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T
he discovery of the association between HLA in
the major histocompatibility complex (MHC) on
chromosome 6p21 with type 1 diabetes, but not
with type 2 diabetes, suggested that these dis-

ease entities were of different genetic background and
pathogenesis. The discovery that some individuals with
diabetes had autoantibodies in their blood provided addi-
tional evidence that type 1 diabetes had an autoimmune
origin. Recently, increasing knowledge of the genome,
coupled with rapidly improving genotyping technology
and availability of increasingly large numbers of samples,
has enabled statistically robust, systematic, genome-wide
examinations for discovery of loci contributing to type 1
diabetes susceptibility, including within the MHC itself.
Currently, there are over 50 non-HLA regions that signifi-
cantly affect the risk for type 1 diabetes (http://www.
t1dbase.org). Many of these regions contain interesting,
but previously unrecognized, candidate genes. A few re-
gions contain genes of unknown function or no known
annotated genes, suggesting roles for long-distance gene
regulatory effects, noncoding RNAs, or unknown mecha-
nisms. Against a background of ever-improving knowledge
of the genome, particularly its transcriptional regulation,
and with massive advances in sequencing, specific genes,
rather than regions that impinge upon type 1 diabetes risk,
will be identified soon. Here we discuss follow-up strate-
gies for genome-wide association (GWA) studies, causality
of candidate genes, and genetic association in a bioinfor-
matics approach with the anticipation that this knowledge
will permit identification of the earliest events in type 1
diabetes etiology that could be targets for intervention or
biomarkers for monitoring the effects and outcomes of

potential therapeutic agents. The International Type 1
Diabetes Genetics Consortium (T1DGC) has established
significant resources for the study of genetics of type 1
diabetes. These resources are available to the research
community and provide a basis for future discovery in the
transition from gene mapping to discovery of disease
mechanisms.

The T1DGC (http://www.t1dgc.org) is an international
research program established in 2002 whose primary aims
are to 1) discover genes that modify risk of type 1 diabetes
and 2) expand on existing genetic resources for type 1
diabetes research (1). Over the last 7 years, the T1DGC has
assembled a collection of �4,000 type 1 diabetes affected
sib-pair (ASP) families for genetic studies. In addition to
building this resource, consortium members have pro-
vided access to large case-control collections for specific
T1DGC genotyping studies. Building on these assets, four
major research projects have been performed: an exhaus-
tive examination of the HLA region by single nucleotide
polymorphism (SNP) genotyping and high-resolution HLA
typing; a detailed investigation of published candidate
genes; a genome-wide linkage scan; and a GWA study and
meta-analysis. Importantly, T1DGC data and bio-speci-
mens used in these studies have been made available to
the research community. The T1DGC continues to build
on these resources to help identify the inherited events in
the pathogenesis of type 1 diabetes.

The etiology of human type 1 diabetes is still largely
obscure, but it is recognized that both genetic and envi-
ronmental factors are important in defining disease risk
(2). This is supported by observations showing that the
proband-wise concordance for monozygotic (MZ) twins is
estimated to be �50% (compared with �8% for dizygotic
[DZ] twins) (3). These MZ twins have the whole range of
population genetic risk profiles for type 1 diabetes, and if
they were all high-risk DR3/4-DQ8, for example, their
concordance for the disease would be much higher. Both
animal model and human studies indicate that an autoim-
mune response to the �-cells of the pancreatic islets
occurs in type 1 diabetes. The outcome of this response
(health or diabetes) is influenced substantially by an
unknown series of stochastic or developmental events in
the context of (unknown) environmental factors. The
autoimmune process, substantially determined by inher-
ited variation, then progresses through a preclinical phase,
leading to destruction of �-cells and a stage of hypergly-
cemia resulting from reduced �-cell mass and insulin
secretory capacity.

Genetic, functional, structural, and animal model stud-
ies all indicate that the highly polymorphic HLA class II
molecules, namely the DR and DQ �-� heterodimers, are
central to susceptibility to type 1 diabetes (4,5). The genes
encoding these proteins are located in the HLA region,
which spans �4,000 kb of DNA on human chromosome
6p21.3. The HLA region comprises �200 genes, and 40% of
the expressed genes are predicted to have immune re-
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(INSERM) U730, Centre National de Génotypage, Evry, France; the 8Centre
for Diabetes Research, The Western Australian Institute for Medical Re-
search, University of Western Australia, Perth, Australia; the 9Juvenile
Diabetes Research Foundation International, New York, New York; the
10Department of Medical Genetics, Juvenile Diabetes Research Foundation/
Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Insti-
tute for Medical Research, Addenbrooke’s Hospital, University of
Cambridge, Cambridge, U.K.; and the 11Department of Public Health Sci-
ences, University of Virginia, Charlottesville, Virginia.

Corresponding author: Flemming Pociot, fpoc@hagedorn.dk.
Received 16 January 2010 and accepted 5 April 2010.
DOI: 10.2337/db10-0076
© 2010 by the American Diabetes Association. Readers may use this article as

long as the work is properly cited, the use is educational and not for profit,
and the work is not altered. See http://creativecommons.org/licenses/by
-nc-nd/3.0/ for details.

See accompanying commentary, p. 1575.

