain associated with the DNA. Taken
together, our results suggest that the polyadenylation
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machinery, specifically CstF, plays an important role in
the response to DNA damage.

Based on the results presented here, we can confirm and
extend the model that has been proposed in previous work
(Figure 5; 4,17,54). Our data has provided evidence that
DNA damage can induce premature transcription termi-
nation and polyadenylation, likely at sites of DNA
damage and that accumulation of such species is blocked
by activation of the CBB checkpoint. How might the
checkpoint prevent such RNAs from accumulating?
Milligan et al. (56) observed not only reduction in
the levels of different mRNA species but also of
truncated RNAs in yeast strains with a defective poly(A)
polymerase. Defective polyadenylation of prematurely
terminated transcripts is known to activate a nuclear
surveillance pathway, eliminating those mRNAs by dead-
enylation and exosome-mediated degradation (56–58).
Extending this idea, our ongoing work (our unpublished
data) indicates that another CstF-50-interacting protein is
the poly(A) specific ribonuclease (PARN; 59–61). PARN
has been shown to co-purify with essential nonsense-
mediated decay factors (62) and PARN down-regulation
abrogates nonsense-mediated decay (63). Although more
work is necessary to determine the functional relevance
of the CstF/PARN interaction, the association of a
polyadenylation factor and a deadenylation factor is
mechanistically intriguing, and could contribute to the
turnover of different RNA species by a nuclear quality
control pathway after UV treatment.

Our results suggest that CstF is involved in DNA
damage-induced ubiquitination of RNAP II LS, which is
an important event in the TCR response (22,23,25,54). As
CstF-50 can bind BARD1 (17), the CTD of RNAP II (13)
and ubiquitin (Ub, our unpublished data), it is possible
that it functions to help in the assembly or stabilization of

the ubiquitination complex. In this scenario, CstF-50
might function as a cofactor for ubiquitination of RNAP
II by BRCA1/BARD1 (27,28). Recent studies suggest that
Ub-binding proteins may be critical in determining
substrate specificity and substrate fate (64–66). In this
respect CstF-50 could function to help the BRCA1/
BARD1 heterodimer recognize some of its substrates,
such as RNAP IIO. By this model, loss of CstF would
have a negative effect on clearance of the stalled RNAP
II from sites of damage, by preventing ubiquitination
and degradation of RNAP IIO. This could in turn block
access of repair enzymes to the DNA, thereby interfering
with the repair process and enhancing cell death.
Our results with DT40 cells depleted of CstF showing
deficiencies not only in recovery from UV treatment
but also in repair of UV-induced DNA damage support
this idea.
Our data has indicated that CstF plays a role in the

DNA repair response. As just discussed, CstF could affect
DNA repair by inhibiting the erroneous processing of
nascent, truncated RNAs, by inducing RNAP II ubiqui-
tination, and/or by re-engaging and continuing transcrip-
tion with stalled RNAP II complexes. It is also possible
that CstF plays a more direct role in the repair process.
Several observations support this hypothesis. First, CstF
interacts with the DNA replication and repair factor
PCNA (17). It has been shown that PCNA co-localizes
with BRCA1/BARD1at sites of DNA repair (67,68) and
associates with DNA repair proteins as part of the TCR
response (69). It is possible that PCNA is the repair factor
that links the stalled RNAP II complex to the repair
machinery during TCR. Second, several polyadenylation
factors have been shown to interact with DNA repair
factors. For example, cleavage factor CFIIm co-purifies
with the BRCA1-associated protein hMre11 (70), which
has been implicated in DNA repair and cancer predis-
position (reviewed by 71). Additionally, the transcriptional
co-activator PC4 interacts not only with CstF-64 (72) but
also with the DNA repair protein XPG (73). XPG is
known to function in multiple DNA repair pathways.
XPG recruits PC4 to the bubble-containing DNA
substrate, PC4 displaces XPG and forms a DNA-PC4
complex (73). PC4 can also interact with the elongating
RNAP IIO through CstF-64, preventing premature
termination during the elongating phase (72). It is thus
possible that the interaction of PC4 with CstF-64 mediates
the damage-induced association of the stalled RNAP II
and the DNA repair machinery. In any case, our data have
provided evidence that CstF plays a role in TCR,
reinforcing the functional interaction between components
of the transcription, 30 processing and DNA repair
machineries.
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