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Abstract.
BACKGROUND: Brain functional connectivity network (BFCN) has been widely applied to identify biomarkers for the brain
function understanding and brain diseases analysis.
OBJECTIVE: Building a biologically meaningful brain network is a crucial work in these applications. For this task, sparse
learning has been widely applied for the network construction. If multiple time-point data is added to the brain imaging appli-
cation, the disease progression pattern in the longitudinal analysis can be better revealed.
METHODS: A novel longitudinal analysis for MCI classification is devised based on resting-state functional magnetic res-
onating imaging (rs-fMRI). Specifically, this paper proposes a novel multi-task learning method to integrate fused penalty by
regularization. In addition, a novel objective function is developed for fused sparse learning via smoothness constraint.
RESULTS: The proposed method achieves the best classification performance with an accuracy of 95.74% for baseline and
93.64% for year 1 data.
CONCLUSIONS: The experimental results show that our proposed method achieves quite promising classification perfor-
mance.
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1. Introduction

With a progressive decline of memory and cognitive function, Alzheimer’s disease (AD) and its pro-
dromal stage, mild cognitive impairment (MCI), are incurable neurodegenerative disease [1,2]. Both AD
and MCI are the main dementia leading to about 60–80% of dementia cases in the worldwide [3]. MCI
is convertible to AD with an average rate of 10–15% [4]. Since MCI is misdiagnosed most of time due
to explicit symptoms, the prompt treatment and monitor of AD progression before its onset is highly
desirable [5]. Currently, various imaging modalities have been widely applied for AD studies (e.g.,
structural magnetic resonating imaging (MRI) [6–10], positron emission tomography (PET) [11–13],
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Fig. 1. Flowchart of the proposed method.

pathological amyloid depositions measured through cerebrospinal fluid (CSF) [14–17], and resting-state
functional MRI (rs-fMRI)). Rs-fMRI is able to check functional integration and separation of brain net-
works disrupted by MCI and establish functional connectivity (FC) among brain regions to characterize
MCI [18,19]. Actually, FC is denoted as the temporal correlation of blood-oxygenation-level-dependent
(BOLD) time series between two brain regions [20]. The rs-fMRI is promising for brain disease iden-
tification by providing unique information via FC network. The brain FC network (BFCN) study based
on rs-fMRI has played an increasing important role in identifying biomarkers for neurological disor-
ders [21]. Hence, it is of great interest to develop early MCI diagnosis method to delay AD progression
and treat this dementia.

Up to now, a myriad of FC modelling methods have been developed [22–24]. Namely, different
regions-of-interest (ROIs) are parcellated from brain regions to estimate the BOLD time series of ROI.
For example, the pairwise Pearson’s correlation (PC) among different brain regions is one of the widely
applied FC modelling algorithms to construct brain regions for MCI topological properties revela-
tion [25]. However, PC focuses on pairwise relationship only, which fails to consider the interaction
among multiple brain regions [26]. By contrast, another widely applied method is to establish FC net-
work via sparse representation (SR) [27]. This sparse estimation is based on partial correlation via reg-
ularization to construct the relationship among certain ROIs while removing other ROIs’ effects. SR
network has been applied in AD and MCI by constructing brain networks [27–29]. However, the exist-
ing research not only uses inherently sparse method, but also incorporates group structure. Therefore, it
is interesting to integrate both information.

It is known that machine learning techniques can make use of feature extracted from BFCN for MCI
patient identification with a relatively high accuracy [18,28,30–33]. Although the conventional studies
mostly focused on single time point information from brain regions, it is limited due to lack of longitu-
dinal analysis. To enhance the diagnostic performance, multiple time point networks can model disease
progression comprehensively and effectively [34,35]. In the literature, longitudinal study for disease
progression modelling has become a hot topic due to its effectiveness [4,34,36,37]. For example, Zhou
et al. [38] proposed to model AD progression based on a novel designed convex fused learning for score
prediction and achieved remarkable results. Huang et al. [34] predicted the longitudinal score using
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weighted random forest and obtained superior results than the traditional study. Jie et al. [36] proposed
a temporal smooth framework for longitudinal score prediction. In spite of these efforts, the previous
studies mainly focused on the score prediction based on MRI or PET data only [31]. It is argued that
the FC network from rs-fMRI data can be more effective for disease progression study [39]. In view of
this, our study concentrates on the longitudinal analysis for MCI identification via rs-fMRI data. To our
best knowledge, this is the first longitudinal analysis of MCI disease modelling based on FC network of
rs-fMRI data.