PERSPECTIVES IN DIABETES

diabetes.diabetesjournals.org DIABETES, VOL. 59, JULY 2010 1561



sponse functions (6,7). In addition to the class II genes
HLA-DRB1 and HLA-DQB1, any one (or more) of these
MHC genes, including the other HLA genes, could contrib-
ute to the overall risk for type 1 diabetes. The exact
mechanism(s) by which the HLA class II molecules confer
susceptibility to immune-mediated destruction of the pan-
creatic islets is still not known in its entirety, but the
binding of key peptides from autoantigens (preproinsulin,
GAD, insulinoma-associated 2 antigen, and zinc trans-
porter, ZnT8, so far identified) to HLA class II molecules in
the thymus and in the periphery are likely to play an
important role. Theoretically, targeting this process of
antigen presentation and T-cell activation may be an
effective therapeutic approach to preventing type 1 diabe-
tes. In practice, HLA screening is used to identify people at
risk for developing type 1 diabetes, for inclusion in, and
exclusion from, clinical studies (8) and clinical trials (9).

MHC FINE MAPPING

Although the highly polymorphic HLA class II genes
clearly play the most important single role in susceptibility
to type 1 diabetes, variation at these loci alone cannot
explain all of the evidence of genetic association and
linkage of the MHC with type 1 diabetes. To better define
genes within the MHC that may affect type 1 diabetes risk
and would therefore merit further studies, the T1DGC
undertook a comprehensive study of the genetics of the
classic 4-Mb MHC region. More than 3,000 SNPs and 66
microsatellite markers were genotyped in 2,300 type 1
diabetes ASP families (�10,000 individuals) (10). HLA
typing using immobilized probes was also performed on
these samples for HLA-A, -B, -C, -DRB1, -DQA1, -DQB1,
-DPA1, and -DPB1. These data (available for viewing at
http://www.t1dbase.org) represent the largest collection of
families with type 1 diabetes genotyped at such a detailed
level.

Specific combinations of alleles, or haplotypes, of the
DRB1, DQA1, and DQB1 genes (in cis and in trans)
determined the extent of risk and a distribution of DR-DQ
haplotypes and genotypes ranging from highly suscep-
tible to highly protective have been observed (11). Odds
ratios (ORs) �40 were observed for some genotypes
(e.g., DRB1*0301-DQA1*0501-DQB1*0201/DRB1*0401-
DQA1*0301-DQB1*0302). High genetic risks have been
reported for islet autoimmunity and type 1 diabetes in
DR3/4-DQ8 siblings who shared both HLA haplotypes with
their diabetic sibling, although this has yet to be confirmed
(12). Further, independent effects of HLA-A, HLA-B, and
HLA-DPB1 (13) were also demonstrated. Following ad-
justment for linkage disequilibrium to haplotypes at the
DR-DQ region, both susceptible and protective alleles
were found at HLA-B (e.g., B*3906, susceptible, and
B*5701, protective), HLA-A (e.g., A*2402, susceptible,
and A*1101, protective), and HLA-DPB1 (e.g.,
DPB1*0301 and *0202, susceptible, and *0402, protec-
tive) (13,14).

Other features of the HLA–type 1 diabetes association
were also examined; however, only support for an HLA
effect by age at diagnosis was found (15–18). Presumably,
the risk conferred by specific HLA class I and class II
alleles and haplotypes reflects the specificity of peptide
binding and presentation (19,20). New genomic knowledge
will better define the naturally processed peptides from
autoantigens in type 1 diabetes. Intriguingly, a decrease in
high-risk HLA genetic contribution in new-onset cases

over the last decades has been observed in several studies,
suggesting a change in environmental impact on pen-
etrance as the incidence of type 1 diabetes increases
(21–23).

The T1DGC MHC fine mapping data and results were
published as a supplement to Diabetes, Obesity and
Metabolism (10). The T1DGC has made the data available
to the scientific community for additional analyses, by
request to the National Institute of Diabetes and Digestive
Kidney Diseases (NIDDK) Central Repository (https://
www.niddkrepository.org/niddk/home.do). The T1DGC is
also probing the MHC in greater genomic detail, including
a collaboration with the Federation of Clinical Immunol-
ogy Societies (FOCiS) and with DNA sequence analysis to
investigate the association of the “secondary” DRB3,
DRB4, and DRB5 variation in the context of the DRB1
haplotypes on which these alleles are found.

CANDIDATE GENE STUDIES

Insulin gene (INS). The importance of variation at or
near the insulin gene (INS) on chromosome 11p15.5 was
originally suggested by early association studies (24). The
genetic risk conferred by the INS locus is generally
ascribed to differing size classes of alleles at a region with
a variable number of tandem repeats (VNTR, mini-satellite
polymorphisms) flanking the insulin gene. The class I
alleles of the INS VNTR, which increase risk of type 1
diabetes, have been associated with lower insulin mRNA
and protein expression in the thymus, compared with the
dominant protective class III alleles. Decreased central
tolerance allows more autoreactive T-cells to escape into
the periphery, increasing susceptibility to disease (25,26).
Recent studies that highlight insulin and its precursors as
the major initiating autoantigen in human type 1 diabetes
(27,28) provide support for this hypothesis.
CTLA4. The variants associated with type 1 diabetes in
the cytotoxic T-lymphocyte–associated protein 4 (CTLA4)
gene were identified by association mapping using both
NOD mouse and human samples (29–31). The CTLA4-
encoded molecule is a co-stimulatory receptor that inhib-
its T-cell activation and functions in CD4 T regulatory
cells. Several human autoimmune diseases are associated
at the same genomic region (2q33) that contains CTLA4.
Narrowing down the list of candidate causal variants and
their effect on CTLA4 gene splicing has been aided by
using samples from patients with Graves’ disease (31) and
point to variants in the 3� region of the gene, altering the
level of a soluble form of the receptor. CTLA4 genetic
variation has a strong effect, presumably via its role in
regulation of peripheral tolerance (32), in which the dis-
ease-associated CTLA4 haplotype is predisposing to a
failure in tolerance to multiple organs or tissues. In the
NOD mouse in which convincing statistical gene-gene
interactions can be observed, the effect of allelic variation
of CTLA4 depends on different combinations of other
susceptibility loci, including complete masking of the
effect (that is, no association with disease) (33).
PTPN22. A functional variant of the lymphoid-specific
protein tyrosine phosphatase (PTPN22) gene on chromo-
some 1p13 is strongly associated with type 1 diabetes as
well as other autoimmune diseases (34,35). LYP, encoded
by the PTPN22 gene, is an inhibitor of T-cell activation,
acting by dephosphorylating T-cell receptor-proximal sig-
naling molecules such as LCK and ZAP70. A variant of
PTPN22 resulting in an amino acid substitution (R620W)
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has been shown to have functional consequences for
PTPN22 function in vitro and in vivo, and may be the
causal variant in this region. Provocatively, in the current
in vitro immunoassays of �- and T-cell activation and
cytokine production, the R620W variant is a gain-of-func-
tion allele, suggesting that inhibition of LYP might be a
therapeutic target in type 1 diabetes.
IL2RA. The IL-2R �-subunit of the IL-2 receptor complex
locus (IL2RA) was found to be associated with type 1
diabetes using a tag SNP approach (36). The gene IL2RA is
found on chromosome 10p15.1 and encodes the expres-
sion of CD25 on regulatory naive T-cells, memory T-cells,
and activated monocytes (37). The regulated expression of
the CD25 protein is important for suppressing T-cell
proliferation by an immunogenic stimulus. IL2RA has
been identified as an associated gene in multiple autoim-
mune diseases (38–40). Recent fine mapping and func-
tional studies have identified several variants that make
independent contributions to risk for type 1 diabetes,
indicating that IL2RA is the causal gene in the region.
Different IL2RA variants influence the risk for develop-
ment of multiple sclerosis, another autoimmune disease
(41). In type 1 diabetes, the noncoding variants in IL2RA
alter gene transcription, affecting expression of CD25 on
the surface of naive and memory T-cells, and IL-2 produc-
tion by stimulated memory T-cells (42). These human
results parallel those observed in mouse studies, in which
the CD25 ligand, Il2 (the gene encoding the key cytokine
IL-2), has been identified as the major non-MHC risk gene
(43).
Other candidate genes. Previous studies using candidate
gene approaches have suggested many additional loci
contributing to susceptibility of type 1 diabetes suscepti-
bility (44). However, numerous early studies were under-
powered, owing to limitations in genomic information and
genotyping technology, as well as small sizes of available
cohorts.

The T1DGC, using the same samples as in the MHC and
candidate gene investigations, reevaluated 382 SNPs from
21 recently reported candidate genes, assembling nearly
4,000 ASP families and fully characterizing (through tag-
ging SNPs and reported variants) the genetic contributions
to type 1 diabetes risk. These results suggest that, aside
from the MHC, 11p15 (INS), 2q33 (CTLA and other genes),
10p15.1 (IL2RA), and 1p13 (PTPN22), few of these pub-
lished candidate genes can be replicated. In addition, a
total of 1,715 SNPs were selected from the Wellcome Trust
Case Control Consortium (WTCCC) GWA study of type 1
diabetes, and 581 SNPs were selected that exhibited
association with autoimmune disease and type 2 diabetes
loci (45,46). These studies confirmed established loci
(above) (47,48) and suggested additional risk conferred by
loci on chromosomes 5q31 (TCF7 [P19T], transcription

factor 7, T-cell specific, HMG-box), 18q12 (FHOD3, formin
homology two domain containing 3), and Xp22 (TLR8/
TLR7 toll-like receptor 8/toll-like receptor 7). Type 1
diabetes has many susceptibility loci and therefore path-
ways in common with autoimmune diseases. With the
recent exception of GLIS3 (49), no genetic overlap was
found between type 1 diabetes and type 2 diabetes loci
(45,46,50). The dataset established by the T1DGC from its
Candidate Gene Workshops is available from the NIDDK
Central Repository.
Genome-wide linkage. A number of genome-wide scans
for linkage to type 1 diabetes have been reported (4,51–
55). All these studies consistently demonstrated linkage of
type 1 diabetes to the MHC and specifically to the HLA
genes on human chromosome 6p21.3. Additional regions
with evidence of linkage have been identified, but many of
these regions have not been reproduced in independent
studies.

The T1DCG has completed genome-wide linkage stud-
ies, including a meta-analysis of data from previous link-
age studies with a subset of T1DGC families (4), as well as
the largest ASP linkage study in type 1 diabetes (56). Five
non-HLA regions (Table 1), and a distinct locus located in
the broad HLA linkage peak, showed some evidence of
linkage to type 1 diabetes. In general, the peaks delineated
broad regions with multiple identified associated loci
(www.t1dbase.org). Both INS and CTLA4 are included
among the identified regions from linkage. By applying
family-based association testing to the linkage data from
T1DGC families, one novel region associated with type 1
diabetes was identified, the UBASH3A region on chromo-
some 21, which has been confirmed in additional datasets
(57). UBASH3A is expressed exclusively in T-cells, and
animal studies implicate it in T-cell signaling.