To characterize the complex MCI disease, we propose to develop a novel brain network model based
on multi-task fused learning with smoothness constraint. Specifically, we devise a network to take ad-
vantage of relationship of successive time points. A novel framework for longitudinal functional analysis
of MCI disease is developed. Moreover, we perform feature selection via the least absolute shrinkage
and selection operator (LASSO) [40] to identify the most informative features, and the final selected
features are fed into support vector machine (SVM) for MCI identification [41]. We evaluate our pro-
posed method based on the Alzheimer’s Disease Neuroimaging Initiative Phase-2 (ADNI-2) database.
Our experiments confirm that our method outperforms the traditional methods for MCI diagnosis.

2. Methodology

2.1. Proposed framework

Figure 1 shows the flowchart of the proposed method. We preprocess multiple time points rs-fMRI
data to build the FC network.

2.2. Subjects and data acquisition

Our study is based on the data obtained from the ADNI database created and updated since 2004. The
six-year study received $60 million from the public and private sectors, including the National Institute
of Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), and the Food
and Drug Administration. The main goal of the ADNI database is to use the continuous MRI and PET
images as well as other biomarkers for the clinical and neuropsychological assessment of early AD and
MCI progression. Specific and sensitive markers for the detection of early AD progression are designed
to help scholars and clinical experts develop new therapies and monitor their effectiveness, which can
effectively reduce the cost and time of clinical diagnosis. A large number of academic institutions and
private companies have worked together to build the ADNI database and recruited subjects from over
50 sites in the USA and Canada [42]. For up-to-date information, please refer to www.adni-info.org.

The data exploited in the preparation of this paper is acquired from the ADNI Phase-2 (ADNI-2)
database. There are 24 MCI patients and 23 normal controls (NCs) in our study, which contains two time
points (baseline and year1) rs-fMRI data. Every subject is scanned using 3.0T Philips Achieva scanners
with matched age and gender and the slice thickness is 3.3 mm. The Raw Digital Imaging and Commu-
nications in Medicine (DICOM) MRI scans are obtained from the public ADNI site (adni.loni.usc.edu).
The quality of these scans is checked, the spatial distortion caused by B1 field inhomogeneity and gra-
dient nonlinearity are automatically corrected.

2.3. Image preprocessing and feature extraction

All subjects used the 3.0T Philips Achieva to scan at different centres with the following parameters:
TR/TE = 3000/30 mm, rollover angle = 80◦, imaging matrix = 64 × 64, 48 slices,140 volumes, body
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thickness = 3.3 mm. The SPM8 software package is used for preprocessing the rs-fMRI data. Prior to
any further processing, the first 4 rs-fMRI volumes of every subject are discarded to keep the magnetiza-
tion equilibrium. The remaining volumes are then fixed for the interleaved order of the slices during the
echo plane scan. This correction guarantees that the data on every slice corresponds to the same point.
The interpolation time point is selected as the TR/2 time so that the relative error of every TR is min-
imized. After obtaining time delay correction, the slice timing to correct rs-fMRI time-series of every
subject are realigned. The realignment utilizes a rigid body spatial transformation and a least squares ap-
proach. The first volume is used as a reference for entire subsequent volumes to be readjusted. This step
discards the head movement illusion in the rs-fMRI time series. There is no significant group difference
in the head movement of whole participants utilized in the study. After readjustment, the volumes are
resliced so that they can match the first volume voxel-by-voxel. Rs-fMRI images are then normalized to
the Montreal Neurological Institute (MNI) space with resolution of 3 × 3 × 3 mm3 [43].