Data from T1DGC genome-wide linkage experiments
are available to the scientific community by request.
Linkage studies in complex human disease are now rec-
ognized to have limited sensitivity due to the typical small
locus-specific effect sizes. A major focus of current re-
search is on the identification of putative risk genes with
rarer or structural variants that could contribute to dis-
ease, and it is possible that the regions showing some
evidence of linkage harbor variants that are not common
SNPs well covered by the currently available genotyping
platforms (58).
Genome-wide association (GWA). During the past few
years, GWA studies have represented a paradigm shift in
strategies for identifying risk genes for complex (multifac-
torial) human diseases, including type 1 diabetes (Fig. 1).
This research has been made possible by the develop-
ments of high-density SNP genotyping arrays, analytical
methods that build on the synthesis of population genet-
ics, statistical genetics and genetic epidemiology, and the

TABLE 1
Regions with evidence of linkage to type 1 diabetes

Chromosome Position (cM) LOD P

LOD-1 support
interval

Flanking markers for
the LOD-1 interval

2 194.5 3.28 5 � 10�5 191.3–197.8 rs1882395/rs1369842
6 52.0 213.2 8 � 10�216 51.0–52.5 rs11908/rs412735
11 2.5 3.16 7 � 10�5 0–8.5 rs741737/rs1609812
19 9.5 2.84 1.5 � 10�4 7.5–26 rs887270/rs1044250
19 58.0 2.54 3 � 10�4 52–63 rs1019937/rs1878926

Adapted from Concannon et al. (57). LOD, logarithm of odds.
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use of large clinically well-characterized case and control
populations, as well as family collections, as that provided
by the T1DGC. Careful attention to study design has been
essential to eliminate or minimize bias (59–62). Type 1
diabetes genetic research has benefited from the collabo-
ration among investigators, since T1DGC members have
provided access to their own large collections to comple-
ment the T1DGC collection of families, case subjects, and
control subjects. The family collections have proved in-
valuable not only for replicating case-control results but
also for providing additional validation of the selection of
control cohorts and their geographical and ethnic group
matches to case subjects and investigating parent-of-origin
effects.

The recently completed T1DGC GWA study, meta-anal-
ysis, and replication study included data from �30,000
individuals (47; http://www.t1dbase.org). Excluding HLA,
there were 41 regions in the human genome that provided
evidence of association with type 1 diabetes (P � 10�6)
(Table 2 and Fig. 2). Fifteen of these 41 regions were
previously reported. Of the 26 novel regions, 18 were
replicated in independent case-control and family collec-
tions (overall P � 5 � 10�8). Four additional SNPs were
associated (P � 0.05) in the replication study but failed to
reach genome-wide significance (overall P � 5 � 10�8)
(Table 2). Over 100 other regions had SNPs that achieved
associations with type 1 diabetes at borderline levels of
significance (10�6 � P � 10�5). Overall, the T1DGC GWA
study and meta-analysis (48,63) provided convincing evi-
dence for �40 non-HLA type 1 diabetes risk loci, with
effect sizes of alleles ranging from OR 	 2.38 (11p15.5,
INS) to OR 	 1.05 (17q21.2; SMARCE1). Many of these loci
contain genes that affect the immune response (Table 2
and Fig. 2), although alternative, and as yet unknown,
pathways may be implicated, including, for example, sev-

eral genes such as IFIH1, GLIS3, and PTPN2 strongly
expressed in �-cells.

In type 1 diabetes, initial analyses suggest that the risk
conferred by non-HLA loci appears to be lower in ASP
families (already enriched for high-risk HLA genes) than in
sporadic cases (47). For example, it has been observed
that some non-HLA SNPs (e.g., TCF7 P19T) show evidence
of association with type 1 diabetes only in families that are
not HLA-DR3/DR4, the highest HLA risk (64). This result
suggests the presence of interaction, or a departure from
the multiplicative model (statistical independence of the
distributions of genotypes at two nonlinked loci). Further
analysis is needed to fully clarify this observation (65). It
seems likely that these interactions are small and, as a
result, the biological interpretation and impact of such
interactions will be difficult.
Follow-up of confirmed genes and variants. As sug-
gested by the results in Table 2 and Fig. 2, many of the
identified non-HLA regions contain candidate genes that
are plausible by functional considerations. The median
size of the identified regions is 255 kb (range 68 kb to 1.9
Mb), and they contain between 0 and 27 known genes. This
suggests that there are �300 candidate genes, if we
assume that the causal gene(s) is in the linkage disequi-
librium, LD, region. However, since a causal variant in an
associated region could affect transcriptional regulation of
a gene several thousand base pairs away, owing to the
existence of long-range regulatory elements or enhancers,
including the number of candidate genes within 0.5 Mb on
either side of an associated region brings the number of
candidates in the order of 1,000 protein coding genes and
�500 non-protein coding pseudogenes and RNA-encoding
sequences (http://www.t1dbase.org). It is evident that a
combination of further more detailed genetic mapping,
and genotype-phenotype correlation studies, are neces-

Rare alleles: 
Linkage 
approaches

Association approaches
(GWAS)

Common variants 
with major 
effects

Rare variants 
with small  
effects: 
Functional 
studies

Low-frequency 
variants with 
intermediate 
effects: Deep 
sequencing

Allele frequency

Effect size

high

intermediate

modest

low

MAF<0.1% 0.1%<MAF<0.5% 0.5%<MAF<5% MAF>5%
very rare rare low high

FIG. 1. Contribution and frequency of risk alleles dictate mapping strategies. Linkage studies have demonstrated that multifactorial disorders,
including type 1 diabetes, cannot be explained by a limited number of rare variants with large effects, and GWA studies have shown that they
cannot be explained by a limited number of common variants of moderate effects. Hence, the most significant gap is currently in detecting
low-frequency variants with intermediate effects. MAF, minor allele frequency. Adapted from McCarthy et al. (62).
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sary for identification of the causal genes within these
regions. Some of these studies are underway—a recent
initiative on Fine Mapping and Gene Function in Type 1
Diabetes, supported by the National Institutes of Health,
supports several different approaches.

Studies to evaluate the molecular differences in gene
regulation or function that are due to the supposed caus-
ative genetic risk variants (e.g., protein expression level
and differences in cellular function between case and

control subjects) are needed to explore the mechanisms
through which the causal variants generate disease risk.
Even when a gene has an obvious potential to explain
pathogenesis and to be a component in the disease mech-
anism, inferences concerning function may be limited.
Furthermore, several of the identified loci do not suggest
genes with known functions: in fact, some of the associ-
ated regions do not contain annotated genes, pointing to
potential contribution of long-range gene expression reg-

TABLE 2
Type 1 diabetes–associated loci from GWA studies

SNP Chromosome Position LD region* OR minor allele
Gene of interest or containing

most associated SNP†

rs2476601‡ 1p13.2 114179091 113.62–114.46 2.05 PTPN22

rs2269241§� 1p31.3 63881359 63.87–63.94 1.10 PGM1

rs2816316‡ 1q31.2 190803436 190.73–190.82 0.89 RGS1

rs3024505§ 1q32.1 205006527 204.87–205.12 0.84 IL10 (CNTN2)
rs1534422§� 2p25.1 12558192 12.53–12.60 1.08 (gene desert)

rs917997‡ 2q12.1 102437000 102.22–102.58 0.83 IL18RAP

rs1990760‡ 2q24.2 162832297 162.67–163.10 0.86 IFIH1

rs3087243‡ 2q33.2 204447164 204.38–204.53 0.88 CTLA4

rs11711054‡ 3p21.31 46320615 45.96–46.63 0.85 CCR5

rs10517086§ 4p15.2 25694609 25.64–25.75 1.09 (gene desert)

rs4505848‡ 4q27 123351942 123.13–123.83 1.13 IL2

rs6897932‡ 5q13.2 35910332 35.84–36.07 0.89 IL7R

rs9268645‡ 6p21.32 32516505 24.70–34.00 6.8 MHC

rs11755527‡ 6q15 91014952 90.86–91.10 1.13 BACH2

rs9388489§ 6q22.32 126740412 126.48–127.46 1.17 C6orf173

rs2327832‡ 6q23.3 138014761 137.80–138.40 0.90 TNFAIP3

rs1738074‡ 6q25.3 159385965 159.13–159.62 0.92 TAGAP

rs7804356§ 7p15.2 26858190 26.62–27.17 0.88 SKAP2

rs4948088§ 7p12.1 50994688 50.87–51.64 0.77 COBL

rs7020673§ 9p24.2 4281747 4.22–4.31 0.88 GLIS3

rs12251307‡ 10p15.1 6163501 6.07–6.24 1.61 IL2RA

rs11258747‡ 10p15.1 6512897 6.48–6.59 0.84 PRKCQ

rs10509540§ 10q23.31 90013013 90.00–90.27 0.75 RNLS

rs7111341‡ 11p15.5 2169742 2.02–2.26 2.38 INS (TH)

rs4763879§ 12p13 9801431 9.51–9.80 1.09 CD69

rs2292239‡ 12q13.2 54768447 54.64–55.09 1.31 ERBB3

rs1678536‡ 12q13.3. 56265457 55.27–56.82 Multiple (MMP19-LOCx-GSTPP)

rs3184504‡ 12q24.12 110368991 109.77–111.72 1.28 SH2B3

rs1465788§ 14q24.1 68333352 68.24–68.39 0.86 C14orf181

rs4900384§ 14q32.2 97568704 97.43–97.60 1.09 (0; gene desert)

rs3825932‡ 15q25.1 77022501 76.77–77.05 0.86 CTSH

rs12708716‡ 16p13.13 11087374 10.92–11.56 0.81 CLEC16A

rs12444268§� 16p12.3 20250073 20.17–20.28 1.10 UMOD

rs4788084§ 16p11.2 28447349 28.19–28.94 0.86 IL27 (NUPR1)

rs7202877§ 16q23.1 73804746 73.76–74.09 1.28 CTRB1

rs16956936§� 17p13.1 7574417 7.56–7.66 0.92 DNAH2

rs2290400§ 17q12 35319766 34.63–35.51 0.87 ORMDL3 (GSDML3)