The rs-fMRI is divided into 116 brain regions using the automatic anatomical labelling (AAL) tem-
plate. FSL software is used for pre-processing in our experiment [44]. The average rs-fMRI time series
of each brain region is also filtered by high pass filtering. In addition, we regressed out head move-
ment parameters, mean BOLD time series of the white matter and the cerebrospinal fluid. The mean
of BOLD signal in every region of interest (ROI) is used as features. Accordingly, the original rs-fMRI
signal is denoted by 116 ROIs (i.e.,116 nodes) and connections between each pair of 116 ROIs (i.e., the
edges connecting them). PC of two mean time series between a pair of ROIs is computed to measure the
connection strength.

2.4. Multitask fused sparse regression model

The dimension curse is always an issue in modelling rs-fMRI dataset. To address it, it is argued that
group lasso is an effective way. A small number of features of specific groups can be identified by the
group lasso to construct connectivity map using non-zero weights of all predictors. There are differences
in the connection between MCI and NC as indicated in [27].

Assuming there are N subjects and each brain is divided into R ROIs using AAL template, a re-
sponse vector with M length regional mean time series of the r-th ROI is represented as: y =
[y1r, y2r, . . . , yMr] ∈ RM , and the Y = [y1,y2, . . . ,yR] ∈ RM×(R−1) represents a predictor data
matrix of a subject. An

r = [y11r, . . . , y
n
2r, . . . , y

n
Mr] is data matrix of r-th ROI (the whole BOLD

time series except for r-th ROI), wn
r ∈ RR−1 is weighting regression coefficient vector, Wr =

[w1
r , . . . , w

n
r , . . . , w

N
r ]. Then the key step of constructing the BFCN for this subject is to estimate the

FC matrix W ∈ RR×R, R nodes (i.e., xi, i = 1, 2, . . . , R) denote all ROIs. There are many researches
to construct a sparse network to model the brain region connectivity, and the typical group lasso sparse
learning network is formulated as below

J(Wr) = minWr

1

2

N∑
n=1

‖ynr −An
rw

n
r ‖22 +Rg(Wr) (1)

where Rg(Wr) is the group regularization. Specifically, the group regularization is defined as below

Rg(Wr) = λ1‖Wr‖2,1 = λ1

G∑
g=1

‖wrg‖2 (2)

where λ1 is the group regularization parameter, wrg represents the connectivity coefficients of g-th
predictor. The utilization of `2-norm on row vectors groups g-th feature in the whole time points by
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imposing the weights, and the further adoption of `1-norm jointly selects features via the weights of R
time points. The group lasso regularization is the traditional sparse regression network, which makes
sure that all the regression models in different groups have the shared set of connections. The `2-norm
group penalty imposes every representation coefficient using the same weight. Namely, this `2-norm
treats each ROI in the same way to reconstruct a target ROI. Accordingly, SR model with this objective
function is able to reconstruct the target ROI by the ROIs different from the target ROI. In addition, each
ROI reconstruction is independent from others.

The main goal in brain disease diagnosis is to enhance the diagnostic performance between NC and
MCI, but the group lasso regression model with penalty fails to consider the smooth properties of differ-
ent time points in the framework. For this reason, we devise a novel framework to jointly learn shared
functional brain networks of each subject by the group sparse regularization and fused smoothness in-
formation with the devised regularization terms as below:

J(Wr) = minWr

1

2

N∑
n=1

‖ynr −An
rw

n
r ‖22 +Rg(Wr) +Rs(Wr) (3)

whereRg(Wr) is group regularization, andRs(Wr) denotes the smoothness regularization. Specifically,
the smoothness regularization is defined as below