rs7221109§ 17q21.2 36023812 35.95–36.13 0.95 SMARCE1

rs1893217‡ 18p11.21 12799340 12.73–12.92 1.28 PTPN2

rs763361‡ 18q22.2 65682622 65.63–65.72 1.16 CD226

rs425105§ 19q13.32 51900321 51.84–52.02 0.86 PRKD2

rs2281808§ 20p13 1558551 1.44–1.71 0.90 SIRPG

rs11203203‡ 21q22.3 42709255 42.68–42.76 1.13 UBASH3A

rs5753037§ 22q12.2 28911722 28.14–29.00 1.10 LOC729980/HORMAD2

rs229541‡ 22q13.1 35921264 35.90–36.00 1.12 C1QTNF6

rs2664170§ Xq28 153598796 153.48–154.10 1.16 GAB3

Significant observations from Barrett et al. (47) are listed. *The size of the GWA regions is defined by the linkage disequilibrium, LD, of the
region. LD regions were calculated with the HapMap CEU Founders dataset in snpMatrix (http://www.bioconductor.org/packages/release/
bioc/html/snpMatrix.html) using different D� and r2 thresholds. †The gene physically closest to the marker position is listed. For candidate
genes suggested for specific regions, if not closest to the marker, these are listed in brackets. Adapted from www.t1dbase.org. ‡The SNP
marker represents a known susceptibility locus for type 1 diabetes from previous studies. §The marker represents a newly identified type 1
diabetes risk locus that was confirmed in the replication part of the study. �Marker that was significant in the GWA study and replication study
but did not reach genome-wide significance in the combined analysis.
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ulatory elements and/or nonprotein coding RNA genes.
The vast majority of the currently reported associations
also do not point unambiguously to a particular gene, but
to several within, and outside, a block of linkage disequi-
librium. Thus, genes that may clearly be implicated are
often not annotated with respect to function.

In silico analyses and experimental data indicate that up
to 50% of conserved cis-acting elements in the human
genome may be 1 Mb from target genes, sometimes in the
introns of neighboring genes, although most regulatory
sequences are within 50 kb of the gene (66). Thus, “true”
type 1 diabetes genes may be some distance from the
association signal, although the reported association pro-
vides an anchor point on which to base functional studies.

Recent data (67) and ongoing investigations indicate
that other types of common genetic variation (e.g., copy
number or structural variants, such as deletions and
duplications) may contribute little to the observed familial
clustering of type 1 diabetes risk. However, rare loss-of-
function structural gene variants could still make an
important contribution to type 1 diabetes risk, through
identification of which particular gene in a region of
association could harbor a causal variant. With further
advances in array and sequencing technologies, it is antic-
ipated that such loss-of-function variants will be identified
that influence susceptibility to type 1 diabetes (68).
Inferences from genetic studies. Each newly identified
association of a candidate locus with type 1 diabetes

presents new challenges. Finding the causal genes and the
causal variants, understanding how they affect disease
pathophysiology, and dissecting their contribution to type
1 diabetes risk remain the major undertakings. For some
genes, the effect sizes of risk alleles are such that larger
collections of patients will be needed to identify the causal
genes and limit the number of potential causal variants.
Genotype-phenotype fine-mapping studies, however, can
be performed with much smaller sample sizes while still
achieving convincing statistical evidence (e.g., 42). Each
confirmed gene, based on both statistical and functional
evidence, provides a key piece of the etiology of type 1
diabetes, regardless of the magnitude of the odds ratio as
a measure of the population association.

Combinations of many alleles, possibly hundreds, com-
bine with effects of environmental factors (probably nu-
merous and ubiquitous) to establish the risk profile for
type 1 diabetes. Each common variant in isolation has a
subtle effect on disease risk, but each may alter a key
function in the immune system and its interaction with
pancreatic �-cells. Recent discussion of “missing heritabil-
ity” for complex human traits has considered the source of
this variation and appropriate research strategies to detect
these genetic effects (61). Studies in populations that are
distinct from Europeans or European ancestry, such as
populations of recent African ancestry or from Asian
countries, are likely to narrow the large chromosomal
regions of association identified in current studies and to
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increase the yield of rare variants (69). Future studies
examining rare variants, structural variation, and polymor-
phisms not well imputed should be helpful in uncovering
the remaining missing heritability in type 1 diabetes.

A recent sequencing study provides an example of
detection of rare variants in type 1 diabetes. Targeted
sequencing in a series of candidate coding regions resulted
in IFIH1 being identified as the causal gene in a region
associated with type 1 diabetes by GWA studies (58).
IFIH1 encodes a cytoplasmic helicase that mediates in-
duction of the interferon response to viral RNA. The
discovery of IFIH1 as a contributor to susceptibility to
type 1 diabetes has strengthened the hypothesis (70) about
a mechanism of disease pathogenesis involving virus-
genetic interplay and raised type 1 interferon levels as a
cofactor in �-cell destruction. Nonetheless, it should be
recognized that a component of the missing heritability
(familial aggregation) in type 1 diabetes could well be due
to unrecognized intra-familial environmental factors.
Disease pathogenesis. Contemporary models of patho-
genesis of type 1 diabetes support the involvement of two
primary dramatis personae: the immune system and the
�-cell. The known and newly identified genetic risk factors
for type 1 diabetes present exciting opportunities to build
on to the current cast of disease mechanisms and net-
works. Most of the listed genes of interest (Table 2) and
those in extended regions are assumed to regulate immune
function. Some of these genes, however, may also have
roles in the �-cell (insulin being the most obvious exam-
ple). Another gene, PTPN2, encoding a protein tyrosine
phosphatase, was identified as affecting the risk for type 1
diabetes as well as for Crohn disease (47,71). PTPN2 is
expressed in immune cells, and its expression is highly
regulated by cytokines. However, PTPN2 is expressed also
in �-cells, where it modulates interferon (IFN)-
 signal
transduction and has been shown to regulate cytokine-
induced apoptosis (72). Other candidate genes, such as
NOS2A, IL1B, reactive oxygen species scavengers, and
candidate genes, identified in large GWA studies of type 2
diabetes, have not been found to be significant contribu-
tors to the susceptibility of type 1 diabetes (73).

Recently, new relationships between type 1 diabetes
and other autoimmune and inflammatory diseases have
been uncovered (63,71,74) (Table 3). Certain HLA haplo-
types have long been known to strongly influence genetic
predisposition to autoimmunity (75). The contribution of
the specific HLA component differs considerably among
different autoimmune diseases, but most relate to the
function of the adaptive immune response and the binding
and presentation of specific peptides. The results of GWA
studies have reinforced the belief that type 1 diabetes is an
autoimmune disease and that HLA is the major genetic
determinant of risk for type 1 diabetes. Importantly, there
is a substantial overlap in non-HLA susceptibility loci
between type 1 diabetes and other autoimmune diseases
(76). This overlap in genetic susceptibility locus (although
not necessarily the same causal variant [41]) supports the
concept that genetic risk in autoimmunity is determined in
part by variation in genes that act on control mechanisms
of the immune system. It will be important to identify loci
that are distinct to type 1 diabetes (such as the INS locus),
since these loci may illuminate type 1 diabetes–specific
pathways.

The T1DGC is participating in a follow-up study of
multiple autoimmune disease consortia. This project iden-
tifies significant loci from GWA studies to develop the

ImmunoChip, a 200,000-SNP custom array that will pro-
vide dense SNP mapping of regions that have been asso-
ciated (at genome-wide significance) with autoimmune
diseases. Both individual and shared regions of the ge-
nome will be assayed across autoimmune diseases. These
results will be made available through T1DBase, and the
data will be made available from the NIDDK Central
Repository.
Clinical implications of GWAS results. Recently, Clay-
ton (65) evaluated the genetic architecture of type 1
diabetes from the GWA meta-analysis study conducted by
the T1DGC. It was concluded that the principal value of
the newly discovered SNPs would be to increase our
understanding of disease pathogenesis, rather than in-
crease our ability to predict disease development on an
individual level. Even if we could explain all the familial
clustering of the disease (genetic and environmental fac-
tors), of which the largest contributor is the HLA, receiver
operator curve analyses showed that the positive predic-
tive value is limited, where a trial designed to capture 80%
of all future cases has to treat 20% of the general popula-
tion, of whom only �0.5% will develop type 1 diabetes.

The ultimate objective of genetic research is the trans-
lation of genetics findings into advances in clinical care.
An obvious question is, “What can a risk gene with an OR
in the range of 1.05–1.2 add to clinical treatments for type
1 diabetes?” However, a low OR does not disqualify the
encoded protein as a potential drug target. Both PPARG
and KCNJ11 are genes that have a low OR for type 2
diabetes risk, yet they encode for major drug targets. A
major contribution of genetics to type 1 diabetes will be
the identification of important disease pathways that can
be examined for new therapeutic targets or biomarkers,
including the stratification of subjects at risk for interven-
tions or patients for effective treatment (and prevention of
complications).
From GWAS to integrative genomics. Redefining and
stratifying human disease, especially with regard to phar-
macological response, in the post-GWA era is essential. A

TABLE 3
Type 1 diabetes loci showing overlap with risk loci of other
immune diseases

Gene of interest Immune diseases

PTPN22 (1p13.2) AITD, Crohn disease, MS, RA, SLE
RGS1 (1q31.2) Celiac disease
IL10 (1q32.1) Crohn disease
IL18RAP (2q12.1) Celiac disease
IFIH1 (2q24.2) AITD
CTLA4 (2q33.2) RA
CCR5 (3p21.31) Celiac disease
IL2 (4q27) AITD, RA, Celiac disease
IL7R (5p13.2) MS
TNFAIP3 (6q23.3) RA, SLE
TAGAP (6q25.3) Celiac disease
IL2RA (10p15.1) MS, SLE
SH2B3 (12q24.12) Celiac disease
CLEC16A (16p13.13) MS
ORMDL3 (17q12) Asthma
PTPN2 (18p11.21) Celiac disease, Crohn disease
CD226 (18q22.2) MS, RA

From http://www.t1dbase.org and http://www.genome.gov/GWAstudies.
The loci are from Table 1, where overlap to risk loci in other
autoimmune or inflammatory diseases have been reported. AITD,
autoimmune thyroid disease; MS, multiple sclerosis; RA, rheumatoid
arthritis; SLE, systemic lupus erythematosus.
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new approach to classifying human disease that both
appreciates the uses and limits of reductionism and incor-
porates the tenets of the nonreductionist approach of
complex systems analysis is necessary. Disease pheno-
types reflect consequences of variation in complex genetic
networks operating within a dynamic environmental
framework. Further genetic and functional evaluations,
conducted at the highest levels of experimental rigor and
repeatability and reproducibility, are necessary to estab-
lish and confirm involvement of such networks in type 1
diabetes, to fully elucidate the biological mechanisms of
the networks and to identify the strongest risk phenotypes
(77,78). Some phenotypes will be regulated by several of
the type 1 diabetes genes and may well be precursors of
disease, appearing at the earliest stages of the develop-
ment of type 1 diabetes and perhaps even preceding
aggressive autoimmunity (79).