Rs(Wr) = λ2

R−1∑
r=1

‖wn
r − wn

r−1‖1 + λ3

R−1∑
r=1

‖An
rw

n
r −An

r−1w
n
r−1‖22 (4)

where λ2 and λ3 are the parameters of smoothness regularization. The first term, ‖wn
r − wn

r−1‖1, is the
regularization penalty derived from fused LASSO [45,46], which constrains the diversity between two
consecutive weighting vectors from successive time points to be as small as possible. Because of `1-norm
used in this fused smoothness term, the sparsity of weighting vectors difference is encouraged since lots
of zero components will occur in the imparity vectors of weighting. Namely, due to the regularization of
the smoothness fusion, a large number of components from the adjacent weight vectors will be the same.
The informative features will be selected due to non-zero weights in our classification task. In addition,
the last term, ‖An

rw
n
r − An

r−1w
n
r−1‖22, is the target smoothness, which encourages the difference of two

consecutive models of continuous time points as small as possible. When the smoothness regularization
parameters λ2 and λ3 are zero, the proposed method is the conventional group lasso method [47]. We
smooth the connectivity coefficients of the subjects at different time points by introducing the fused
smoothness terms. In addition, this learning framework imposes a high degree of constraints through
regularization terms. We call this sparse learning model as multi-task fused sparse regression model
(MFSR).

2.5. Optimization algorithm

Our objective function simultaneously includes both group and smoothness regularizations, and the
iterative projected gradient descent algorithm is used to minimize the objective function. Specifically,
the objective function in Eq. (3) is divided into the smoothing term

s(Wr) = minWr

1

2

N∑
n=1

‖ynr −An
rw

n
r ‖22 + λ3

R−1∑
r=1

‖An
rw

n
r −An

r−1w
n
r−1‖22 (5)
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and the non-smoothing term

n(Wr) = λ1‖Wr‖2,1 + λ2

R−1∑
r=1

‖wn
r − wn

r−1‖1 (6)

In each iteration k, two steps are contained in the projected gradient descent. Let the gradient of s(Wr)
at W k

r denote as (W k
r ), and the step size denote as γk and be determined via line search. The first step is

denoted as

V k
r =W k

r − γks′(W k
r ) (7)

The second step is as follow

W k+1
r = argmin

1

2
‖Wr − V k

r ‖22 + n(Wr) (8)

For the non-smooth term n(Wr) in Eq. (8), we can calculate sequentially the proximal operator that
related with the group Lasso constraints [47] and the fused Lasso constraints [45]. We use the techniques
discussed in [48] to further accelerate the above gradient. We compute the search point Sk

r to perform
gradient descent via W k

r

Sk
r =W k

r + αk(W
k
r −W k−1

r ) (9)

where αk is a pre-defined variable and V k
r is defined as

V k
r = Sk

r − γis′(Sk
r ) (10)

Finally, the new approximate solution is obtained.

3. Experiments and results

3.1. Experimental setting

In our experiment, our proposed method is implemented using Matlab 2015a software. The sparse
regression and classification are implemented by SLEP and LibSVM toolboxes [49], respectively. As
our data size is small, we adopt the leave-one-out cross validation (LOOCV) scheme to evaluate the
proposed method. The hyper parameters in each method are empirically set by the greedy search strategy
to select the optimal parameters. For example, we obtain the optimal values of λ1, λ2 and λ3 through the
exhaustive search strategy from 10−5 to 105. In order to evaluate the performance of various methods,
we use the following evaluation metrics: accuracy (ACC), area under receiver operating characteristic
(ROC) curve (AUC), sensitivity (SEN), specificity (SPEC), Youden’s Index (Youden), F1-score (F1),
and balanced accuracy (BAC). We compare the proposed MFSR network with the related networks such
as Baseline PC network, Baseline SR network, Baseline MFSR network, Year 1 PC network, Year 1 SR
network and Year 1 MFSR network.

3.2. Classification results

In order to assess the efficacy of our proposed MFSR method, we compare our method with the typical
methods including PC and SR. Moreover, we conduct two groups of experiments on the multiple time
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Fig. 2. ROC curves of various methods.

Fig. 3. Classification results via various metrics.

points data of the ADNI-2 database, i.e., baseline and year 1 classification. The experimental results are
displayed in Figs 2, 3 and Table 1, respectively. The proposed network achieves the best classification
performance with an accuracy of 95.74% for baseline and 93.64% for year 1 data. We can see that our
proposed network outperforms other competing networks in terms of classification results. The reason
of our proposed brain network achieves better classification results is that it can overcome the previous
network’s drawbacks. It is clear that multi-task learning is better than each individual task because it
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Table 1
Classification results (%)

Method ACC SEN SPEC Youden F1 BAC
Baseline PC 76.60 91.67 60.87 52.54 80.00 76.27
Baseline SR 65.96 66.67 65.22 31.88 66.67 65.94
Baseline MFSR 95.74 91.67 100.00 91.67 95.65 95.83
Year1 PC 80.85 66.67 95.65 62.32 78.05 81.16
Year1 SR 70.21 79.17 60.67 40.04 73.08 70.02
Year1 MFSR 93.64 91.67 95.65 87.32 93.62 93.66

Fig. 4. Sampled MCI and NC connectivity networks of the base line and year 1 data.

Fig. 5. The selected most discriminative brain regions.

can uncover the potential relationships among multiple time points rather than the simple averaging.
By observing the relationship of successive ROIs, we can see that the MFSR model outperforms the
traditional SR and PC models in both baseline and year 1 data, which confirms that multiple time-point
constrained network is beneficial for MCI classification. Another encouraging phenomenon is that the
impact of time changes on the classification performance is less sensitive. It can be seen that the results
of year 1 are slightly worse than that of baseline. We can see that our proposed group sparse learning
with smoothing constraints is quite effective.

We randomly select MCI and NC patients from the database to compare the performance of different
methods in terms of network. From Fig. 4, we can see that the conventional networks achieve similar
results between MCI and NC. Our proposed MFSR network shows more block structures and clear
layouts, which can reveal the differences between MCI and NC.
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Fig. 6. The selected most discriminative ROIs and their connections.

Fig. 7. Illustraction of selected ROIs of both baseline and year 1 data.

Figure 5a and b show the top 10 selected brain regions in the baseline and year 1 data, respectively.
Different colors represent 10 different selected brain regions of the highest frequency for clear discrim-
ination. The experimental results show that baseline and year 1 data select several common regions as
important features for MCI classification. In addition, it is obvious that the frontal and temporal features
are frequently identified. The selected brain regions including the temporal inferior frontal gyrus, sup-
plementary motor area, insula, frontal middle gyrus, middle temporal gyrus, superior gyrus, can be used
for potential clinical diagnosis. A group of brain regions in the temporal pole, medial orbitofrontal cor-
tex, and bilateral fusiform play an important role in the MCI identification. The connection relationship
of the 5 regions with the highest probability is clearly shown in Fig. 6, where different nodes denote
ROIs, and edges represent the degree of association of different ROIs. The thicker the connection, the
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greater the association weight between the ROIs. The blue and yellow lines represent the connection of
the 5 selected brain regions in the year 1 and baseline data, respectively. ROIs connection relationships
are displayed in Fig. 7. We find that gyrus, and temporal gyrus regions are identified for MCI diagnosis,
which are in line with the findings of the most selected regions in MCI in previous studies. Overall, the
top selected most discriminative brain regions are closely related with MCI pathology and consistent
with previous clinical findings as well [28,29].

4. Conclusion

In this paper, the longitudinal analysis and network modeling are combined to develop a new multi-
task sparse learning framework for MCI disease identification. Compared with other widely used meth-
ods, our proposed method can model the complex brain network more accurately. The longitudinal anal-
ysis via complex brain network is quite effective for the MCI prediction. The experimental results show
that the recognition of MCI at multiple time points is quite effective. In our future work, we will strive to
add more modalities and smoothing constraints to further enhance the accuracy of MCI diagnosis. Also,
the graph theory and high-order statistics (mean clustering coefficients, covariance of the clustering) can
be incorporated into our framework to improve the performance of the entire framework as well.
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