Recently, it was suggested that since the vast majority of
disease genes show no tendency to encode highly con-
nected protein hubs but are localized to the functional
periphery of networks (80), they are not essential for
explaining disease pathogenesis. The counterargument is
to consider that cellular networks are modular, consisting
of groups of highly interconnected proteins responsible
for specific cellular functions. Disease pathogenesis rep-
resents the perturbation of probably many specific func-
tional modules caused by a variation in one or more of
the components producing recognizable developmental
and/or physiological dynamic instability (81). Such a
model offers a hypothesis for the emergence of complex or
polygenic disorders—a phenotype often correlates with
the inability of a particular functional module to carry out
its basic function. For extended modules, many different
combinations of gene variants might incapacitate the
module and lead to the same clinical phenotype. The
correlation between disease pathogenesis and functional
modules can improve our understanding of cellular net-
works by helping us to identify which genes are involved
in the same cellular function or network module. Patho-
genic processes may progress to clinical disease such as
type 1 diabetes; alternatively, these processes may be
interrupted at subclinical levels. The identification of such
phenotypes or disease precursors is therefore a key aim.
Comprehensive gene expression studies in cells and tis-
sues relevant to type 1 diabetes will help lead to identifi-
cation of relevant networks. Importantly, the association
of disease with functional networks may also influence our
choice of new therapeutic targets.

CONCLUSION

The greatest genetic risk (both increased risk, susceptible,
and decreased risk, protective) for type 1 diabetes is
conferred by specific alleles, genotypes, and haplotypes of
the HLA class II (and class I) genes. There are currently
about 50 non-HLA region loci that also affect the type 1
diabetes risk. Many of the assumed functions of the
non-HLA genes of interest suggest that variants at these
loci act in concert on the adaptive and innate immune
systems to initiate, magnify, and perpetuate �-cell destruc-
tion. The clues that genetic studies provide will eventually
help lead us to identify how �-cell destruction is influ-
enced by environmental factors. While there is extensive
overlap between type 1 diabetes and other immune-medi-
ated diseases, it appears that type 1 and type 2 diabetes are

genetically distinct entities. These observations may sug-
gest ways to help identify causal gene(s) and, ultimately, a
set of disease-associated variants defined on specific hap-
lotypes. Unlike other complex human diseases, relatively
little familial clustering remains to be explained for type 1
diabetes. The remaining missing heritability for type 1
diabetes is likely to be explained by as yet unmapped
common variants, rare variants, structural polymor-
phisms, and gene-gene and/or gene-environmental interac-
tions, in which we can expect epigenetic effects to play a
role. The examination of the type 1 diabetes genes and
their pathways may reveal the earliest pathogenic mecha-
nisms that result in the engagement of the innate and
adaptive immune systems to produce massive �-cell de-
struction and clinical disease. The resources established
by the international T1DGC are available to the research
community and provide a basis for future discovery of
genes that regulate the earliest events in type 1 diabetes
etiology—potential targets for intervention or biomarkers
for monitoring the effects and outcomes of potential
therapeutic agents.
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nycastle LL, Borch-Johnsen K, Böttcher Y, Brunner E, Bumpstead SJ,
Charpentier G, Chen YD, Chines P, Clarke R, Coin LJ, Cooper MN, Cornelis
M, Crawford G, Crisponi L, Day IN, de Geus EJ, Delplanque J, Dina C,
Erdos MR, Fedson AC, Fischer-Rosinsky A, Forouhi NG, Fox CS, Frants R,
Franzosi MG, Galan P, Goodarzi MO, Graessler J, Groves CJ, Grundy S,
Gwilliam R, Gyllensten U, Hadjadj S, Hallmans G, Hammond N, Han X,
Hartikainen AL, Hassanali N, Hayward C, Heath SC, Hercberg S, Herder
C, Hicks AA, Hillman DR, Hingorani AD, Hofman A, Hui J, Hung J, Isomaa
B, Johnson PR, Jørgensen T, Jula A, Kaakinen M, Kaprio J, Kesaniemi YA,
Kivimaki M, Knight B, Koskinen S, Kovacs P, Kyvik KO, Lathrop GM,
Lawlor DA, Le Bacquer O, Lecoeur C, Li Y, Lyssenko V, Mahley R, Mangino
M, Manning AK, Martínez-Larrad MT, McAteer JB, McCulloch LJ, Mc-
Pherson R, Meisinger C, Melzer D, Meyre D, Mitchell BD, Morken MA,
Mukherjee S, Naitza S, Narisu N, Neville MJ, Oostra BA, Orrù M, Pakyz R,
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Ionescu-Tîrgovişte C, Genetics of Type 1 Diabetes in Finland, Simmonds
MJ, Heward JM, Gough SC, Wellcome Trust Case Control Consortium,
Dunger DB, Wicker LS, Clayton DG. Robust associations of four new
chromosome regions from genome-wide analyses of type 1 diabetes. Nat
Genet 2007;39:857–864

72. Moore F, Colli ML, Cnop M, Esteve MI, Cardozo AK, Cunha DA, Bugliani M,
Marchetti P, Eizirik DL. PTPN2, a candidate gene for type 1 diabetes,
modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Dia-
betes 2009;58:1283–1291

73. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI,
Abecasis GR, Almgren P, Andersen G, Ardlie K, Boström KB, Bergman RN,
Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, Daly MJ,
Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott KS, Erdos MR, Frayling
TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves CJ, Guiducci C,

GENETICS OF TYPE 1 DIABETES

1570 DIABETES, VOL. 59, JULY 2010 diabetes.diabetesjournals.org



Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU,
Jørgensen T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg
C, Lango H, Lauritzen T, Li Y, Lindgren CM, Lyssenko V, Marvelle AF,
Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N,
Nilsson P, Owen KR, Palmer CN, Payne F, Perry JR, Pettersen E, Platou C,
Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, Roix JJ, Sandbaek A,
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